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A B S T R A C T

The ongoing Coronavirus Disease 2019 (COVID-19) pandemic threatens the health of humans and causes
great economic losses. Predictive modeling and forecasting the epidemic trends are essential for developing
countermeasures to mitigate this pandemic. We develop a network model, where each node represents an
individual and the edges represent contacts between individuals where the infection can spread. The individuals
are classified based on the number of contacts they have each day (their node degrees) and their infection
status. The transmission network model was respectively fitted to the reported data for the COVID-19 epidemic
in Wuhan (China), Toronto (Canada), and the Italian Republic using a Markov Chain Monte Carlo (MCMC)
optimization algorithm. Our model fits all three regions well with narrow confidence intervals and could be
adapted to simulate other megacities or regions. The model projections on the role of containment strategies
can help inform public health authorities to plan control measures.

1. Introduction

The development of international trade and tourism has accelerated
the spatial spread of infectious diseases. The limited data available
on emerging epidemics adds to the challenge of mitigating the spread
of emerging infections [1]. The unprecedented Coronavirus Disease
2019 (COVID-19) outbreak began at the end of 2019. The number of
reported cases keeps rising worldwide and thousands of lives have been
claimed. This pandemic is having an enormous impact on world health,
disturbing the stability of the societies, and triggers great economic
losses. Predicting the future of the pandemic, assessing the impacts
of current interventions, and evaluating the effectiveness of alternate
mitigation strategies are of utmost importance for saving lives.

Mathematical models can be used to understand the dynamics of
epidemics and help inform control strategies. A numerous number of
models are being used to project the current COVID-19 pandemic. Ziff
and Ziff analyzed the number of reported cases for Wuhan (China) and
showed that the growth of the daily number of confirmed new cases
indicates an underlying fractal or small-world network of connections
between susceptible and infected individuals [2]. Wang et al. developed
an SEIR model to estimate the epidemic trends in Wuhan, assuming the
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prevention and control measures were either sufficient or insufficient
to control the epidemic [3]. Kucharski et al. combined a stochastic
transmission model with data on cases of COVID-19 in Wuhan and
international cases to estimate how the transmission had varied over
time between January and February in 2020 [4].

Kraemer et al. analyzed the impact of interventions on the spread
of COVID-19 in China using transportation data [5]. Chinazzi et al.
used a global meta-population disease transmission model to project
the impact of travel limitations on the national and international spread
of the epidemic. They showed that the travel restriction of Wuhan,
China had a more marked effect on the international scale than that
on Mainland China [6].

Ferguson et al. found that optimal mitigation policies (combining
home isolation of suspected cases, home quarantine of those living in
the same household as suspected cases, and social distancing of the
elderly and others at most risk of severe disease) might reduce peak
healthcare demand by 2/3 and deaths by half [7]. Likewise, Hellewell
et al. developed a stochastic transmission model and found that highly
effective contact tracing and case isolation are enough to control a new
outbreak of COVID-19 within three months in most scenarios [8].
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Zhang et al. fitted the reported serial interval (mean and standard
deviation) with a gamma distribution to estimate the basic reproduc-
tion number at the early stage of a COVID-19 outbreak, indicating the
potential of second outbreaks [9]. Maier et al. developed a compart-
mental model dividing individuals into susceptible, exposed, removed,
and quarantined symptomatically infected and showed that the dis-
tinctive subexponential increase of confirmed cases in mainland China
could be explained as a direct consequence of containment policies that
effectively deplete the susceptible population [10].

Most of these models are based on assuming the population is homo-
geneously mixing, that is, the contacts between people are random and
uniformly distributed throughout the population. However, different
individuals may have varying numbers of acquaintances and contacts
in the real world. The important role that heterogenous contact net-
works play in the transmission dynamics of infectious diseases is often
overlooked [11]. Models that take into account contact heterogeneity
better represent the actual transmission network through a population
and are more likely to capture the true epidemic dynamics.

Disease propagation is closely linked with the structure of social
contact networks [12]. The ubiquitous diversity in contact patterns
and heterogeneity among individuals depends on differences in social
structures, spatial distances, and behavior [13]. The heterogeneity
exists at a wide range of scales and leads to highly variable transmission
dynamics of infectious diseases [14,15].

Many real-world social networks can be characterized by a random
Watts–Strogatz (WS) small-world network [16,17]. In a small-world
network, most nodes can be reached from every other node by a small
number of hops or steps, even if they are not immediate neighbors.
This type of network model allows us to adapt changes to some realistic
network structures and examine the effects of control and intervention
countermeasures such as social distancing, self-isolation, and personal
protection. The framework and analysis can be applied to study the
transmission dynamics in different regions and many other infectious
diseases.

The COVID-19 epidemic in Wuhan ended in April, while the epi-
demics in the Greater Toronto Area (GTA, Canada) and the Italian
Republic are continuing to grow. We fit the parameters of our network
model to the confirmed cases in each of these regions. Although Wuhan,
Toronto, and Italy differ in some ways, the way that SARS-CoV-2 is
transmitted from one person to another is quite similar. Individuals
may acquire infection from other infectious individuals, even if they
do not contact each other directly. The Watts–Strogatz model supplies
an ideal tool to study the spread of epidemics among individuals even if
their locations are not considered. We used the Watts–Strogatz model to
generate random networks with the small world properties appropriate
for infectious disease transmission in these cities [16,17].

The epidemic curves are all fitted very well using the small-world
network structure models, indicating that the typical small-world prop-
erty is able to capture the contact patterns during COVID-19 epidemics.
The differences in these fitted parameters and starting times reflect the
differences in the underlying transmission mechanisms and potential
spread in the regions. The model then projected the trends of COVID-
19 spread by simulating epidemics in the Wuhan, Toronto, and Italy
networks. Our findings can guide public health authorities to imple-
ment effective mitigation strategies and be prepared for potential future
outbreaks.

2. The network model

We develop a network-based model by extending the network SIR
model [18] by incorporating the characteristics of COVID-19 transmis-
sion to assess the spread of the disease in heterogeneous populations.
We derive the explicit expression of the epidemic threshold and discuss
the final epidemic size for the network model.

2.1. Model formulation

We classify individuals by their average number of contacts in a
typical day (time unit for the modeling) represented on the network by
their degree 𝑘 (𝑘 = 1, 2,… , 𝑛). Individuals with degree 𝑘 are divided
into susceptible (𝑆𝑘), exposed (𝐸𝑘), asymptomatically infected (𝐴𝑘),
symptomatically infected (𝐼𝑘), hospitalized (𝐻𝑘), recovered (𝑅𝑘), and
dead (𝐷𝑘) states. Our model is formulated as follows
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𝑘′

𝑃 (𝑘′|𝑘)𝑖𝑘′ )(1 −
𝑘′−1
𝑘′

𝑃 (𝑘′|𝑘)𝜎𝑎𝑘′ )],
𝑑𝑒𝑘
𝑑𝑡

= 𝛽𝑘𝑠𝑘
∑

𝑘′ [1 − (1 − 𝑘′−1
𝑘′

𝑃 (𝑘′|𝑘)𝑖𝑘′ )(1 −
𝑘′−1
𝑘′

𝑃 (𝑘′|𝑘)𝜎𝑎𝑘′ )] − 𝜖𝑒𝑘,
𝑑𝑎𝑘
𝑑𝑡

= (1 − 𝛿)𝜖𝑒𝑘 − 𝛾𝑎𝑎𝑘,
𝑑𝑖𝑘
𝑑𝑡

= 𝛿𝜖𝑒𝑘 − 𝛾𝑖𝑘 − 𝜇𝑖𝑘 − 𝜉𝑖𝑘,
𝑑ℎ𝑘
𝑑𝑡

= 𝜉𝑖𝑘 − 𝛾ℎℎ𝑘 − 𝜇ℎ𝑘,
𝑑𝑟𝑘
𝑑𝑡

= 𝛾𝑖𝑘 + 𝛾𝑎𝑎𝑘 + 𝛾ℎℎ𝑘,
𝑑𝑑𝑘
𝑑𝑡

= 𝜇𝑖𝑘 + 𝜇ℎ𝑘,

(2.1)

