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Reinforcement learning describes the process by which during a series of trial-and-error

attempts, actions that culminate in reward are reinforced, becoming more likely to be

chosen in similar circumstances. When decisions are based on sensory stimuli, an

association is formed between the stimulus, the action and the reward. Computational,

behavioral and neurobiological accounts of this process successfully explain simple

learning of stimuli that differ in one aspect, or along a single stimulus dimension. However,

when stimuli may vary across several dimensions, identifying which features are relevant

for the reward is not trivial, and the underlying cognitive process is poorly understood.

To study this we adapted an intra-dimensional/ extra-dimensional set-shifting paradigm

to train rats on a multi-sensory discrimination task. In our setup, stimuli of different

modalities (spatial, olfactory and visual) are combined into complex cues andmanipulated

independently. In each set, only a single stimulus dimension is relevant for reward. To

distinguish between learning and decision-making we suggest a weighted attention

model (WAM). Our model learns by assigning a separate learning rule for the values

of features of each dimension (e.g., for each color), reinforced after every experience.

Decisions are made by comparing weighted averages of the learnt values, factored by

dimension specific weights. Based on the observed behavior of the rats we estimated

the parameters of the WAM and demonstrated that it outperforms an alternative model,

in which a learnt value is assigned to each combination of features. Estimated decision

weights of the WAM reveal an experience-based bias in learning. In the first experimental

set the weights associated with all dimensions were similar. The extra-dimensional shift

rendered this dimension irrelevant. However, its decision weight remained high for the

early learning stage in this last set, providing an explanation for the poor performance of

the animals. Thus, estimated weights can be viewed as a possible way to quantify the

experience-based bias.
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1. INTRODUCTION

A common conceptualization of choices between alternatives
highlights two components to the decision process: outcome
valuation and mapping of states and actions to outcomes (Rangel
et al., 2008; Gilboa and Marinacci, 2016). Even if the subjective
value of each outcome is known, computing similarity between
different states, as required for state-action-outcome mapping, is
a hard problem (Erev and Roth, 2014; Argenziano and Gilboa,
2017). Lack of knowledge about the environment might either
lead to avoiding unknown environments, as in Ellsberg (1961),
or may motivate exploration and learning (Rangel et al., 2008).
Modeling approaches of the learning process in decision making
contexts have differed between fields of research. Whereas in
economics it has been predominantly based on the Bayesian
framework (Gilboa and Marinacci, 2016), a frequentist-based
reinforcement learning (RL) (Sutton and Barto, 1998) approach
was instrumental in explaining human and animal choice
behavior and in pointing to the function of the underlying
neurobiological structures.

Classical RL models (Wagner and Rescorla, 1972; Sutton and
Barto, 1998) assume that a decision-maker assigns a value to

each action (or action-state pair) and updates it according to

the reward history. These values form the basis for decisions.
However, there is clearly more to adaptive choice behavior than

simple updating of values. As similar problems are encountered,
learning is significantly facilitated. This implies a higher level of
meta-learning, in which the learning process itself is improved.
Meta-learning can take many forms, from tuning of parameters
(Doya, 2002) to extracting underlying patterns (Plonsky et al.,
2015) or problem characteristics (Gershman and Niv, 2010;
Collins and Frank, 2013). Rather than adopting individual
solutions, a rule is derived for the family of problems, forming
a learning set (Harlow, 1949). Learning sets require uncovering
the underlying structure of the task set, allowing generalization.
Learning in such scenarios involves two stages: structure learning
and parametric learning (Braun et al., 2010).

We will focus here on category learning, where categories
are naturally defined by types of sensory input, only a subset
of which are relevant to the outcome (Mackintosh and Little,
1969; Roberts et al., 1988). In this common case, it is beneficial
to extract only the relevant aspects of the high-dimensional input
to simplify learning and decision-making. This may be achieved
in humans by introducing selective attention to different types
of information in the learning process (Slamecka, 1968; Niv et al.,
2015), in the decision process, or both (Leong et al., 2017). Rodent
studies in which the rules governing reward involve different
dimensions of presented stimuli show that, when appropriately
trained, the animals’ behavior is consistent with dimension-
specific attention sets (Crofts et al., 2001; Chase et al., 2012;
Lindgren et al., 2013; Bissonette and Roesch, 2015; Wright et al.,
2015; Aoki et al., 2017). However, it is still not clear how these sets
are formed, and whether they are learned through reinforcement.
To study how animals deal with extraction of a subset of
relevant stimulus dimensions in a high-dimensional setting,
we adapted an intra-dimensional/extra-dimensional set shifting
paradigm to train rodents on a deterministic multidimensional

