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Abstract

Background: One of the fundamental problems of modern genomics is to extract the genetic architecture of a
complex trait from a data set of individual genotypes and trait values. Establishing this important connection between
genotype and phenotype is complicated by the large number of candidate genes, the potentially large number of
causal loci, and the likely presence of some nonlinear interactions between different genes. Compressed Sensing
methods obtain solutions to under-constrained systems of linear equations. These methods can be applied to the
problem of determining the best model relating genotype to phenotype, and generally deliver better performance
than simply regressing the phenotype against each genetic variant, one at a time. We introduce a Compressed
Sensing method that can reconstruct nonlinear genetic models (i.e., including epistasis, or gene-gene interactions)
from phenotype-genotype (GWAS) data. Our method uses L1-penalized regression applied to nonlinear functions of
the sensing matrix.

Results: The computational and data resource requirements for our method are similar to those necessary for
reconstruction of linear genetic models (or identification of gene-trait associations), assuming a condition of
generalized sparsity, which limits the total number of gene-gene interactions. An example of a sparse nonlinear model
is one in which a typical locus interacts with several or even many others, but only a small subset of all possible
interactions exist. It seems plausible that most genetic architectures fall in this category. We give theoretical
arguments suggesting that the method is nearly optimal in performance, and demonstrate its effectiveness on broad
classes of nonlinear genetic models using simulated human genomes and the small amount of currently available real
data. A phase transition (i.e., dramatic and qualitative change) in the behavior of the algorithm indicates when
sufficient data is available for its successful application.

Conclusion: Our results indicate that predictive models for many complex traits, including a variety of human
disease susceptibilities (e.g., with additive heritability h2 ∼ 0.5), can be extracted from data sets comprised of
n� ∼ 100s individuals, where s is the number of distinct causal variants influencing the trait. For example, given a trait
controlled by ∼ 10 k loci, roughly a million individuals would be sufficient for application of the method.
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Background
Realistic models relating complex traits (i.e., phenotypes)
to genotypes may exhibit nonlinearity (epistasis), allow-
ing distinct regions of DNA to interact with one another.
For example, one allele can influence the effect of another,
altering its magnitude or sign, even silencing the second
allele entirely. For some traits, the largest component of
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genetic variance is linear (additive) [1], but even in this
case nonlinear interactions accounting for some smaller
component of variance are expected to be present. To
obtain the best possiblemodel for prediction of phenotype
from genotype, or to obtain the best possible under-
standing of the genetic architecture, requires the abil-
ity to extract information concerning nonlinearity from
phenotype–genotype (e.g., GWAS) data. In this paper we
describe a computational method for this purpose.
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Our method makes use of compressive sensing (CS)
[2–5], a framework originally developed for recovering
sparse signals acquired from a linear sensor. The applica-
tion of CS to genomic prediction (using linearmodels) and
GWAS has been described in an earlier paper by one of
the authors [6]. Before describing the new application, we
first summarize results from [6].
Compressed sensing allows efficient solution of under-

determined linear systems:

y = Ax + ε, (1)

(ε is a noise term) using a form of penalized regression.
L1 penalization, or LASSO, involves minimization of an
objective function over candidate vectors x̂:

O = ||y − Ax̂||L2 + λ||x̂||L1, (2)

where the penalization parameter is determined by the
noise variance (see Analysis section for more detail).
Because O is a convex function it is easy to minimize.
Recent theorems [2–5] provide performance guarantees,
and show that the x̂ that minimizes O is overwhelmingly
likely to be the sparsest solution to (1). In the context of
genomics, y is the phenotype, A is a matrix of genotypes
(in subsequent notation we will refer to it as g), x a vector
of effect sizes, and the noise is due to nonlinear gene-gene
interactions and the effect of the environment.
Let p be the number of variables (i.e., dimensionality of