where 𝑠𝑘 = 𝑆𝑘∕𝑁𝑘, 𝑒𝑘 = 𝐸𝑘∕𝑁𝑘, 𝑎𝑘 = 𝐴𝑘∕𝑁𝑘, 𝑖𝑘 = 𝐼𝑘∕𝑁𝑘, ℎ𝑘 = 𝐻𝑘∕𝑁𝑘,
𝑟𝑘 = 𝑅𝑘∕𝑁𝑘, and 𝑑𝑘 = 𝐷𝑘∕𝑁𝑘 represent the fractions of susceptible,
exposed, asymptomatically infected, symptomatically infected, hospi-
talized, recovered, and dead individuals with degree 𝑘, respectively.
Here, 𝑁𝑘 is the total number of individuals with degree 𝑘, and 𝑁𝑘 =
𝑆𝑘 +𝐸𝑘 +𝐴𝑘 + 𝐼𝑘 +𝐻𝑘 + 𝑅𝑘 +𝐷𝑘, and 𝑠𝑘 +𝑒𝑘 +𝑎𝑘 + 𝑖𝑘 +ℎ𝑘 + 𝑟𝑘 +𝑑𝑘 =
1. 𝑃 (𝑘′|𝑘) represents the probability that an edge from a node with
degree 𝑘 connects to a node with degree 𝑘′. For uncorrelated networks,
𝑃 (𝑘′|𝑘) = 𝑘′𝑃 (𝑘′)∕⟨𝑘⟩ [19]. Since the node with degree 𝑘′ shares an
edge with the node degree 𝑘, and only has (𝑘′−1) free edges, a fraction
𝑘′−1
𝑘′ of nodes may acquire the infection.

We assume that the transmission rates of symptomatically infected
individuals and asymptomatically infected individuals are 𝛽 and 𝜎𝛽,
respectively. The factor 𝜎 accounts for the different transmission rates
between asymptomatically infected individuals and symptomatically
infected individuals. 𝛽𝑘𝑠𝑘

∑

𝑘′
𝑘′−1
𝑘′ 𝑃 (𝑘′|𝑘)𝑖𝑘′ represents the fraction of

nodes with degree 𝑘 infected by symptomatically infected nodes, and
𝜎𝛽𝑘𝑠𝑘

∑

𝑘′
𝑘′−1
𝑘′ 𝑃 (𝑘′|𝑘)𝑎𝑘′ = 𝛽𝑘𝑠𝑘

∑

𝑘′
𝑘′−1
𝑘′ 𝑃 (𝑘′|𝑘)𝜎𝑎𝑘′ represents the frac-

tion of nodes with degree 𝑘 infected by asymptomatically infected
nodes. Here, 𝑘′−1

𝑘′ 𝑃 (𝑘′|𝑘)𝑖𝑘′ represents the probability that an edge from
a degree 𝑘 node connects to a symptomatically infected node with
degree 𝑘′, and 𝑘′−1

𝑘′ 𝑃 (𝑘′|𝑘)𝜎𝑎𝑘′ represents the probability that an edge
from a degree 𝑘 node connects to an asymptomatically infected node
with degree 𝑘′.

In Model (2.1), the term (1 − 𝑘′−1
𝑘′ 𝑃 (𝑘′|𝑘)𝑖𝑘′ ) represents the proba-

bility of not being infected by a symptomatically infected node with
degree 𝑘′, and (1 − 𝑘′−1

𝑘′ 𝑃 (𝑘′|𝑘)𝜎𝑎𝑘′ ) represents the probability of not
being infected by an asymptomatically infected node with degree 𝑘′.
Thus, (1 − 𝑘′−1

𝑘′ 𝑃 (𝑘′|𝑘)𝑖𝑘′ )(1 − 𝑘′−1
𝑘′ 𝑃 (𝑘′|𝑘)𝜎𝑎𝑘′ ) is the probability that

a node will neither be infected by a symptomatically infected nor be
infected by an asymptomatically infected neighbor with degree 𝑘′, and
1 − (1 − 𝑘′−1

𝑘′ 𝑃 (𝑘′|𝑘)𝑖𝑘′ )(1 − 𝑘′−1
𝑘′ 𝑃 (𝑘′|𝑘)𝜎𝑎𝑘′ ) is the probability of being

infected by a symptomatically infected or an asymptomatically infected
neighbor with degree 𝑘′.

Therefore, the susceptible individuals are infected at rate

𝛽𝑘𝑠𝑘
∑

𝑘′
[1 − (1 − 𝑘′ − 1

𝑘′
𝑃 (𝑘′|𝑘)𝑖𝑘′ )(1 −

𝑘′ − 1
𝑘′

𝑃 (𝑘′|𝑘)𝜎𝑎𝑘′ )]

and enter the exposed state. After incubation period with a mean
time of 1∕𝜖 days, exposed individuals become symptomatically infected
and asymptomatically infected with probabilities 𝛿 and 1 − 𝛿, respec-
tively. Symptomatically infected individuals are hospitalized at rate
𝜉, and die at rate 𝜇. Asymptomatically infected individuals, symp-
tomatically infected individuals, and hospitalized individuals recover
at rates 𝛾𝑎, 𝛾, and 𝛾ℎ, respectively. Both the hospitalized individuals
and symptomatically infected individuals die at rate 𝜇.
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2.2. Mathematical analysis

We derive the epidemic threshold to predict whether the epidemic
will spread or die out and derive final epidemic size to quantify the
total number of infected individuals.

2.2.1. The epidemic threshold
To estimate the transmission potential of the epidemic, we derive

the important epidemic threshold, 𝑅0, defined as the average number
of secondary cases produced by an infected individual in a completely
susceptible population [20]. There exists a disease-free equilibrium,

(𝑠1,… , 𝑠𝑛, 𝑒1,… , 𝑒𝑛, 𝑎1,… , 𝑎𝑛, 𝑖1,… , 𝑖𝑛, ℎ1,… , ℎ𝑛, 𝑟1,… , 𝑟𝑛, 𝑑1,… , 𝑑𝑛)𝑇

= (1,… , 1, 0,… , 0, 0,… , 0, 0,… , 0, 0,… , 0, 0,… , 0, 0,… , 0)𝑇 =∶ 𝑃0.

We compute 𝑅0 following the next generation matrix approach pre-
sented by van den Driessche and Watmough [21]. For simplicity, we
only consider the compartments related to infection, namely, 𝑒𝑘, 𝑎𝑘 and
𝑖𝑘, and rewrite the equations as the difference between vectors 𝑘 and
𝑘 following the notations in [21]

[
𝑑𝑒𝑘
𝑑𝑡

,
𝑑𝑎𝑘
𝑑𝑡

,
𝑑𝑖𝑘
𝑑𝑡

]𝑇 = 𝑘 − 𝑘,

where

𝑘 = (𝑖𝑘)

=

⎡

⎢

⎢

⎢

⎣

𝛽𝑘𝑠𝑘
∑

𝑘′ [1 − (1 − 𝑘′−1
𝑘′ 𝑃 (𝑘′|𝑘)𝑖𝑘′ )(1 −

𝑘′−1
𝑘′ 𝑃 (𝑘′|𝑘)𝜎𝑎𝑘′ )]

0
0

⎤

⎥

⎥

⎥

⎦

,

𝑘 = (𝑖𝑘) =
⎡

⎢

⎢

⎣

𝜖𝑒𝑘
−(1 − 𝛿)𝜖𝑒𝑘 + 𝛾𝑎𝑎𝑘

−𝛿𝜖𝑒𝑘 + 𝛾𝑖𝑘 + 𝜇𝑖𝑘 + 𝜉𝑖𝑘

⎤

⎥

⎥

⎦

.

Here, 𝑖𝑘 represents the rate at which new infections are produced
and 𝑖𝑘 represents the rate at which individuals transfer between
compartments, 𝑖 = 1, 2, 3 and 𝑘 = 1,… , 𝑛 for Model (2.1).