sensory discrimination task involving spatial, olfactory and visual
associations. In each set, only a single stimulus dimension is
relevant for reward. To account for the animals’ behavior, we
applied amodified reinforcement learningmodel, combined with
a decision rule that chooses among alternatives by comparing the
weighted averages of the corresponding learnt values, factored
by dimension-specific weights. We applied the model to the
trial-by-trial choice behavior during the various stages of task
performance and show that this model out-performs a simple
RL model in describing the data, and that it uncovers patterns
of animal behavior that cannot be explained by reinforcement
statistics alone.

2. RESULTS

2.1. Behavior
The data was collected from 18 Long-Evans rats trained on
two versions of a multidimensional sensory discrimination task
(Figure 1). In this task, naive water-restricted rats are introduced
to a plus-shaped maze. In each trial, the animals choose between
two (out of four) randomly chosen arms, marked by light
emitting diodes (LEDs) in two colors and two odors. The pair
of odors and the pair of colored LEDs were randomly assigned
to the two arms. For the duration of each training set, only one
sensory dimension (olfactory, visual, or spatial) determined the
correct choice. Correct responses were rewarded by a drop of
water provided in a port located at the end of the appropriate arm.
Training consisted of 50–100 daily trials. We set the threshold of
75% of correct choices during a day as a criterion of successful
learning of a given set. After successful learning, we performed
an intra-dimensional and/or an extra-dimensional shift. In an
intra-dimensional shift, the sensory dimension that determined
reward remained the same, but a new associationwith reward had
to be learned. In an extra-dimensional shift, the dimension that
previously determined reward was no longer relevant, and the
animals had to learn a rule that relied on a different dimension.

Eight animals were trained on an odor-first version of the
task (Figure 2A) and 10 were trained on the LED-first version
(Figure 2B). In the odor-first group (Figure 2A), during the first
set ODOR 1, the animals reached the 75% success rate within
4.3 ± 0.7 days (mean ± S.E.M). We subsequently performed
an intra-dimensional shift, replacing the pair of odors used for
discrimination with a new pair. This phase of the task, the
ODOR 2 set, proved much easier for the rats, who satisfied the
criterion within 1.7 ± 0.4 days, supporting the hypothesis that
the animals indeed learned to assign relevance to the correct
sensory dimension. Finally we performed an extra-dimensional
shift, switching the cue for finding the reward from an odor to
a LED color. As expected, the LED set was substantially more
difficult for the animals, requiring 12.6 ± 0.9 days to satisfy the
same criterion. Three animals failed to reach the required success
rate during this set.

The group trained on the LED-first version (Figure 2B)
reached the 75% success rate during the first (LED) training
set within 8.5 ± 1.5 days. following successful learning, we
performed an extra-dimensional shift, introducing new stimuli
and switching the reward rule to an odor-based one. In this
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FIGURE 1 | Multidimensional learning paradigm and trial progression. Blue

and yellow dots depict illuminated LEDs, and green and red arrows indicate

different odors. In the depicted trial, rats received reward for following the

green odor in an odor-set phase of the task, or for following the yellow color in

a LED-set phase of the task.

(ODOR 1) set 9.6±1.4 days were required to satisfy the successful
learning criterion . One rat failed to satisfy the criterion.

2.2. Single Trial Analysis of Choice
Behavior
Trial-to-trial analysis of the animals’ choices allows us to explore
learning strategies of the rats and deduce their common features.

For example, a rat may follow a spatial strategy, searching
for an arm associated with the highest probability of success.
Figure 3 depicts the arms chosen by one rat on four training days
of the first set (ODOR 1) in the odor-first group. The beginning
of training was typically characterized by spatial biases. Figure 3
(top left) depicts the first day of training of a single rat, in
which the animal tended to avoid arm 1 and disproportionately
chose arms 2 and 3. This pattern of choice was reinforced by
successes associated with these arms. The rat’s avoidance of arm
1 also prevented positive reinforcement related to this arm. This
behavior is consistent with learning values assigned to each arm,
where values express the degree of success associated with each
location. However, it is not clear whether such values are assigned
to every feature (location, type of odor, the color of the LED)
independently or to every combination of features. Inspection
of the later days of the same set, depicted in the lower panels,
reveals that although the bias persists throughout training, it is
less pronounced at the end, leading to a sufficiently high rate of
success on the last day.