x, or number of genetic loci), s the sparsity (number of
variables or loci with nonzero effect on the phenotype; i.e.,
nonzero entries in x) and n the number of measurements
of the phenotype (i.e., dimensionality of y or the number
of individuals in the sample). Then A is an n × p dimen-
sional matrix. Traditional statistical thinking suggests that
n > p is required to fully reconstruct the solution x
(i.e., reconstruct the effect sizes of each of the loci). But
recent theorems in compressed sensing [2–6] show that
n > Cs log p (for constant C defined over a class of matri-
ces A) is sufficient if the matrix A has the right properties
(is a good compressed sensor). These theorems guaran-
tee that the performance of a compressed sensor is nearly
optimal – within an overall constant of what is possible if
an oracle were to reveal in advance which s loci out of p
have nonzero effect. In fact, one expects a phase transition
in the behavior of themethod as n crosses a critical thresh-
old n� given by the inequality. In the good phase (n > n�),
full recovery of x is possible.
In [6], it is shown that

a. Matrices of human SNP genotypes are good
compressed sensors and are in the universality class
of (i.e., have the same phase diagram as) random
(Gaussian) matrices. The phase diagram is a
function of sparsity s and sample size n rescaled by

dimensionality p. Given this result, simulations can
be used to predict the sample size threshold for
future genomic analyses.

b. In applications with real data the phase transition
can be detected from the behavior of the algorithm
as the amount of data n is varied. (For example, in
the low noise case the mean p-value of selected, or
nonzero, components of x exhibits a sharp jump at
n�.) A priori knowledge of s is not required; in fact
one deduces the value of s this way.

c. For heritability h2 = 0.5 and p ∼ 106 SNPs, the
value of C log p ∼ 30. For example, a trait which is
controlled by s = 10k loci would require a sample
size of n ∼ 300k individuals to determine the
(linear) genetic architecture (i.e., to determine the
full support, or subspace of nonzero effects, of x).

Our algorithm for dealing with nonlinear models is
described in more detail in the Methods section below. It
exploits the fact that although a genetic model G(g) with
epistasis depends nonlinearly on g, it only depends lin-
early on the interaction parameters X which specify the
interaction coefficients (i.e., z and Z in Eq. (7)). Briefly, the
method proceeds in two Steps:

Step 1. Run CS on (y, g) data, using linear model (8).
Determine support of x: subset defined by s
loci of nonzero effect.

Step 2. Compute G(g) over this subspace. Run CS on
y = G(g) · X model to extract nonzero
components of X. These can be translated
back into the linear and nonlinear effects of
the original model (i.e., nonzero components
of z and Z).

In the following section we show that in many cases
Steps 1 and 2 lead to very good reconstruction of the orig-
inal model (7) given enough data n. A number of related
issues are discussed:

a. When can nonlinear effects hide causal loci from
linear regression (Step 1)? In cases of this sort the
locus in question would not be discovered by
GWAS using linear methods.

b. Both matrices g and G(g) seem to be
well-conditioned CS matrices. The expected phase
transitions in algorithm performance are observed
for both Steps.

c. For a given partition of variance between linear (L),
nonlinear (NL) and IID error ε, how much data n�

is required before complete selection of causal
variants occurs (i.e., crossing of the phase boundary
for algorithm performance)? Typically, if Step 1 is
successful then with the same amount of data Step
2 will also succeed.
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Relation to earlier work
Here we give a brief discussion of earlier work, with the
goal of clarifying what is new and distinctive about our
technique. Reviews of earlier methods aimed at detecting
gene-gene interactions can be found in [7–10].
Theoretical results concerning LASSO can be found in,