The Jacobian matrix 𝐹 is

𝐹 =
[

𝜕𝑖𝑘
𝜕𝑧𝑗

]

𝑃0

=
⎡

⎢

⎢

⎣

0𝑛×𝑛 𝜎𝛽𝐹 ′ 𝛽𝐹 ′

0𝑛×𝑛 0𝑛×𝑛 0𝑛×𝑛
0𝑛×𝑛 0𝑛×𝑛 0𝑛×𝑛

⎤

⎥

⎥

⎦

,

where 𝑧 = (𝑧𝑗 ) = (𝑒1,… , 𝑒𝑛, 𝑎1,… , 𝑎𝑛, 𝑖1,… , 𝑖𝑛) and

𝐹 ′ =

⎡

⎢

⎢

⎢

⎢

⎣

0 1
2𝑃 (2|1) ⋯ 𝑛−1

𝑛 𝑃 (𝑛|1)
0 𝑃 (2|2) ⋯ 2(𝑛−1)

𝑛 𝑃 (𝑛|2)
⋮ ⋮ ⋮ ⋮
0 𝑛

2𝑃 (2|𝑛) ⋯ (𝑛 − 1)𝑃 (𝑛|𝑛)

⎤

⎥

⎥

⎥

⎥

⎦

= 1
⟨𝑘⟩

⎡

⎢

⎢

⎢

⎢

⎣

0 𝑃 (2) ⋯ (𝑛 − 1)𝑃 (𝑛)
0 2𝑃 (2) ⋯ 2(𝑛 − 1)𝑃 (𝑛)
⋮ ⋮ ⋮ ⋮
0 𝑛𝑃 (2) ⋯ 𝑛(𝑛 − 1)𝑃 (𝑛)

⎤

⎥

⎥

⎥

⎥

⎦

.

The matrices 𝑉 and 𝑉 −1 are

𝑉 =
[

𝜕𝑖
𝜕𝑧𝑗

]

𝑃0

=

⎡

⎢

⎢

⎢

⎣

𝜖𝐈𝑛 0𝑛×𝑛 0𝑛×𝑛
−(1 − 𝛿)𝜖𝐈𝑛 𝛾𝑎𝐈𝑛 0𝑛×𝑛

−𝛿𝜖𝐈𝑛 0𝑛×𝑛 (𝛾 + 𝜇 + 𝜉)𝐈𝑛

⎤

⎥

⎥

⎥

⎦

,

where 𝐈𝑛 is the 𝑛 × 𝑛 identity matrix, and

𝑉 −1 =

⎡

⎢

⎢

⎢

⎣

1
𝜖 𝐈𝑛 0𝑛×𝑛 0𝑛×𝑛

1−𝛿
𝛾𝑎

𝐈𝑛
1
𝛾𝑎
𝐈𝑛 0𝑛×𝑛

𝛿
𝛾+𝜇+𝜉 𝐈𝑛 0𝑛×𝑛

1
𝛾+𝜇+𝜉 𝐈𝑛

⎤

⎥

⎥

⎥

⎦

.

The next generation matrix is

𝐹𝑉 −1 =

⎡

⎢

⎢

⎢

⎣

𝛽
(

1−𝛿
𝛾𝑎

𝜎 + 𝛿
𝛾+𝜇+𝜉

)

𝐹 ′ 𝜎𝛽
𝛾𝑎
𝐹 ′ 𝛽

𝛾+𝜇+𝜉 𝐹
′

0𝑛×𝑛 0𝑛×𝑛 0𝑛×𝑛
0𝑛×𝑛 0𝑛×𝑛 0𝑛×𝑛

⎤

⎥

⎥

⎥

⎦

. (2.2)

Since the rank of matrix 𝐹 ′ is 1, the spectral radius of 𝐹 ′ is its trace,
i.e.,

𝜌(𝐹 ′) = Tr(𝐹 ′) = 1
⟨𝑘⟩

∑

𝑘
(𝑘 − 1)𝑘𝑃 (𝑘) =

⟨𝑘2⟩ − ⟨𝑘⟩
⟨𝑘⟩

.

It follows from (2.2) that the basic reproduction number 𝑅0 becomes

𝑅0 = 𝜌(𝐹𝑉 −1) = 𝛽
(

1 − 𝛿
𝛾𝑎

𝜎 + 𝛿
𝛾 + 𝜇 + 𝜉

)

(⟨𝑘2⟩ − ⟨𝑘⟩)
⟨𝑘⟩

,

where 𝛽 1−𝛿
𝛾𝑎

𝜎 and 𝛽 𝛿
𝛾+𝜇+𝜉 represent the average numbers of secondary

cases produced by an asymptomatically infected individual and a symp-
tomatically infected individual in a homogeneously mixed population,
respectively. The term ⟨𝑘2⟩−⟨𝑘⟩

⟨𝑘⟩ represents the average excess degree of
nodes in the network [22].

2.2.2. Final epidemic size
We shall derive the final size following the approach in [23]. The

nonlinear term in the first and second equations of Model (2.1) can be
rewritten as

𝛽𝑘𝑠𝑘
∑

𝑘′
[1 − (1 − 𝑘′ − 1

𝑘′
𝑃 (𝑘′|𝑘)𝑖𝑘′ )(1 −

𝑘′ − 1
𝑘′

𝑃 (𝑘′|𝑘)𝜎𝑎𝑘′ )]

= 𝛽𝑘𝑠𝑘
∑

𝑘′
[1 − 1 + 𝑘′ − 1

𝑘′
𝑃 (𝑘′|𝑘)𝑖𝑘′ +

𝑘′ − 1
𝑘′

𝑃 (𝑘′|𝑘)𝜎𝑎𝑘′

− (𝑘
′ − 1
𝑘′

𝑃 (𝑘′|𝑘))2𝑖𝑘′𝜎𝑎𝑘′ ]

= 𝛽𝑘𝑠𝑘
∑

𝑘′
[𝑘

′ − 1
𝑘′

𝑃 (𝑘′|𝑘)𝑖𝑘′ +
𝑘′ − 1
𝑘′

𝑃 (𝑘′|𝑘)𝜎𝑎𝑘′

− (𝑘
′ − 1
𝑘′

𝑃 (𝑘′|𝑘))2𝑖𝑘′𝜎𝑎𝑘′ ].

When 𝑖𝑘′ ≪ 1 and 𝑎𝑘′ ≪ 1, 𝑖𝑘′𝑎𝑘′ ≈ 0. Hence,

𝛽𝑘𝑠𝑘
∑

𝑘′
[1 − (1 − 𝑘′ − 1

𝑘′
𝑃 (𝑘′|𝑘)𝑖𝑘′ )(1 −

𝑘′ − 1
𝑘′

𝑃 (𝑘′|𝑘)𝜎𝑎𝑘′ )]

≈ 𝛽𝑘𝑠𝑘
∑

𝑘′
[𝑘

′ − 1
𝑘′

𝑃 (𝑘′|𝑘)(𝑖𝑘′ + 𝜎𝑎𝑘′ )].

Hence, Model (2.1) can be simplified as
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑑𝑠𝑘
𝑑𝑡 = −𝛽𝑘𝑠𝑘

∑

𝑘′
𝑘′−1
𝑘′ 𝑃 (𝑘′|𝑘)

(

𝑖𝑘′ + 𝜎𝑎𝑘′
)

.
𝑑𝑒𝑘
𝑑𝑡 = 𝛽𝑘𝑠𝑘

∑

𝑘′
𝑘′−1
𝑘′ 𝑃 (𝑘′|𝑘)

(

𝑖𝑘′ + 𝜎𝑎𝑘′
)

− 𝜖𝑒𝑘,
𝑑𝑎𝑘
𝑑𝑡 = (1 − 𝛿)𝜖𝑒𝑘 − 𝛾𝑎𝑎𝑘,
𝑑𝑖𝑘
𝑑𝑡 = 𝛿𝜖𝑒𝑘 − 𝛾𝑖𝑘 − 𝜇𝑖𝑘 − 𝜉𝑖𝑘,
𝑑ℎ𝑘
𝑑𝑡 = 𝜉𝑖𝑘 − 𝛾ℎℎ𝑘 − 𝜇ℎ𝑘,
𝑑𝑟𝑘
𝑑𝑡 = 𝛾𝑖𝑘 + 𝛾𝑎𝑎𝑘 + 𝛾ℎℎ𝑘,
𝑑𝑑𝑘
𝑑𝑡 = 𝜇𝑖𝑘 + 𝜇ℎ𝑘.