To systematically analyse of the trial-to-trial behavior, we
formulated two competing models of learning and decision-
making and estimated the parameters of each to fit the actual
behavior of the rats. The models are presented formally in
Materials and Methods, sections 4.3 and 4.4.

The first model, Naive Reinforcement Learning model (NRL)
(Niv et al., 2015), described in section 4.3, is an adaptation of

a classical on-line reinforcement learning procedure (Wagner
and Rescorla, 1972; Sutton and Barto, 1998). In this model,
every combination of features (e.g., the western arm delivering
an apple odor and a blue LED) has a value that is recursively
updated every time it is chosen, according to the current outcome
(success or failure). The updated value is a weighted average
between the cached value and the current outcome, and the
relative weight of the latter is the learning rate α, ranging between
0 and 1, see Equation (1) in section 4.3. The policy chooses
the alternative with the highest learned value with a higher
probability, as determined by the softmax function. The degree
of randomness in the decision is determined by the inverse
temperature β ≥ 0. Lower inverse temperature corresponds to
more random,“exploratory,” decisions (see Equation 2).

The Weighted Attention Model (WAM, described in section
4.4), assumes that every dimension is reinforced separately, i.e., a
value is independently associated with each sensory input . Each
of the values of a chosen stimulus is updated after every choice.
However, in contrast to the NRLmodel, the decision is based on a
weighted average of the values associated with sensory dimensions
(location, odor, LED color). These relative weights are additional
parameters of the model. As in case of NRL, the WAM also has
the learning rate and inverse temperature as model parameters.
The parameter estimation procedure for bothmodels is described
in detail in section 4.5.

2.3. Comparison of the NRL and the WAM
in Explaining Animals’ Behavior
We used the two models to explain behavior of 8 rats performing
the odor-first version of the task and 10 rats performing the
LED-first task.

To compare the predictive power of both models, we relied on
two methods, the Akaike Information Criterion (AIC) (Akaike,
1992) and cross validation. AIC comparison found that in 20/24
and 13/20 rat×set combinations in the odor-first and LED-first
groups, respectively, the WAM outperformed NRL. To perform
the cross-validation test, we used the first 90% of trials in each day
as a training set, and the last 10% as a test set. This procedure was
carried out for the NRL and the WAM. Overall, the proportions
of trials explained by each model varied between 0.33 and 1.
In 139 out of 166 days, the WAM predicted at least as large a
fraction of test trials as the NRL. Note that both models used
the beginning of each day as a training set and the end of the
day trials as the test set, and naturally most of the rats perform
better in the final trials than at the beginning of the day. Thus,
in constructing this cross-validation we stacked the deck in favor
of the NRL model, which predicts correct choices after the first
success, and has no way to account for mistakes. Hence the better
performance of the WAM in this case indicates that this model
explains the behavior better and does not overfit, despite having
more parameters.

2.3.1. Mistakes Are Captured by the WAM Better

Than the NRL
The NRL underperforms the WAM, especially at the initial
stages of learning of each new set, where the WAM captures
erroneous choices which the NRL cannot. Recall, that in our
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FIGURE 2 | Animals’ performance throughout training: percent of correctly performed trials, by day. Vertical lines depict set shifts. The identities of the set in each

phase is indicated below. The horizontal line depicts chance level performance. Only days with at least half of the rats are presented. Mean and median success rate

in each day are depicted by a black square and horizontal line, respectively. Bars represent the 25 and 75th percentiles correspondingly. (A) The odor-first group,

n = 8. (B) The LED-first group, n = 10.