e.g., [11, 12], as well as in the well-known work by Candes,
Tao, Donoho and collaborators [2–5]. The main point, as
discussed in [6], is that despite the beautiful results in
this literature there is no theorem that can be specifically
applied to matrices formed of genomes, or of nonlin-
ear functions of genomes, because of nontrivial structure:
correlations between the genomes of individuals in a pop-
ulation. This structure implies that thematrices of interest
deviate at least slightly from random matrices, and have
only empirically-determined properties. Therefore, all of
the rigorous theorems are merely guides to our intuition or
expectations: empirical results from simulations are nec-
essary to proceed further. As noted in [6], the best one can
do is to test the phase transition properties of real genomic
matrices and determine whether they are in the same cate-
gory (“universality class”) as random matrices. This being
the case (as verified in [6]), one can then use the phase
diagram to predict how much data n is required to deter-
mine the optimal genomic model for a given sparsity s,
dimensionality p, and composition of variance (L, NL, IID
error).
The key result is that once the phase boundary is crossed

to the favorable part of the phase diagram (i.e., sufficient
data is available), the support of the candidate vector x̂
will coincide with the support of the optimal x: i.e., the
solution of equation (2) in the limit of infinite data, or the
sparsest solution to (1). Note that in the presence of noise
the specific values of the components of x̂ will differ from
those of x; it is the locations of the nonzero components
(support of x) that can be immediately extracted once the
data threshold n� is surpassed.
The phase transition properties of compressed sens-

ing algorithms are under-appreciated, especially so given
their practical utility. We refer the reader to pioneer-
ing work by Donoho and collaborators [13–17]. (See also
discussion in [5] in end notes of Chapter 9.) Briefly, they
showed that the phase behavior of CS algorithms is related
to high dimensional combinatorial geometry, and that
a broad class of random matrices (matrices randomly
selected from a specific ensemble, such as Gaussians)
exhibit the same phase diagram (i.e., are in the same uni-
versality class) as a function of sparsity and data size
rescaled by dimensionality: (ρ = s/n , δ = n/p). In
[6] the same phase boundary was found for matrices of
human SNP genotypes, verifying that genomic matrices
fall into the same universality class as found in [13]. In
other words, the diagram in Fig. 1, constructed in [6] from
simulations with real human genotypes, coincides exactly

Fig. 1 Phase diagram found in [6] for matrices of human SNP
genotypes as a function of ρ = s/n and δ = n/p. This is identical to
the diagram found by Dohono and Tanner for Gaussian random
matrices in [13]

with the one found in [13] for broad classes of random
matrices.
This paper extends the analysis of [6] to nonlinear

genomics models incorporating epistasis. We make use of
the phase transition to first identify the subspace of loci
with nonzero effects and then use L1-penalized regres-
sion to fit a nonlinear model defined on this subspace. We
find that the nonlinear genomic matrixG(g) is also a good
compressed sensor – it exhibits phase transition behavior
similar to that of g. In practical terms, our methods should
allow the recapture of a large part of nonlinear variance in
phenotype prediction.
Some alternative methods for dealing with epistasis are

given in [18–23] (for an overview of several methods, see
[24]). The closest proposal to the one examined in this
paper is that of Devlin and collaborators [22, 23], which
uses LASSO and a linear model to first narrow the sub-
space of interest to lower dimensionality, and then uses an
interacting model to estimate nonlinear interactions. The
main difference with our work is that (i) [22, 23] do not
exploit the phase transition properties that allow one to
determine a critical data threshold beyond which nearly
ideal selection of loci has occurred, and (ii) [22, 23] do not
situate their results in the theoretical framework of com-
pressed sensing. In practical terms, as discussed below, we
use signals such as the median p-value of candidate loci to
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determine when the calculation is in the favorable part of
the phase diagram.
The motivation of earlier work [18–23] seems to be