(2.3)

We first claim that lim𝑡→+∞ 𝑒𝑘(𝑡) = 0. Otherwise, there exist 𝑇 , 𝜂 > 0
such that 𝑒𝑘(𝑡) ≥ 𝜂 > 0, ∀𝑡 > 𝑇 since 𝑒𝑘(𝑡) ≥ 0. Since 𝑑

𝑑𝑡

(

𝑠𝑘 + 𝑒𝑘
)

=
−𝜖𝑒𝑘 ≤ −𝜖𝜂, 𝑠𝑘(𝑡) + 𝑒𝑘(𝑡) ≤ −𝜖𝜂𝑡 + 𝑠(𝑇 ) + 𝑒(𝑇 ). Therefore, lim𝑡→∞(𝑠𝑘(𝑡) +
𝑒𝑘(𝑡)) = −∞, leading to a contradiction. Similarly, we can show that

lim
𝑡→+∞

𝑒𝑘(𝑡) = lim
𝑡→+∞

𝑎𝑘(𝑡) = lim
𝑡→+∞

𝑖𝑘(𝑡) = lim
𝑡→+∞

ℎ𝑘(𝑡) = 0, ∀𝑘.

For a homogeneous network where all nodes have identical degree
𝑘, Model (2.3) can be reduced to the following model
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑑𝑠
𝑑𝑡 = −𝛽𝑘𝑠⟨ 𝑘−1𝑘 ⟩ (𝑖 + 𝜎𝑎) ,
𝑑𝑒
𝑑𝑡 = 𝛽𝑘𝑠⟨ 𝑘−1𝑘 ⟩ (𝑖 + 𝜎𝑎) − 𝜖𝑒,
𝑑𝑎
𝑑𝑡 = (1 − 𝛿)𝜖𝑒 − 𝛾𝑎𝑎,
𝑑𝑖
𝑑𝑡 = 𝛿𝜖𝑒 − (𝛾 + 𝜇 + 𝜉) 𝑖,
𝑑ℎ
𝑑𝑡 = 𝜉𝑖 − 𝛾ℎℎ − 𝜇ℎ,
𝑑𝑟
𝑑𝑡 = 𝛾𝑖 + 𝛾𝑎𝑎 + 𝛾ℎℎ,
𝑑𝑑
𝑑𝑡 = 𝜇𝑖 + 𝜇ℎ,

(2.4)

3
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with the initial values 𝑠(0) = 𝑠0, 𝑒(0) = 𝑒0, 𝑎(0) = 𝑎0, 𝑖(0) = 𝑖0, ℎ(0) = ℎ0,
𝑟(0) = 0 and 𝑑(0) = 0.

By Model (2.4) and a direct calculation, we have

− (𝑖 + 𝜎𝑎) = 1
𝛾 + 𝜇 + 𝜉

(𝑑𝑠
𝑑𝑡

+ 𝑑𝑒
𝑑𝑡

+ 𝑑𝑎
𝑑𝑡

+ 𝑑𝑖
𝑑𝑡

)

+
(

𝜎
𝛾𝑎

− 1
𝛾 + 𝜇 + 𝜉

)

(

(1 − 𝛿)
(𝑑𝑠
𝑑𝑡

+ 𝑑𝑒
𝑑𝑡

)

+ 𝑑𝑎
𝑑𝑡

)

.
(2.5)

By the first equation in Model (2.4), we further have

𝑙𝑛
𝑠(+∞)
𝑠0

= −𝛽𝑘⟨𝑘 − 1
𝑘

⟩∫

+∞

0
(𝑖 + 𝜎𝑎) 𝑑𝑡, (2.6)

where 𝑠(+∞) = lim𝑡→∞ 𝑠(𝑡). To determine the final size of susceptible
individuals, 𝑠(+∞), we set

𝑓 (𝑥) = 𝑠0 exp
{

𝛽𝑘⟨𝑘 − 1
𝑘

⟩

[

𝑥 − 𝑦0 − 𝑎0 − 𝑖0
𝛾 + 𝜇 + 𝜉

+
(

𝜎
𝛾𝑎

− 1
𝛾 + 𝜇 + 𝜉

)

(

(1 − 𝛿)
(

𝑥 − 𝑦0
)

− 𝑎0
)

]}

,

where 𝑦0 = 𝑠0 + 𝑒0. By (2.5), (2.6) and the definition of 𝑓 (𝑥), we have

𝑠(+∞) = 𝑓 (𝑠(+∞)).

It is clear that 𝑓 (𝑥) is a positive, increasing, strictly convex function,
and 𝑓 (𝑠0) < 𝑠0. Thus, 𝑓 has a unique fixed point 𝑠+ in the interval (0, 𝑠0),
which can be calculated numerically by using the iteration method and

𝑠+ = lim
𝑚→+∞

𝑓𝑚(𝑠0),

where 𝑓𝑚 denotes composition of 𝑓 for 𝑚 times. Then, the final size
of susceptible individuals for a homogeneous network, 𝑠(+∞), can be
determined by 𝑠+.

We now derive the final size for heterogeneous networks. Integrat-
ing the first equation in Model (2.3) from 0 to 𝑡, we have

𝑙𝑛
𝑠𝑘(𝑡)
𝑠𝑘(0)

= −𝛽𝑘
∑

𝑘′

𝑘′ − 1
𝑘′

𝑃 (𝑘′|𝑘)∫

𝑡

0

(

𝑖𝑘′ + 𝜎𝑎𝑘′
)

𝑑𝑢. (2.7)

By summing and integrating the equations in Model (2.3),

∫

𝑡

0
𝑖𝑘𝑑𝑢 = − 𝛿

𝛾 + 𝜇 + 𝜉
(

𝑦𝑘(𝑡) − 𝑦𝑘(0)
)

−
𝑖𝑘(𝑡) − 𝑖𝑘(0)
𝛾 + 𝜇 + 𝜉

, (2.8)

and

∫

𝑡

0
𝑎𝑘𝑑𝑢 = −1 − 𝛿

𝛾𝑎

(

𝑦𝑘(𝑡) − 𝑦𝑘(0)
)

− 1
𝛾𝑎

(

𝑎𝑘(𝑡) − 𝑎𝑘(0)
)

, (2.9)

where 𝑦𝑘(𝑡) = 𝑠𝑘(𝑡) + 𝑒𝑘(𝑡). We set

𝑔𝑘(𝑡) =
(

𝛿
𝛾 + 𝜇 + 𝜉

+ 𝜎 1 − 𝛿
𝛾𝑎

)

𝑦𝑘(𝑡) +
𝜎
𝛾𝑎

𝑎𝑘(𝑡) +
𝑖𝑘(𝑡)

𝛾 + 𝜇 + 𝜉
.

By Eqs. (2.7),(2.8) and (2.9), we have

𝑙𝑛
𝑠𝑘(+∞)
𝑠𝑘(0)

= 𝛽𝑘
𝑛
∑

𝑗=1

𝑗 − 1
𝑗

𝑃 (𝑗|𝑘)
(

𝑔𝑗 (+∞) − 𝑔𝑗 (0)
)

= 𝛽𝑘
𝑛
∑

𝑗=1

𝑗 − 1
𝑗

𝑃 (𝑗|𝑘)
((

𝛿
𝛾 + 𝜇 + 𝜉

+ 𝜎 1 − 𝛿
𝛾𝑎

)

𝑠𝑗 (+∞) − 𝑔𝑗 (0)
)

,

where 𝑔𝑘(0) ≥ 0,∀𝑘. Therefore, for all 𝑘 = 1,… , 𝑛, the final size of
susceptible individuals satisfies

𝑠𝑘(+∞) = 𝑠𝑘(0) exp

{

𝛽𝑘
𝑛
∑

𝑗=1

𝑗 − 1
𝑗

𝑃 (𝑗|𝑘)⋅

⋅
(

( 𝛿
𝛾 + 𝜇 + 𝜉

+ 𝜎 1 − 𝛿
𝛾𝑎

)
(

𝑠𝑗 (+∞) − 𝑠𝑗 (0)
)

−𝑤𝑗 (0)
)}

,

where

𝑤𝑘(0) =
(

𝛿
𝛾 + 𝜇 + 𝜉

+ 𝜎 1 − 𝛿
𝛾𝑎

)

𝑒𝑘(0) +
𝜎
𝛾𝑎

𝑎𝑘(0) +
𝑖𝑘(0)

𝛾 + 𝜇 + 𝜉
≥ 0.

We define a map 𝐺 ∶ R𝑛 → R𝑛, 𝑥 = (𝑥𝑗 ) ↦ 𝐺(𝑥) =
(

𝐺1(𝑥),… ,
𝐺𝑛(𝑥)

)𝑇 by

𝐺𝑖(𝑥) = 𝑠𝑖(0) exp

{

𝛽𝑖
𝑛
∑

𝑗=1

𝑗 − 1
𝑗

𝑃 (𝑗|𝑖)⋅

⋅
(

( 𝛿
𝛾 + 𝜇 + 𝜉

+ 𝜎 1 − 𝛿
𝛾𝑎

)(𝑥𝑗 − 𝑠𝑗 (0)) −𝑤𝑗 (0)
)}

.