FIGURE 3 | Pattern of choices made by a single rat. Number of times the rat chose each arm, plotted against the correct arm in the trial. Correctly performed choices

appear on the diagonal. Spatial bias appears as disproportionate number of choices of a single arm (see for example the choices of arm 3 on Day 1). The first 2 days

and the last 2 days of the first set of this rat (ODOR 1) are depicted.
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FIGURE 4 | Explanatory power of the WAM vs. the NRL. Success rate is the

fraction of correct choices made by a rat in a training day. Model fit is the

fraction of choices correctly predicted by the corresponding model (the WAM

and the NRL) without adding exploration, i.e., based on the accumulated

values only.

task design the reward schedule is deterministic, and there are
no changes in reward contingencies. Therefore, in the NRL
framework, no negative prediction errors are encountered. The
values associated with any stimulus combination that contains
the rewarded stimulus (such as a particular odor in the ODOR
1 set or a particular color in the LEDs set) should increase with
every correct choice, while all other values should not change
and remain at the initial value, 0. Thus, after the first correct
choice, the NRL prediction places a higher probability on a
correct choice. So, in this case, without any noise or exploration
the NRL predicts that only correct choices will be made. On the
other hand, WAM is capable of predicting an erroneous choice
(even without exploration) if a particular feature was previously
associated with success. Figure 4 depicts the deterministic (no
exploration) fit of both models as a function of the animals’
performance. The fit of the NRL often equals the fraction of
correct choices made by a rat, see the concentration of the dots on
the diagonal. By contrast WAM explains mistakes, as is evident
by the concentration of the WAM points above the diagonal.
An increase in erroneous choices is captured in the NRL by
decreasing the inverse temperature, adding “exploration”, i.e., a
random deviation from the choice associated with a higher value.
However, estimating the magnitude of this parameter cannot
trace any systematic “pattern of mistakes” or learning dynamics.
It is this problem that the WAM is designed to address.

Using the WAM we can explore an experience-driven bias in
decisions by observing the dynamics of the estimated weights.
To stress, in constructing the WAM we did not assume a-
priori any particular algorithm for changing the weights in
response to experience, i.e., we did not impose a way to explore

the feature-dimension space. Rather, we let the observations
determine the weights that best explain the learning behavior
of the rats. As a result, we obtain estimated dynamics of
the underlying learning process, which points to a possible
explanation of the delay in learning after the extra-dimensional
set shift.

2.4. Weight Shifting Following Set-Shifts
To uncover the learning dynamics we compare the estimated
decision weights associated with two different sensory
dimensions: olfactory (odor) and visual (LED color). Figure 5
shows the weights associated with the two dimensions
throughout the training on the odor-first and leds-first versions
of the task. The dynamics of the weight allocation reveal a
pattern of an emerging bias. For the group of animals that were
trained on the odor-first version of the task (Figure 5A), in the
ODOR 1 set we find that even as the animals improved, the
weights on the relevant feature dimension, odor, did not change
significantly, and did not differ from each other. However, when
an intra-dimensional shift was introduced, an attentional bias
appeared, and the weights on odors were higher than those
on LED color. After the extra-dimensional shift, the decision
weight on odors remained higher than that of the LED colors
for the early stage of learning, mirroring the lack of behavioral
improvement. As animals improve this difference decreases
(although never reversed).

A similar bias emerged for the led-first group, cf. Figure 5B.
While in the first set nearly equal weights are assigned to
odor and LED color, upon shifting to the ODOR set the
pattern has changed. Here, the weight on the previously relevant
dimension—the LED color—is substantially higher than the non-
relevant odor. The weights converge again by the end of this
phase.

A two-way repeated-measures ANOVA was carried out for
testing changes in the average weights of each set during training,
using phase (ODOR 1, ODOR 2, and LED) and dimension
(odor, LED) as independent variables. A significant main effect
was found for dimension [F(1, 7) = 9.325, P < 0.05], and
an interaction effect for set by dimension [F(2, 14) = 7.836,
P = 0.005]. A similar analysis was performed for the LED-
first group, yielding a significant interaction effect for stimulus
by phase [F1, 7 = 8.174, P < 0.05].