mainly exploratory – to find specific cases of nonlin-
ear interactions, but not to “solve” genetic architectures
involving hundreds or thousands of loci. This is under-
standable given that only a few years ago the largest data
sets available were much smaller than what is available
today (e.g., hundreds of thousands of individuals, rapidly
approaching a million). Our perspective is quite different:
we want to establish a lower bound on the total amount of
genetic variation (linear plus nonlinear) that can be recap-
tured for predictive purposes, given data sets that have
crossed the phase boundary into the region of good recov-
ery. As we discuss below, our main result is that for large
classes of nonlinear genetic architectures one can recap-
ture nearly all of the linear variance and half or more of the
nonlinear variance using an amount of data that is some-
what beyond the phase transition for the linear case. We
do not claim to have shown that ourmethod performs bet-
ter than all possible alternative methods. However, given
what is known from theoretical analyses in CS, we expect
our method to be close to optimal, up to logarithmic
corrections and a possible improvement of the constant
factor C appearing in the relation n ∼ Cs log p. For more
detailed comparisons of earlier methods, see [24].

Data Description
Given that current data sets suitable to our analysis are
extremely limited, most of our simulations are performed
using synthetic genomes with the minor allele frequency
(MAF) restricted to values between 0.05 and 0.5. The
synthetic genomes are determined as follows: generate
a random population-level MAF ∈ (0.05, 0.5) for each
locus, then populate each individual genome with 0,1,2
SNP values according to the MAF for each locus.
To assess how our method works on actual human

data as compared to its performance on on synthetic
genomes, we tested it on an available data set: human
SNP genomes from the 1000 Genomes Project (i.e., matri-
ces g obtained via variant calls on actual genomes from
the 1000 Genomes Project). Details concerning sequenc-
ing and SNP calling for the 1000 Genomes Project can be
found at: http://www.1000genomes.org/analysis.

Analysis
We study the performance of our algorithm on two spe-
cific classes of “biologically inspired” models, although we
believe our results are generic for any nonlinear mod-
els with similar levels of sparsity, nonlinear variance, etc.
The models described below are used to generate pheno-
type data y for a given set of genotypes. Our algorithm
then tries to recover the model parameters. Each of the
models below is a specific instance of the general class of

nonlinear models in equation (7); this class is the set of all
possible models including linear and bi-linear (gene-gene
interaction) effects. The model parameters α,β , γ used
below can be rewritten in terms of the variables z,Z in (7).
The first category of models is the block-diagonal (BD)

interaction model:

ya =
s∑

i=1
αi gai +

s∑
i=1

βi ( gai )2 +
s−1∑
i=1

γi gai gai+1 + εa. (3)

The BD models have s causal loci, each of which has
(randomly determined) linear and quadratic effects on the
phenotype, as well as mixed terms coupling one locus to
another. In biological terms, this model describes a system
inwhich each locus interacts with others in the same block
(including itself ), but not with loci outside the block.
The second category of models is the “promiscuous”

(PS) interaction model:

ya =
s∑

i=1
α′
i g

a
i +

s′∑
i=1

β ′
i (g

a
s+i)

2 +
s′/2∑
i=1

γ ′
i gai gas+i + εa. (4)

The model has s loci which have linear but no quadratic
effect on the phenotype, and s′ loci have quadratic but
no linear effect on the phenotype. s′/2 of the latter type
interact with counterparts of the former type. In biologi-
cal terms, this model has subsets of loci which are entirely
linear in effect, some which are entirely nonlinear, and
interactions between these subsets.
We need to highlight here that there are no large systems

of interacting loci currently understood in real biological
systems; thus, one cannot be sure that any specific model
(in particular, (3) or (4) above) is realistic. They are merely
a way to generate datasets on which to test our method.
What we do believe, based on many simulations, is that
our method works well on models in which the gener-
alized sparsity (roughly, total number of interactions) is
sufficiently small (i.e., far from the maximal case in which
all loci interact with all others). In the maximal limit the
dimensionality of the parameter space of the resulting
model is so large that simple considerations imply that it
is intractable. We expect that Nature does not realize such
models: they are implausible as they require essentially
every gene to interact nontrivially with every other.
In both models, we fix var(ε) = 0.3, so the total genetic