To analyze the properties of 𝐺(𝑥), we shall introduce some nota-
tions. For 𝑌 =

(

𝑌1,… , 𝑌𝑛
)𝑇 , 𝑍 =

(

𝑍1,… , 𝑍𝑛
)𝑇 ∈ R𝑛, we denote

𝑌 ≤ 𝑍 (resp. 𝑌 ≪ 𝑍) if 𝑌𝑙 ≤ 𝑍𝑙 (resp. 𝑌𝑙 < 𝑍𝑙), ∀𝑙 = 1,… , 𝑛. (2.10)

Moreover, we shall claim 𝑌 < 𝑍 if 𝑌 ≤ 𝑍 and 𝑌 ≠ 𝑍. The above
definition defines a partial order in R𝑛. For later use, we could extend
this partial order to 𝑛 × 𝑛 matrices as follows. For any 𝑛 × 𝑛 matrices
𝐴,𝐵, we have

𝐴 ≤ 𝐵 if 𝐴𝑥 ≤ 𝐵𝑥, ∀0 ≤ 𝑥 ∈ R𝑛.

When 0 ≪ 𝑠(0) = [𝑠1(0),… , 𝑠𝑛(0)]𝑇 and 0 ≤ 𝑤(0)=[𝑤1(0),… , 𝑤𝑛(0)]𝑇 ,
by the definition of 𝐺(𝑥) and partial order defined in (2.10), we have

0 ≪ 𝐺(0) ≤ 𝐺(𝑠(0)) ≤ 𝑠(0),

Since each 𝐺𝑖(𝑥) is a increasing function, we have

0 ≪ 𝐺(0) ≤ ⋯ ≤ 𝐺𝑚(0) ≤ 𝐺𝑚(𝑠(0)) ≤ ⋯ ≤ 𝐺(𝑠(0)) ≤ 𝑠(0),

where 𝐺𝑚 is the composition function of 𝐺 for 𝑚 times. By the mono-
tone criterion, we obtain

0 ≪ 𝑠 ∶= lim
𝑚→+∞

𝐺𝑚(0) ≤ 𝑠 ∶= lim
𝑚→+∞

𝐺𝑚(𝑠(0)) ≤ 𝑠(0).

Due to the continuity of 𝐺, 𝐺(𝑠) = 𝑠 and 𝐺(𝑠) = 𝑠. Therefore, we
have the following property [23].

Lemma 2.1. All the fixed points of 𝐺 in the interval [0, 𝑠(0)] are contained
in [𝑠, 𝑠].

Due to the continuous differentiability of 𝐺,

𝜕𝐺𝑖(𝑥)
𝜕𝑥𝑗

= 𝛽𝑖
𝑗 − 1
𝑗

𝑃 (𝑗|𝑖)
(

𝛿
𝛾 + 𝜇 + 𝜉

+ 𝜎 1 − 𝛿
𝛾𝑎

)

𝐺𝑖(𝑥) (2.11)

for any 𝑥 ∈ R𝑛 and 1 ≤ 𝑖, 𝑗 ≤ 𝑛. Moreover, we shall simply write (2.11)
in terms of the matrix form by

𝐷𝐺(𝑥) ∶=
𝜕𝐺(𝑥)
𝜕𝑥

= diag
(

𝐺1(𝑥),… , 𝐺𝑛(𝑥)
)

𝐵,

where 𝐵 = [𝑏𝑖𝑗 ] and 𝑏𝑖𝑗 = 𝛽𝑖 𝑗−1𝑗
(

𝛿
𝛾+𝜇+𝜉 + 𝜎 1−𝛿

𝛾𝑎

)

𝑃 (𝑗|𝑖).
By the monotony of 𝐺, 𝐷𝐺 is also monotonous, i.e., 𝐷𝐺(𝑥) ≤ 𝐷𝐺(𝑦)

for any 0 ≤ 𝑥 ≤ 𝑦 ≤ 𝑠(0). By utilizing the properties of 𝑤(𝑥) and 𝐺(𝑥),
we can obtain the following theorem.

Theorem 2.1. Assume that the network is connected, we have

(1) 𝑤(0) = 0 if and only if 𝐺(𝑠(0)) = 𝑠(0);
(2) when 𝑤(0) > 0, 𝐺 has a unique fixed point 𝑠++ satisfying 0 ≪ 𝑠++ <

𝑠(0).

The proof of Theorem 2.1 directly follows the proof in [23]. Hence,
the final size of susceptible individuals for a heterogeneous network,
𝑠(+∞), can be determined by 𝑠++ to quantify the number of susceptible
individuals left theoretically.

3. Parameter estimation and model based forecasting

We parameterized the model with reported data on COVID-19 cases
and presented forecasts of the epidemic trends for the three areas.
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Table 1
The parameter values and initial condition of four-phase simulations for Wuhan.

Parameter Mean value Std 95% CI References

𝛽 (Phase 1) 0.04644 2.83 × 10−3 [0.0409, 0.0520] MCMC
𝛽 (Phase 2) 0.01597 4.79 × 10−3 [6.59 × 10−3, 0.0254] MCMC
𝛽 (Phase 3) 2.90 × 10−4 2.24 × 10−4 [0, 7.29 × 10−4] MCMC
𝛽 (Phase 4) 7.30 × 10−5 7.27 × 10−5 [0, 2.16 × 10−4] MCMC
𝜉 (Phase 1) 0.8550 0.1220 [0.6159, 1.0942] MCMC
𝜉 (Phase 2) 0.1499 0.1557 [0, 0.4552] MCMC
𝜉 (Phase 3) 0.3369 0.1089 [0.1234, 0.5504] MCMC
𝜉 (Phase 4) 0.8764 0.0836 [0.7124, 1.0403] MCMC
∑

𝑘 𝑁𝑘(0) 11081000 – – [27]
∑

𝑘 𝑆𝑘(0) 11080770 – – Calculated
∑

𝑘 𝐸𝑘(0) 200.26 18.88 [163.25, 237.26] MCMC
∑

𝑘 𝐴𝑘(0) 17.81 4.13 [9.71, 25.90] MCMC
∑

𝑘 𝐼𝑘(0) 11.78 6.06 [0, 23.66] MCMC
∑

𝑘 𝐻𝑘(0) 41 – – [25]
∑

𝑘 𝑅𝑘(0) 0 – – Estimated
∑

𝑘 𝐷𝑘(0) 0 – – Estimated

Phase 1 is between Jan 11 and Jan 23, Phase 2 is between Jan 23 and Feb 1, Phase
3 is between Feb 1 and Feb 12, and Phase 4 is between Feb 12 and Mar 31.

3.1. Fitting reported confirmed cases

We simulated the spread of COVID-19 in Wuhan, Toronto, and Italy
on the Watts–Strogatz network with degree 𝑘𝑚𝑖𝑛 = 1 and 𝑘𝑚𝑎𝑥 = 10.

The study period for Wuhan starts from January 11, 2020, after
the confirmed cases were reported, the public becomes aware of the
infection and most people are trying to avoid gathering. The study
period starts from January 26 for Toronto and from January 31 for
Italy. In Toronto and Italy, usually people do not gather, especially
after lockdown on Wuhan city, the awareness of avoiding exposure to
the virus is increasing. Most people stay home during the study period,
and the family sizes in Wuhan, Toronto, and Italy on average are all
around 3. Therefore, the range of the node degrees is assumed to be
between 1 and 10.

The Watts–Strogatz model starts with a ring of 𝑁 vertices in which
each vertex is connected to its 2𝑚 nearest neighbors (𝑚 vertices clock-
wise and 𝑚 counterclockwise). Each edge is connected to a clockwise
neighbor with probability 𝑝 and preserved with probability 1 − 𝑝 [19],
where the degree distribution is

𝑃 (𝑘) =
min(𝑘−𝑚,𝑚)

∑

𝑛=0

(

𝑚
𝑛

)

(1 − 𝑝)𝑛𝑝𝑚−𝑛
(𝑝𝑚)𝑘−𝑚−𝑛

(𝑘 − 𝑚 − 𝑛)!
𝑒−𝑝𝑚.