To examine the significance of the temporal changes in
estimated decision weights throughout learning, while avoiding
biases related to different duration of each set, we divided
each training phase into early and late stages based on each
animal’s performance, and examined the weights as explained
by set (ODOR 1/ODOR 2/LED), learning stage (early/late) and
dimension (odor/led) (see sectionMaterials andMethods). Three
way ANOVA of the odor-first group revealed a main effect of
dimension (P < 0.001), and a significant three way interaction
(P < 0.0001), where the weight on odor and the weight on
LED were significantly different in the early and late stages of
the ODOR 2 set and the LED set (P < 0.0001, P < 0.0001 and
P < 0.001, respectively, after bonferroni correction). In the LED-
first group, no significant main effects were obtained (P > 0.16
for all), and the only effect was a three way interaction (P < 0.05).
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FIGURE 5 | Estimated decision weights on odor and LED color by training days. Average by animal ±SEM. The sets are the same as in Figure 2. (A) Relative

decision weights on the odor (black) and LED color (gray) dimensions on the odor-first group. (B) Relative decision weights on the odor (black) and LED color (gray)

dimensions on the LED-first group.

The weights on odor and on LED differed only in the early stage
of the ODOR 1 set (after the extradimensional shift) (P < 0.001,
corrected).

3. DISCUSSION

Animals and humans are commonly confronted with complex
situations, in which the most appropriate response is determined
by signals that are often of amultidimensional nature. Identifying
key features determining payoff, or even the important category
(dimension) in each situation relies both on experience and on
the underlying model of the world. In the series of experiments
described here the dimensions are well defined: location, odor
and LED color. Moreover, the reward schedule is deterministic.
Therefore the task of the learner is 2-fold: to identify the relevant
dimension and find the feature associated with reward within
this dimension. The weighted reinforcement model introduced
here allows to track the values associated with each feature
independently of others and then use the weighted average of
these values to form a decision.

Trial by trial behavior analysis in a multidimensional task
offers several insights. In particular, examining the pattern
of incorrect choices made by the animals may uncover the
underlying nature of their learning and decision process. The
WAM separates learning from decision-making: learning is
driven by strengthening or weakening connections between the
stimuli and reward, whereas decision-making is based on a
weighted sum of learned associations. This dissociation implies
two different sources of mistakes. Erroneous choices can be due
to unsuccessful learning. Alternatively, it may be that the decision
process is faulty, assigning incorrect weights to different feature-
dimensions of the problem. Indeed, by separating these two
behavioral components, theWAM outperformed the NRLmodel

in explaining the trial-by-trial behavior. Whenever 1Va,b
t > 0,

the deterministic NRL model predicts that the rat will choose
a. As the animal experiences rewards, if α > 0, the value of
combinations that contain the rewarded feature increases and all
other values remain zero. It follows that asymptotically (as t →

∞), if a is the correction option, 1Va,b
t monotonically converges

to 1. Thus, it is not surprising that after all combinations
have been encountered at least once the proportion of correct
predictions generated by this model, or the deterministic fit,
should coincide with the success rate: only successes can be
predicted but not erroneous choices, cf. Figure 4.

In the final learning set, after the extra-dimensional shift, the
weights associated with the relevant feature (LED color in the
odor-first group, odor in the LED-first group) were consistently
lower than in previous sets, across animals. Inspection of the
dynamics of weights throughout learning revealed that for most
animals in the odor-first group the first days of training on the
LEDs set was dominated by a high weight on odor. This weight
was reflected in the poor performance and slow improvement
displayed by these animals. The LED-first group displayed a
mirror image of this pattern. Recall that in our model, the
WAM, the third estimated weight is on location, which is not
depicted in the Figure 5. Thus, the dynamics of the two depicted
weights is a-priori unrestricted, they can both rise, fall, or move
in opposite directions. Further, the model is rich enough to
offer several ways to explain the mistaken choices—to wit, a
low success rate at the beginning of the last stage might be
captured by either lower inverse temperature throughout the
set indicating more exploration or higher weight on either
of the two irrelevant dimensions: location and LED or odor.
Hence the higher estimated weight on a particular irrelevant
dimension indicates that the best explanation for mistakes is a
systematic reliance on an irrelevant feature as a cue. According
to our results this feature belongs to the stimulus previously
learned to be important for finding the reward. Thus, this result
may hint at a mechanism underlying the Einstellung effect
(Luchins and Luchins, 1959), in which humans after learning a
task exhibit a long latent period before successfully learning a
second one.

However, the weights on the relevant feature remained low,
even as animals successfully learned to perform the LEDs set of
the task. Therefore, the low overall weight assigned to the relevant
dimension in the LEDs set cannot be attributed solely to the
perseveration errors. Rather, it may be a result of the frequent
change of rules that the animals faced. In a complicated, dynamic
world with changing rules it might be beneficial for the animal to
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divide its attention and devote substantial resources to seemingly
irrelevant feature-dimensions. Indeed, it has been recently shown
that in a variety of tasks humans continuously search for patterns,
even as this search becomes increasingly difficult by providing
feedback only on chosen actions, as in our model (Plonsky and
Erev, 2017).