variance accounted for (i.e., the broad sense heritability)
is 0.7, which is in the realistic range for highly herita-
ble complex traits such as height or cognitive ability (see,
e.g., [25–27]). The total genetic variance can be divided
into linear and nonlinear parts; the precise breakdown is
determined by the specific parameter values in the model.
We chose the probability distributions determining the
coefficients so that typically half or somewhat less of the
genetic variance is due to nonlinear effects (see Figs. 2, 3,
4, 5, 6, 7 and 8). For the BD model, αi, βi and γi are drawn

http://www.1000genomes.org/analysis
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Fig. 2 Phenotype as a function of standardized locus value. The linear regression (blue line) of phenotype versus this locus value has slope close to
zero. PS model with s + s′ = 5

from normal distributions. Their means are of order unity
and positive but not all the same. The standard devia-
tion of αi is larger than those of βi and γi, but all of them
are smaller than their respective means. In particular, we
take their means to be μ(α) = 1.5, μ(β) = 1.0 and
μ(γ ) = 0.5, and their standard deviations to be σ(α) =
0.5, σ(β) = 0.2 and σ(γ ) = 0.1. We study the cases
s = 5, 50, 100 with p = 10000, 25000, 40000 respectively.
For the PS model, α′

i are drawn from {−1, 0, 1}. β ′
i and

γ ′
i are randomly chosen from normal distributions, and

are typically of order unity. (In the results shown, negative
values of β ′

i and γ ′
i are excluded, but similar results are

obtained if negative are also allowed.) We study the cases
{s = 3, s′ = 2}, {s = 30, s′ = 20}, {s = 60, s′ = 40} with
p = 10000, 20000, 30000 respectively.

For each of the models, we first perform Step 1 (i.e., run
CS on the (y, g) data) with a value of n that is very close
to p. For such a large sample size Step 1 of the algorithm
always works with high precision, and determines a best-
fit linear approximation (hyperplane) to the data. From
this Step we can calculate the variance accounted for by
linear effects, and the remaining variance which is non-
linear. Parameters deduced in this manner are effectively
properties of the model itself and not of the algorithm.We
denote by x∗ the resulting x̂; this is an “asymptotic” linear
effects vector that would result from having a very large
amount of sample data.
The nonlinear variance is defined as

σ 2
NL ≡ var(y − g x∗ − ε). (5)

Fig. 3 The phase transition in median p-value as a function of sample size n. PS model with s + s′ = 5
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Fig. 4 BD model with synthetic genomes. Red, blue and green symbols correspond to cases with s = 5, 50, 100 respectively. Results for 100 runs
(i.e., 100 different realizations of the model) are shown for each case

We use this quantity to estimate the penalization λ for
LASSO: we set λ = σ 2

NL + var(ε). In a realistic case one
could set λ using an estimate of the additive heritability
of the phenotype in question (e.g., obtained via twin or
adoption study, or GCTA [26, 27]). This penalization may
be larger than necessary; if so, the required data threshold
for the phase transition might be reduced from what we
observe.
From x∗ we know which effects are detectable by lin-

ear CS under ideal (large sample size) conditions. In some
cases, the nonlinear effects can hide a locus from detec-
tion even though at the model level (e.g., in Eqs. (3, 4))
it has a direct linear effect on the phenotype y. This hap-
pens if the best linear fit of y as a function of the locus in
question has slope nearly zero (see Fig. 2). We refer to the
fraction of causal loci for which this occurs as the fraction

of model zeros. These loci are not recoverable from either
linear regression or linear CS even with large amounts of
data (n ≈ p). When this fraction is nonzero, the subspace
of causal variants that is detected in Step 1 of our algo-
rithm will differ from the actual subspace (in fact, Step 1
recovery of the causal subspace will sometimes fall short
of this ideal limit, as realistic sample sizes nmay be much
less than p; see upper right and lower left panels in Figs. 4
and 5). This is the main cause of imperfect reconstruction
of the full nonlinear model, as we discuss below.
In Step 1, we scan across increasing sample size n and