When 𝑝 → 1, the expression reduces to a Poisson distribution as follows

𝑃 (𝑘) = 𝑚𝑘−𝑚

(𝑘 − 𝑚)!
𝑒−𝑚.

In the simulations, we used this degree distribution.
The total number of nodes for Wuhan, Toronto, and Italy are

11081000, 5928000, and 59430000 as shown in Table 1, Table 3, and
Table 6, respectively. We parameterized the model using the MCMC
approach [24] by MATLAB R2016a according to the number of newly
confirmed cases and the cumulative number of cases reported by the
Health Commission of Hubei Province [25] and WHO [26].

The rate at which the fraction of the cumulative number of cases
changes is 𝑑𝑐𝑘∕𝑑𝑡 = 𝜉𝑖𝑘, where 𝑐𝑘(𝑡) represents the fraction of the
cumulative number of infected individuals with degree 𝑘. The number
of newly infected can be expressed as

𝑃𝑘 = [𝑐𝑘(𝑡) − 𝑐𝑘−1(𝑡)]𝑁𝑘,

where 𝑃𝑘 represents the number of new cases with degree 𝑘, and 𝑁𝑘
represents the total number of individuals with degree 𝑘. We run the
MCMC simulation for 20000 iterations to fit the value of 𝑃𝑘.

Zhou et al. showed that the median time from illness onset (i.e., be-
fore admission) to discharge was 22 days (IQR 18–25), whereas the
median time to death was 18.5 days with IQR between 15 and 22
days [28]. We assume an exponential distribution for the time to

Table 2
Basic reproduction numbers computed by MCMC on the WS network.

Location Period Mean
value

Standard
derivation

95% CI

Wuhan

Jan 11–Jan 23 3.4074 0.2099 [2.9959, 3.8188]
Jan 23–Feb 1 1.3065 0.3976 [0.5273, 2.0858]
Feb 1–Feb 12 0.0221 0.0170 [0, 0.0555]
Feb 12–Mar 31 5.35 × 10−3 5.34 × 10−3 [0, 0.0158]

Toronto Jan 26–Mar 18 0.6416 0.0867 [0.4716, 0.8116]
Mar 18–Mar 29 0.0115 0.0151 [0, 0.0412]

Italy Jan 31–Mar 8 1.4763 0.0984 [1.2834, 1.6691]
Mar 8–Mar 26 0.0359 0.0185 [0, 0.0721]

recovery for asymptomatically infected individuals, symptomatically
infected individuals, and hospitalized individuals. This results in the
recovery rates 𝛾𝑎 = 𝛾 = 𝛾ℎ = 1∕22 per day, and the mortality rate,
𝜇 is 1∕18.5 per day. The incubation period of COVID-19 is around
7 days [4], resulting in the progression rate 𝜖 = 1∕7. Qiu et al.
reported that around 30% − 60% of people infected with COVID-19 are
asymptomatic or only have mild symptoms, and their transmissibility
is lower, but still significant [29]. Thus, we assume that the probability
that an infected individual is asymptomatic is 1− 𝛿 = 0.6, and 𝜎 = 1 for
simulations.

We divided the Wuhan epidemic into four phases according to the
reported data [3]. The first phase is before lockdown on Jan 23, 2020.
The second phase is between Jan 24, 2020 and Feb 1, 2020 when the
hospitals were short of beds. The third phase is between Feb 2, 2020
and Feb 6, 2020 when the Thunder God Mountain Hospital (TGMH)
and Fire God Mountain Hospital (FGMH) were put into use. The fourth
phase began when door-to-door screening was implemented on Feb 7,
2020 and TGMH, FGMH, and Mobile Cabin Hospitals (MCH) were put
into use.

The study period for Toronto (Canada) was decomposed into two
phases, namely, the period before Mar 18 and the period after Mar 18
when the city announced the emergence and schools and universities
in Toronto were closed on Mar 18.

The study period for Italy was divided into two phases. The early
epidemic phase was between Jan 31, 2020 and Mar 8, 2020 when the
infection was spreading through the northern provinces. The second
period begins on Mar 9, 2020 when the national lockdown started.

3.2. Predicting future epidemic trends

The parameters and initial conditions of simulations for Wuhan on
the WS network are shown in Table 1. The probability of transmission
through adequate contact is estimated by MCMC. The 5000 realiza-
tions of the basic reproduction numbers derived for Wuhan using the
parameter values listed in Table 1 are shown in Table 2.

From Jan 11 to Mar 31, we estimate that the mean reproduction
number on the WS network decreases from 3.41 in the first phase to
5.35 × 10−3 in the fourth phase. The epidemic on the WS network is
shown in Fig. 1. Up to Jan 23, 2020 when Wuhan lockdown started,
the estimated epidemic size is 3.96×106. During the second stage, after
the lockdown of Wuhan and before the TGMH and FGMH were put into
use, the predicted final size is 2.17×106. Thus, the lockdown of Wuhan
reduced the expected final size by 45.22%. During the third stage, after
TGMH and FMGH were put into use, the final size is 1.02 × 105. Hence,
the city lockdown and the usage of TGMH and FGMH reduced the final
size by 97.42%. During the fourth stage, after MCH was put into use,
the predicted final size is 51269, and the expected final size of infection
is reduced by 98.70% due to the increase of healthcare capacity.

The variability of the numbers of confirmed new cases is consistent
with the variability of the reproduction numbers listed in Table 2.
In the first two phases, the epidemic spread rapidly with larger re-
production numbers that are larger than one, and the numbers of
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Fig. 1. Fitting the number of reported new cases and the cumulative number of
reported cases between Jan 11, 2020 and Mar 31, 2020 for Wuhan on Watts–Strogatz
network.(A) Fitting the number of reported new cases on the Watts–Strogatz network.
(B) Fitting the cumulative number of reported cases on the Watts–Strogatz network.

Table 3
The parameter values and initial condition of simulations for Toronto.

Parameter Mean value Std 95% CI References

𝛽 (Phase 1) 7.95 × 10−3 1.12 × 10−3 [5.76 × 10−3 , 0.01] MCMC
𝛽 (Phase 2) 1.38 × 10−4 1.79 × 10−4 [0, 4.90 × 10−4] MCMC
𝜉 (Phase 1) 0.1421 0.0734 [0, 0.2858] MCMC
𝜉 (Phase 2) 0.1140 0.0709 [0, 0.2530] MCMC
∑

𝑘 𝑁𝑘(0) 5928000 – – [30]
∑

𝑘 𝑆𝑘(0) 5927990 – – Calculated
∑

𝑘 𝐸𝑘(0) 4.12 4.83 [0, 13.58] MCMC
∑

𝑘 𝐴𝑘(0) 2.43 2.22 [0, 6.78] MCMC
∑

𝑘 𝐼𝑘(0) 3.22 2.89 [0, 8.88] MCMC
∑

𝑘 𝐻𝑘(0) 1 – – [26]
∑

𝑘 𝑅𝑘(0) 0 – – Estimated
∑

𝑘 𝐷𝑘(0) 0 – – Estimated

Phase 1 is from Jan 26 to Mar 18, and Phase 2 is from Mar 18 to Mar 29.

infected cases increase. In the last two phases, the spread is con-
tained as the reproduction numbers falling below 1. In the third phase,

Fig. 2. Fitting the number of reported new cases and the cumulative number of
reported cases for Toronto on the Watts–Strogatz network. (A) Fitting the number of
reported new cases on the Watts–Strogatz network. (B) Fitting the cumulative number
of reported cases on the Watts–Strogatz network.

because a large number of cases are confirmed by door-to-door screen-
ing and expanded healthcare capacity, the cumulative number of con-
firmed cases increased. On the other hand, the epidemic will die out
because the reproduction number is less than one. In the fourth phase,
the epidemic has been under control with the reproduction number
being less than one. Hence, the number of new cases decreases.

The parameters and initial conditions of simulations for the GTA
are shown in Table 3. The 5000 realizations of the basic reproduction
numbers derived for Toronto using the parameter values listed in Ta-
ble 3 are shown in Table 2. The reproduction numbers are much smaller
due to social distancing policy, school closure, as well as behavior
changes. The summary of the simulations is shown in Tables 4 and 5
and simulation results are shown in Fig. 2. The peak size is 60.19 (95%
CI: 47.42–72.97), the peak time is Apr 2 (95% CI: Mar 29-Apr 7), and
the final size is 2712 (95% CI: 1603–3820).