In a recent paper, Leong et al. find that throughout learning
attention is biased toward the relevant category (Leong et al.,
2017). Similar to the approach taken in that study, our decision
making model involves comparing weighted scores of available
options, where each dimension of a problem is associated with
its weight, which in turn, is a-priori independent of the value
learned for different features. Thus we, too, separate the process
of associating features with outcome (reward) from the process
of deciding which aspects (dimensions) of the problem to take
into account when comparing available options. However, we
do not use observable data to measure the weights, interpreted
as allocation of attention, as in Leong et al. (2017), rather, we
use the model to identify the weights given the behavioral data
only. In other words, our weights are the best ones that explain
the behavior, within the model we suggest. The advantage of our
approach is that we do not need to rely on a particular observable
data. However, we cannot estimate the weights trial-by-trial,
instead we fit them day-by-day (for each animal). Despite the
variability of the estimates, some visible patterns emerged, as
discussed above, and those are quite different from Leong et al.
(2017).

In summary, the superior performance of the WAM
in explaining trial-by-trial behavior seems to point to a
general principle of reinforcement learning in multidimensional
environments: rather than associating a state (value) with a
combination of features, learning may occur separately along
several dimensions. The caveat however is that such conclusion
could be a result of our task design. Whether the same principle
holds for learning other classes of tasks is left for future research.

4. MATERIALS AND METHODS

4.1. Animals
18 male Long-Evans rats 8–10 weeks old at the beginning of the
experiment were used in this study. The rats were maintained
in an inverted 12 h light/12 h dark cycle with unlimited
access to food. During training days water consumption was
restricted to 1/2 h every 24 h. Animal weight and well-being
were monitored continuously. All experimental procedures were
conducted in strict accordance with Institutional Animal Care
and Use Committee of the Haifa University (Ethics approval No
334/14), as well as the EU and NIH rules and regulations for
the use of animals in science research. The animals underwent
surgery for implantation of tetrodes for electrophysiological
recordings either in their dorsomedial or dorsolateral striatum or
in hippocampal area CA1. Results from these recordings are not
reported here.

4.2. Apparatus and Behavioral Task
The apparatus used for the experimental tasks was a black
plexiglass plus-shaped maze with four 10 × 60 cm arms and

a 30 × 30 cm central hub, situated 1 m above the floor. The
entrances to the arms were blocked by retractable automatic
doors. Infra-red (IR) sensors at both ends of the arm marked
times of arm entry and track completion. The central arm was
equipped with 4 nose-poke apparati located on the floor 3 cm
away from each door. The nose poke devices had IR sensors to
detect nose entry, 3 colored LEDs (blue, yellow, and green), and
two tubes through which odorised air was delivered and pumped
out. Each odor delivery tube could deliver 2 different odors. The
odors used were commercial odors that are regularly used in the
cosmetics and food industry, diluted 1:1,000 from commercial
concentrated liquid. Each arm was marked with different large
visible cues along the walls. Experiments were conducted in dim
light. Each trial started with the rats located in the central hub of
the maze. After a variable inter-trial-interval, a buzz was sounded
and 2 pseudo-randomly chosen nose pokes were illuminated by
LEDs of different colors. Two different odors were delivered to
the same nose-pokes and pumped out to keep the odors localized
to the nose-poke device. The animals initiated a trial by poking
their noses into one of the two nose pokes (or both). Upon this,
the doors of the corresponding two arms opened and allowed
access to the arms. the animals could now enter either one of the
open arms. If the correct arm was chosen and traversed within
the allowed maximum time of 5 seconds, the rats were rewarded
by 0.3 ml of water delivered at a reward port at the end of the
arm. The correct arm depended on the experimental condition.
In the odor sets of the experiment, reward was delivered in the
arm associated with a specific odor (and a random LED) and for
the LED set, reward was delivered in the arm associated with a
specific LED (and a random odor). Rats were trained for 50–
100 daily trials until they satisfied the criterion performance of
75% correctly performed trials. We assigned the animals into
two groups. One group of animals was trained on the odor-
first version of the task, and the second group on the LED-
first version. In the odor-first group, animals were first trained
an an odor set (ODOR 1). Following successful learning, we
performed an intra-dimensional shift, in which a new pair of
odors was delivered, and the animals had to associate one the
new odors with reward. When animals reached the threshold
performance for this pair as well they underwent an extra-
dimensional shift, in which they had to learn to associate the
reward with one of the two possible LED colors, disregarding
odors. The extra-dimensional shift was also accompanied with
introduction of a new pair of odors. The LED-first group was first
trained on a LEDs set, and after successful learning underwent an
extradimsional shift and had to follow an odor rule (with a new
pair of odors). We did not perform an intra-dimensional shift
with this group.