compute the p-values of all genetic markers that have
nonzero support (i.e., for which LASSO returns a nonzero
value in x̂) in order to detect the phase transition in CS
performance. The process is terminated when the median
p-value and the absolute value of its first derivative are
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Fig. 5 PS model with synthetic genomes. Red, blue and green symbols correspond to cases with s + s′ = 5, 50, 100 respectively. Results for 100 runs
(i.e., 100 different realizations of the model) are shown for each case

both 106 times smaller than the corresponding quantities
when the scanning process first starts. (The choice of 106
is arbitrary but worked well in our simulations – the pur-
pose is merely to detect the region of sample size where
the algorithm is working well.) This terminal sample size
is defined to be n∗. The typical behavior of median p-value
against n is illustrated in Fig. 3. Themedian p-value under-
goes a phase transition, dropping to small values. n∗ as
defined above is typically about (2-3) times as large as the
sample size at which this first occurs.
In Table 1 we display the distribution of false positives

found by Step 1. That is, loci to which the algorithm
assigns a nonzero effect size when in fact the origi-
nal model has effect size zero. When false positives are
present they cause the subspace explored in Step 2 of the

algorithm to have higher dimension than necessary. How-
ever, they do not necessarily lead to actual false positives
in the final nonlinearmodel produced by Step 2. As is clear
from Table 1, in the large majority of cases the number
of false positives is small compared to the number of true
positives.
For the BD and PS models, we calculate n∗/s and n∗/

(s+s′)which are plotted against σ 2
NL in Figs. 4 and 5. Next,

we run Step 2 over the causal subspace determined by
Step 1. Running CS gives us X̂ (as defined in (9)) and then
we compute the residual variance:

σ 2
R ≡ var(y − G X̂ − ε). (6)

(Recall that X̂ means the candidate vector for the solution
X, as was the case for x̂ and x.)
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Fig. 6 Synthetic (red) and real (blue) genome results in the BD model for s = 5. Results for 100 runs (i.e., 100 different realizations of the model)
are shown

In Fig. 4, we display σ 2
R against σ 2

NL and fractions of zeros
in both of x∗ and X̂ for the BD model. We also plot n∗/s
against σ 2

NL. For the PS model, we display the analogous
results in Fig. 5.
Results obtained using synthetic genomes are similar

to those obtained from real SNP genomes, as we discuss
below. For our purposes, we randomly selected p SNPs
from each individual to form the rows of our sensing
matrix. In Fig. 6 and 7, we compare results on synthetic
and real genomes for both BD and PS models. Due to
the limited sample size of ∼ 1000 real genomes to which
we have access, we limit ourselves to the cases s = 5
and {s = 3, s′ = 2}. In our analysis we could detect no
qualitative difference in performance between real and
synthetic g. However, the correlation between columns of

real g matrices is larger than for synthetic (purely random)
matrices. To compensate for this, we ran our simulations
with slightly larger (e.g., 1.5 or 2 times larger) penaliza-
tion λ in the case of real genomes. Our results suggest, as
one might expect from theory, that the moderate correla-
tions between SNPs found in real genomes do not alter the
universality class of the compressed sensor g, indicating
that our method is likely to perform similarly on real data
as it does on our test data. Future analyses, however, will
be required to substantiate this once the expected large
number of additional real data is available.