The parameters and initial condition of simulations for Italy is
shown in Table 6. The 5000 realizations of the basic reproduction
numbers derived for Italy using the parameter values listed in Table 6

Table 4
The peak number of new cases, peak time, and final epidemic size after containment strategies are implemented in Toronto.
Scenarios Peak size (95% CI) Peak time (95% CI) Final size (95% CI)

𝛽 60.19 (47.42, 72.97) Apr 2 (Mar 29, Apr 7) 2712 (1603, 3820)
0.8𝛽 50.30 (41.03, 59.57) Apr 1 (Mar 28, Apr 6) 2217 (1451, 2984)
0.6𝛽 40.94 (34.55, 47.32) Mar 31 (Mar 26, Apr 4) 1751 (1239, 2262)
𝑞 = 0 60.19 (47.42, 72.97) Apr 2 (Mar 29, Apr 7) 2712 (1603, 3820)
𝑞 = 1∕8 44.66 (39.12, 50.21) Mar 28 (Mar 26, Mar 31) 1486 (1111, 1861)
𝑞 = 1∕4 38.79 (33.86, 43.72) Mar 27 (Mar 25, Mar 29) 1133 (878, 1388)
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Fig. 3. Fitting the number of reported new cases and the cumulative number of
reported cases for Italy on the Watts–Strogatz network. (A) Fitting the number of
reported new cases on the Watts–Strogatz network. (B) Fitting the cumulative number
of reported cases on the Watts–Strogatz network.

Table 5
The peak number of new cases, peak time, and final epidemic size for Toronto when
varying node degrees of symptomatically infected individuals.

Degree Peak size (95% CI) Peak time (95% CI) Final size (95% CI)

𝑘 60.19 (47.42, 72.97) Apr 2 (Mar 29, Apr 7) 2712 (1603, 3820)
𝑘 − 1 51.92 (42.08, 61.77) Apr 1 (Mar 28, Apr 6) 2301 (1476, 3125)
𝑘 − 2 43.98 (36.76, 51.20) Mar 31 (Mar 27, Apr 5) 1908 (1310, 2506)
𝑘 − 3 36.61 (30.96, 42.26) Mar 30 (Mar 25, Apr 3) 1531 (1114, 1949)

Table 6
The parameter values and initial condition of simulations for Italy.

Parameter Mean
value

Standard
derivation

95% CI References

𝛽 (Phase 1) 0.0179 1.19 × 10−3 [0.0156, 0.0203]] MCMC
𝛽 (Phase 2) 4.45 × 10−4 2.30 × 10−4 [0, 8.95 × 10−4] MCMC
𝜉 (Phase 1) 0.0996 0.0458 [9.87 × 10−3 , 0.1894] MCMC
𝜉 (Phase 2) 0.1312 0.0250 [0.0823, 0.1801] MCMC
∑

𝑘 𝑁𝑘(0) 59430000 – – [31]
∑

𝑘 𝑆𝑘(0) 59429892 – – Calculated
∑

𝑘 𝐸𝑘(0) 69.01 56.92 [0, 180.58] MCMC
∑

𝑘 𝐴𝑘(0) 22.60 18.24 [0, 58.35] MCMC
∑

𝑘 𝐼𝑘(0) 32.11 24.23 [0, 79.59] MCMC
∑

𝑘 𝐻𝑘(0) 2 – – [26]
∑

𝑘 𝑅𝑘(0) 0 – – Estimated
∑

𝑘 𝐷𝑘(0) 0 – – Estimated

Phase 1 is between Jan 31 and Mar 8, and Phase 2 is between Mar 8 and Mar 26.

are shown in Table 2. The reproduction numbers in the second phase
are much smaller than that in the first phase due to the awareness of

the severity of the epidemic. The summary of the simulation results is
shown in Tables 7 and 8. Fig. 3 shows that the peak number of new
cases is 5492 (95% CI: 5277–5708) on Mar 26 (95% CI: Mar 24-Mar
27), and the final size is 2.59 × 105 (95% CI: 2.10 × 105 − 3.08 × 105).

4. The impact of mitigation strategies

The close contacts identified by contact tracing will be quarantined
due to exposure to COVID-19 to see if they become sick. To evaluate
the impact of mitigation strategies on the spread of COVID-19, Model
(2.1) is rewritten as follows

⎧
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⎪
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𝑑𝑠𝑘
𝑑𝑡 = −𝛽𝑘𝑠𝑘

∑

𝑘′ [1 − (1 − 𝑘′−1
𝑘′ 𝑃 (𝑘′|𝑘)𝑖𝑘′ )(1 −

𝑘′−1
𝑘′ 𝑃 (𝑘′|𝑘)𝜎𝑎𝑘′ )]

− 𝑞𝑠𝑘 + 𝜆𝑠𝑞𝑘,
𝑑𝑠𝑞𝑘
𝑑𝑡 = 𝑞𝑠𝑘 − 𝜆𝑠𝑞𝑘,

𝑑𝑒𝑘
𝑑𝑡 = 𝛽𝑘𝑠𝑘

∑

𝑘′ [1 − (1 − 𝑘′−1
𝑘′ 𝑃 (𝑘′|𝑘)𝑖𝑘′ )(1 −

𝑘′−1
𝑘′ 𝑃 (𝑘′|𝑘)𝜎𝑎𝑘′ )]

− 𝜖𝑒𝑘,
𝑑𝑎𝑘
𝑑𝑡 = (1 − 𝛿)𝜖𝑒𝑘 − 𝛾𝑎𝑎𝑘,
𝑑𝑖𝑘
𝑑𝑡 = 𝛿𝜖𝑒𝑘 − 𝛾𝑖𝑘 − 𝜇𝑖𝑘 − 𝜉𝑖𝑘,
𝑑ℎ𝑘
𝑑𝑡 = 𝜉𝑖𝑘 − 𝛾ℎℎ𝑘 − 𝜇ℎ𝑘,
𝑑𝑟𝑘
𝑑𝑡 = 𝛾𝑖𝑘 + 𝛾𝑎𝑎𝑘 + 𝛾ℎℎ𝑘,
𝑑𝑑𝑘
𝑑𝑡 = 𝜇𝑖𝑘 + 𝜇ℎ𝑘,

(4.1)

where 𝑠𝑞𝑘 = 𝑆𝑄𝑘∕𝑁𝑘 represents the fraction of quarantined individuals
with degree 𝑘. The parameter 𝑞 represents the rate at which susceptible
individuals are quarantined, and 𝜆 represents the rate at which the
quarantined and uninfected close contacts transfer to the susceptible
compartment again. In the simulations, we let 𝜆 = 1∕14 to approximate
a mean time of 14 days in the exposed state.

For Wuhan, the cumulative number of infected individuals after
lockdown and TGMH, FGMH, as well as MCH were put into use are
shown in Fig. 4. The results show that the lockdown and the increase
in healthcare capacity are effective in controlling the numbers of
confirmed cases.

For Toronto, the number of newly infected individuals and the cu-
mulative number of infected individuals produced on the WS network
after implementing additional containment strategies besides school
closure are shown in Fig. 5. We simulated the scenarios of imple-
menting various containment strategies for Toronto. Simulation results
showed that personal protection, reducing the node degrees of symp-
tomatically infected individuals, and quarantine of close contacts are
effective in reducing the peak epidemic size and final epidemic size.
When 𝛽 is reduced by 20% by personal protection or social distancing,
the peak occurs one day earlier, and the final epidemic size is reduced
by around 18%. When 𝛽 is reduced by 40%, the peak occurs two days
earlier, and the final epidemic size is reduced by around 33.3%. When
𝑞 = 1∕8, the peak occurs four days earlier, and the final epidemic
size is reduced by 45.21%. When 𝑞 = 1∕4, the peak appears five days
earlier, and the final epidemic size is reduced by 58.22%. When the node
degrees of symptomatically infected individuals are reduced by 1, 2,
and 3, the number of new cases produced per day at the peak is reduced
by 13.74%, 26.93%, and 39.18%. The final epidemic size is reduced by
15.15%, 29.65%, and 43.55% when the node degrees of symptomatically
infected individuals are reduced by 1, 2, and 3, respectively.

For Italy, the number of newly infected individuals and the cumu-
lative number of infected individuals simulated on the WS network
after implementing hypothetical containment strategies are shown in
Fig. 6. Various scenarios of implementing mitigation strategies showed
that the peak epidemic size and final epidemic size in Italy are greatly
reduced by personal protection, social distancing, behavior change of
symptomatically infected individuals, and quarantine. The simulations
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Table 7
The peak number of new cases, peak time, and final size after containment strategies are implemented in Italy.