4.3. Naive Reinforcement Learning Model
4.3.1. Values
As a first approximation, we look for the best fit of the “naïve
reinforcement learning” model (NRL) (Niv et al., 2015) to the
behavioral data. Every combination of observable features (e.g.,
arm 3, green LED and apple odor) is defined as a “state” whose
value is to be learned. Thus, if at trial t an arm i with odor j and
LED color k is chosen, the corresponding valueVi,j,k, t is updated.
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Update follows the reinforcement learning (RL) rule,

Vi,j,k, t − Vi,j,k, t−1 = α(Rt − Vi,j,k, t−1) (1)

where α ∈ [0, 1] is the learning rate, Rt = 1 if reward was
received and Rt = 0 otherwise. Initial values Vi,j,k, t= 0 are set
to zero. Values corresponding to non-chosen options are not
updated. Hence by construction all the values are between zero
and one. Updated values for each feature combination were
carried over between consecutive days of each learning set (see
detailed description in sectionModel estimation procedure).

To capture the dynamic nature of the learning process, we
allowed α to change daily. Parameter estimation was performed
by log-likelihood maximization, as explained in section Model
Estimation Procedure.

4.3.2. Decision Rule
Decisions are based on the values associated with each available
option. Initial values are set equal to zero, as is mentioned above.
At every trial t we calculate the difference between learned values

1Va,b
t of the two available choices, a and b. A deterministic

decision rule states that the predicted choice will follow the
option with the higher value.

The stochastic nature of the animals’ choices is captured by the
softmax function, which describes the probability of choosing an
alternative as a function of its relative value. The probability of
choosing option a at trial t is

Pt =
1

1+ e−β1Va,b
t

(2)

The inverse temperature parameter β ≥ 0 is held constant for all
days in a given set and is estimated along with α using maximum
likelihood to fit the data, as explained in sectionModel Estimation
Procedure.

4.4. The Weighted Attention Model
To capture the animals’ learning and choice behavior better,
we devised a modified reinforcement learning model which
incorporates feature-by-feature reinforcement with a decision
process that employs differential attention to distinct feature
dimensions, the weighted attention model (WAM).

The model generates a prediction of the choices made by a
rat in each trial. The two basic components of the model are
the values, which are computed separately for each alternative,
stored in memory and updated after each trial according to the
learning rule below, see Equations (3–5), and the decision rule,
see Equation (6).

4.4.1. Values
In any given trial, action values have 3 components reflecting
the three feature dimensions: location, odor and LED color. By
design, only one of these components was relevant for getting
the reward. Location was never relevant in these experiments
(unbeknownst to the rats).

The location component contains 4 variables indicating the
values for each of the four arms, cf. Figure 1. Denote the values at
trial t by (l1t , l2t , l3t , l4t).

The odor component is a pair, containing the values for each
of the two distinct odors: (o1t , o2t). In the odor set, we let o1t be
the value corresponding to the correct odor, which is the key to
finding the reward, whereas o2t be the value of the second odor,
incorrect odor, never associated with the reward.

The LED color component at trial t is also a pair, (c1t , c2t).
Likewise, in the LED set the first value is associated with the
correct LED color.

At the beginning of the series of experiments (t = 0) all the
values are set to zero.

Values are updated on each trial t after the rat has completed
its choice and received the feedback (reward/no reward). Assume
at trial t the animal chose location i with odor j and LED color k.
Then the following three variables are updated according to the
same reinforcement learning (RL) rule:

lit − li,t−1 = α(Rt − li,t−1) (3)

ojt − oj,t−1 = α(Rt − oj,t−1) (4)

ckt − ck,t−1 = α(Rt − ck,t−1) (5)

where learning α is the learning rate, and Rt is the reward in trial
t, which is 1 in case of success and 0 in case of failure. The values
of all the unchosen features in a given trial are not updated.