Discussion
It is a common belief in genomics that nonlinear inter-
actions (epistasis) in complex traits make the task of
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Fig. 7 Synthetic (red) and real (blue) genome results in the PS model for s + s′ = 5. Results for 100 runs (i.e., 100 different realizations of the model)
are shown

reconstructing genetic models extremely difficult, if not
impossible. In fact, it is often suggested that overcom-
ing nonlinearity will require much larger data sets and
significantly more computing power. Our results show
that in broad classes of plausibly realistic models, this
is not the case. Simulations using the limited amount of
real data available to us supports the likelihood that this
method will also work with non-simulated data. Tests on
upcoming real data, however, are definitely required.
We find that the proposed method can recover a sig-

nificant fraction of the predictive power (equivalently,
variance) associated with nonlinear effects. The upper left
panels of Figs. 4 and 5 show that we typically recover
half or more of the nonlinear variance. To take a specific
example, for σ 2

NL ∼ 0.25 over a third of the total genetic
variance

h2broad sense ≡ H2 = 1 − var(ε) = 0.7

is due to nonlinear effects. (Note total variance of y is
defined to be unity.) Step 2 of our method recovers all but
σ 2
R ∼ 0.1 of the total genetic variance, using the same

amount of data as in the linear Step 1. The fraction of vari-
ance which is not recovered by our method is largely due
to the causal variants that are not detected by Step 1 of
the algorithm – i.e., the fraction of zeros. These variants
would also escape detection by linear regression or essen-
tially any other linear method using the same amount of
sample data. We have also calculated false positive rates
for Step 1 in our simulations and the results are shown in
Table 1. Typically, the number of false positives is much
smaller than the number of true positives. In other words,
the dimensionality of the subspace explored in Step 2



Ho and Hsu GigaScience  (2015) 4:44 Page 10 of 13

Fig. 8 The PS model for s + s′ = 5 with continuous g elements. Results for 100 runs (i.e., 100 different realizations of the model) are shown

Table 1 Distribution of number of false positives in our simulations. These are loci which Step 1 incorrectly identifies as affecting the
phenotype

FP = 0 FP = 1 FP = 2 FP = 3 4 < FP < 7

BD, synthetic, s = 5 0.38 0.43 0.17 0.02 0

BD, synthetic, s = 50 0.39 0.37 0.19 0.03 0.02

BD, synthetic, s = 100 0.35 0.40 0.18 0.06 0.01

PS, synthetic, s = 3, s′ = 2 0.38 0.44 0.14 0.04 0

PS, synthetic, s = 30, s′ = 20 0.24 0.36 0.27 0.09 0.04

PS, synthetic, s = 60, s′ = 40 0.42 0.29 0.19 0.06 0.04

BD, real data, s = 5 0.74 0.18 0.05 0 0.03

PS, real data, s = 3, s′ = 2 0.69 0.13 0.08 0.04 0.06

Continuous, PS, synthetic, s = 3, s′ = 2 0.29 0.35 0.23 0.09 0.04

The first column gives the probability that no false positives are found, the second column gives the probability that one false positive is found, etc
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is nearly optimal in most cases. We are unaware of any
method that can recover more of the predictive power
than ours using similar sample size and computational
resources.
Performance would be even better if sample sizes larger

than n∗ (which was somewhat arbitrarily defined) were
available. Typically, n∗ ∼ 100× sparsity, where sparsity s
is the number of loci identified by Step 1 (i.e., dimension-
ality of the identified causal subspace). A lower value of
n∗/smight be sufficient if we were to tune the penalization
parameter λ more carefully. In a realistic setting, one can
continue to improve the best fit nonlinear model as more
data becomes available, eventually recovering almost all of
the genetic variance.
Finally, we note that our method can be applied to

problems in which the entries in g are continuous rather
than discrete. (For example, compressed sensing is often
applied to image reconstruction from scattered light
intensities. These intensities are continuously valued and
not discrete. It seems possible that the scattering medium
might introduce nonlinearities, thereby making our meth-
ods of interest.) In fact, discrete values make model zeros
more likely than in the continuous case. In Fig. 8, we dis-
play the results for a PS model with {s = 3, s′ = 2}
and matrix entries generated from continuous probability
distributions. Recovery of nonlinear variance is generally
better than in the discrete case, and the fraction of zeros
is smaller.