Scenarios Peak size (95% CI) Peak time (95% CI) Final size (95% CI)

𝛽 5492 (5277, 5708) Mar 26 (24, 27) 2.59 × 105(2.10 × 105 , 3.08 × 105)
0.8𝛽 4340 (4235, 4564) Mar 25 (24, 26) 2.03 × 105(1.75 × 105 , 2.31 × 105)
0.6𝛽 3323 (3197, 3450) Mar 25 (24, 26) 1.52 × 105(1.37 × 105 , 1.66 × 105)
𝑞 = 0 5492 (5277, 5708) Mar 26 (24, 27) 2.59 × 105(2.10 × 105 , 3.08 × 105)
𝑞 = 1∕8 3413 (3279, 3547) Mar 20 (19, 21) 1.22 × 105(1.14 × 105 , 1.30 × 105)
𝑞 = 1∕4 2609 (2434, 2783) Mar 18 (17, 19) 8.51 × 104(7.91 × 104 , 9.11 × 104)

Table 8
The peak size, peak time and final size for Italy when varying node degrees of symptomatically infected individuals.

Degree Peak size (95% CI) Peak time (95% CI) Final size (95% CI)

𝑘 5492 (5277, 5708) Mar 26 (24, 27) 2.59 × 105(2.10 × 105 , 3.08 × 105)
𝑘 − 1 4583 (4410, 4755) Mar 25 (24, 27) 2.13 × 105(1.81 × 105 , 2.44 × 105)
𝑘 − 2 3683 (3546, 3821) Mar 25 (24, 26) 1.69 × 105(1.50 × 105 , 1.88 × 105)
𝑘 − 3 2795 (2680, 2910) Mar 24 (23, 26) 1.28 × 105(1.17 × 105 , 1.39 × 105)

Fig. 4. The impact of the variability on the healthcare capacity on the spread of the
epidemic in Wuhan on the Watts–Strogatz network.

show that the peak would have arrived earlier if the containment had
been intensified.

When the probability of contact transmission coefficient 𝛽, is re-
duced by 20% by personal protection or social distancing, the peak
occurs one day earlier, and the final epidemic size is reduced by 21.56%.
When 𝛽 is reduced by 41.44%, the peak occurs one day earlier, and the
final epidemic size is reduced by around 40%.

When 𝑞 = 1∕8, the peak occurs six days earlier, and the final
epidemic size is reduced by 52.87%. Yet, when 𝑞 = 1∕4, the peak
occurs eight days earlier, and the final epidemic size is reduced by
67.12%. When the node degree of symptomatically infected individuals
is reduced by 1, 2, and 3, the number of new cases produced per day
at the peak is reduced by 16.50%, 32.93%, and 49.11%, respectively. The
final epidemic size is reduced by 17.90%, 34.70%, and 50.51% when the
node degrees of symptomatically infected individuals are reduced by 1,
2, and 3, respectively.

5. Summary and discussions

Modeling the dynamics of COVID-19 epidemics and assessment of
mitigation strategies could be instrumental to public health agencies for
surveillance and healthcare planning. For the models to be reliable, the
simulated epidemic must account for the stochastic and heterogeneous
contact among individuals. Hence, we developed a network model that
captured the contact heterogeneity among individuals. We applied the

Fig. 5. The impact of mitigation strategies on the spread of COVID-19 epidemic in
Toronto on the Watts–Strogatz network. In this figure and the following figure, the
dashed lines represent 95% confidence intervals. In (A) and (B), the red, purple, and
green lines represent that the transmission rates are unchanged, reduced by 20%,
and reduced by 40%, respectively. In (C) and (D), the red, purple, and green lines
represent the rate of quarantine, 𝑞 = 0, 1/8, and 1/4, respectively. In (E) and (F),
the red, purple, and green, and light blue lines represent that the node degrees of
symptomatically infected individuals are reduced by 0, 1, 2, and 3, respectively. (A) The
number of newly infected individuals after reducing the transmission rates by personal
protection and social distancing. (B) The cumulative number of infected individuals
after reducing the transmission rates by personal protection and social distancing. (C)
The number of newly infected individuals after close contacts are quarantined. (D) The
cumulative number of infected individuals after close contacts are quarantined. (E)
The number of newly infected individuals after the node degrees of symptomatically
infected individuals are reduced. (F) The cumulative number of infected individuals
after the node degrees of symptomatically infected individuals are reduced.

model to analyze the transmission potential, and mitigation strategies
for curbing the spread of COVID-19 epidemics in the cities of Wuhan,
China and Toronto, Canada, and in the Italian Republic. The epidemic
threshold derived from our network model can be used to predict the

8



L. Xue, S. Jing, J.C. Miller et al. Mathematical Biosciences 326 (2020) 108391

Fig. 6. The impact of mitigation strategies on the spread of COVID-19 epidemic in
Italy on the Watts–Strogatz network. (A) The number of newly infected individuals
after reducing the transmission rates by personal protection and social distancing. (B)
The cumulative number of infected individuals after reducing the transmission rates by
personal protection and social distancing. (C) The number of newly infected individuals
after close contacts are quarantined. (D) The cumulative number of infected individuals
after close contacts are quarantined. (E) The number of newly infected individuals
after the node degrees of symptomatically infected individuals are reduced. (F) The
cumulative number of infected individuals after the node degrees of symptomatically
infected individuals are reduced.

risks of spreading scenarios. We also provided an explicit expression
of the final epidemic size, which facilitates estimating the scale of an
outbreak for any region of interest. Our results provide insights in
defining a mathematical framework for the analysis and containment
of epidemic transmission in the real world.

A wide range of mitigation strategies can be examined by the flexi-
ble model framework. It can be extended to quantify the effectiveness
of personal protection, social distancing, reducing the node degree of
infected individuals, and quarantine on the dynamics of epidemics
in different regions. When the mitigation strategy is intensified, the
model predicts that the number of new cases peaks earlier and the final
epidemic size is greatly reduced.

The social contact network structure and parameter values de-
termine the transmission and epidemic course of such an emerging
infectious disease. We choose the Watts–Strogatz to approximate real
social networks, when the exact contact tracing data is unavailable. We
assumed that the range of the node degree is between one and ten for
each network in the absence of real contact tracing data, that is, on
average each day an infected person would have between one and ten
contacts where they could transmit the infection to another person. In
the real world, the range of the degree will depend on the distribution
of the household sizes of the region and time being studied. Moreover,
the network structure can be altered by behavior change of individuals
during epidemics. When this happens, the network structure can be
adapted in our model to predict the impact of these changes on the
epidemic threshold, epidemic peak value, peak time, stopping time, and
final size of infected population.

The epidemics for the three places under study were fitted very well
by our model with a small confidence interval. Hence, the forecasts by
the model can be reliable. We did not provide the stopping time since
too many uncertainties may affect the duration of the epidemics. As
shown in the simulations, the transmission dynamics for four phases
in Wuhan are quite different due to the variability on the intensity
of interventions, the availability of healthcare facilities, as well as the
utilization of personal protective equipment (PPE). The dynamics in the
first phase is quite different from that in the second phase for Toronto.
The same phenomenon is observed in Italy.

At the early stage, almost no interventions were implemented, and
the public was not aware of or did not pay much attention to the
severity of the highly contagious disease. With the increase of the
number of reported confirmed cases and with the aid of social media,
the public becomes aware of the severe consequence and has increased
the level of personal protection and have avoided gathering, so that
the reproduction number decreases and the estimated epidemic size
declines by reducing the node degree of the network. Similarly, after
applying the mitigation measures in Italy on March 8 and closing all
schools in Toronto on March 18, the epidemics tend to be under control.

Hence, social distancing, self-isolation, quarantine, the utilization of
PPE, and other measures of avoiding exposure to the virus can greatly
reduce the size of infection during the COVID-19 outbreak. Therefore,
it is essential to raise the awareness of these countermeasures to avoid
contact between individuals. The possibility of recurrent outbreaks of
the disease cannot be overstated. Even if the number of new cases is
declining, it is still necessary to continue taking protective measures
to prevent the occurrence of future outbreaks. The social media should
warn the public not to relax their vigilance against the contagion of
such a highly infectious disease.
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