4.4.2. Decision Rule
The decision rule can be affected by the values corresponding
to the three observable dimensions of each available alternative:
location, odor and color. Each value affects the decision through
a corresponding relative weight, wl,wo,wc. All the weights are
positive and sum up to 1.

A choice of arm i, with odor j and LED color k receives the
composite value score

wllit + woojt + wcckt

Choices are made by comparison of the composite value scores,
and their difference is the decision index. Let option a be arm i
with odor j and LED color k and the other available option be b
with arm i′, odor j′ and LED color k′, then the decision index is

Ia,bt = wl(lit − li′t)+ wo(ojt − oj′t)+ wc(ckt − ck′t) (6)

The deterministic model predicts the choice a if Ia,bt > 0 and b
otherwise.

In the stochastic decision rule, the predicted probability of a
choice depends on the relative weighted decision index according
to the softmax function, determined by the inverse temperature
parameter β , as in the NRL, thus the probability of choosing a is
It is

Pt =
1

1+ e−βIa,bt

(7)

4.5. Model Estimation Procedure
The parameters of the NRL model, the learning rate and the
inverse temperature, {αi,β}, for every day i of a given set, were
estimated separately for each set of the experiment. The learning
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rate is restricted to be 0 ≤ αi ≤ 1 and inverse temperature is
restricted to be 0 ≤ β ≤ 30.

Within every learning set the values for each combination
of features are updated trial-by-trial (according to Equation 1)
and carried over to the following day. These values are set
to zero at the beginning of each set. Parameter estimation is
performed by log-likelihood maximization. The maximization
was implemented using a built-in constrained optimization
routine in Matlab with the initial guess being the best parameter
combination found using the simple search over a thin grid of
possible parameters.

The parameters of the WAM are the relative weights and
the learning rate for every day i of a given set: {wi =

(wli,woi,wci),αi}, where the weights 0 ≤ wli,woi,wci ≤ 1 sum
to 1 , αi ∈ [0, 1]. In addition, we estimate the inverse temperature
parameter 0 ≤ β ≤ 30, which is fixed throughout the set. Hence
there are 3 free parameters for every day of the experiment, and
one parameter for every set.

The parameters are estimated separately for every set of the
experiment, as for the previous model. Within every learning set
the values associated with each feature are updated trial-by-trial
(according to Equation 3–5) and carried over to the following
day. These values are set to zero at the beginning of each set.
The estimation procedure otherwise is similar to that of the NRL
model.

Parameter estimates in both cases are robust to small decay
between days, i.e., carrying over to the next day a discounted
array of values.

4.6. Model Comparison
We used two methods to compare the explanatory power of the
NRL model and WAM. First, we used the Akaike Information
Criterion (AIC), (Akaike, 1992), calculated as follows:

ln LWAM − ln LNRL − d (8)

where LWAM , LNRL are the likelihood of the weighted attention
and naive reinforcement learning models respectively, N is the
number of days in a given set and d = 2 × N is the difference
in the number of parameters in the two models. Only days in

which the fit of NRL was over 50% were used for comparison.
We further performed a cross-validation analysis, where we
used the first 90% of the trials in each day as a training set to
estimate parameters and examined it on the remaining 10% of
the trials. The obtained fits to the data were compared between
models.

4.7. Statistical Analysis
For statistically verifying the demonstrated changes in calculated

weights across training sets and weight dimensions, we carried

out two-way repeated measures ANOVA tests on the average
weights of each set (before and after each shift) and dimension

(odor, LED), throughout training. To further compare the

weights on odor and LED in each of the phases we divided each

learning phase into an early and late stage according to animal
performance. We determined a threshold of 70% for each animal
as the first day of the late stage. For each of the 8 animals in the
odor-first group the weights were characterized by 2 dimensions
(ODOR and LED), 3 sets (ODOR1, ODOR2, LED) and two stages
(early, late). For each of the 10 animals in the LED-first group
there were also 2 dimensions and 2 stages but only 2 sets and
compared with a 3 way ANOVA.
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