Methods
Consider the most general model which includes gene-
gene interactions (we include explicit indices for clarity;
1 ≤ a ≤ n labels individuals and 1 ≤ i, j ≤ p label genomic
loci)

ya =
∑
i
gai zi +

∑
ij

gai Zij gaj + εa, (7)

where g is an n × p dimensional matrix of genomes, z is
a vector of linear effects, Z is a matrix of nonlinear inter-
actions, and ε is a random error term. We could include
higher order (i.e., gene-gene-gene) interactions if desired.
Suppose that we apply conventional CS to data gener-

ated from the model above. This is equivalent to finding
the best-fit linear approximation

ya ≈
∑
i
gai xi . (8)

If enough data (roughly speaking, n >> s log p, where s is
the sparsity of x) is available, the procedure will produce
the best-fit hyperplane approximating the original data.
It seems plausible that the support of x, i.e., the sub-

space defined by nonzero components of x, will coincide
with the subset of loci which have nonzero effect in either
z or Z of the original model. That is, if the phenotype

is affected by a change in a particular locus in the orig-
inal model (either through a linear effect z or through a
nonlinear interaction in Z), then CS will assign a nonzero
effect to that locus in the best-fit linear model (i.e., in x).
As we noted in the Analysis section, this hypothesis is
largely correct: the support of x tends to coincide with
the support of (z,Z) except in some special cases where
nonlinearity masks the role of a particular locus.
Is it possible to do better than the best-fit linear effects

vector x? How hard is it to reconstruct both z and Z of the
original nonlinear model? This is an interesting problem
both for genomics (in which, even if the additive vari-
ance dominates, there is likely to be residual non-additive
variance) and other nonlinear physical systems.
It is worth noting that although (7) is a nonlinear func-

tion of g – i.e., it allows for epistasis, gene-gene inter-
actions, etc. – the phenotype y is nevertheless a linear
function of the parameters z and Z. One could in fact
re-express (7) as

ya =
∑
i
Ga
i (g)Xi + εa (9)

where X is a vector of effects (to be extracted) and G
the most general nonlinear function of g over the s-
dimensional subspace selected by the first application of
CS resulting in (8). Working at, e.g., order g2, X would
have dimensionality s(s−1)/2+2s, enough to describe all
possible linear and quadratic terms in (7).
Given the random nature of g, it is very likely that G will

also be a well-conditioned CS matrix (we verify empir-
ically that that this is the case). Potentially, the number
of nonzero components of X could be ∼ sk at order gk .
However, if the matrix Z has a sparse or block-diagonal
structure (i.e., individual loci only interact with some lim-
ited number of other genes, not all s loci of nonzero effect;
this seems more likely than the most general possible Z),
then the sparsity ofX is of order a constant k times s. Thus,
extracting the full nonlinearmodel is only somewhatmore
difficult than the Z = 0 case. Indeed, the data threshold
necessary to extract X scales as ∼ ks log(s(s − 1)/2 + 2s),
which is less than s log p as long as k log(s(s−1)/2+2s) <

log p.
The process for extracting X, which is equivalent to

fitting the full nonlinear model in (7), is as follows:

Step 1. Run CS on (y, g) data, using linear model (8).
Determine support of x: subset defined by s
loci of nonzero effect.

Step 2. Compute G(g) over this subspace. Run CS on
y = G(g) · X model to extract nonzero
components of X. These can be translated
back into the linear and nonlinear effects of
the original model (i.e., nonzero components
of z and Z).
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In the Analysis section we show that inmany cases Steps
1 and 2 lead to very good reconstruction of the original
model (7) given enough data n. A number of related issues
are discussed:

a. When can nonlinear effects hide causal loci from
linear regression (Step 1)? In cases of this sort the
locus in question would not be discovered by
GWAS using linear methods.

b. Both matrices g and G(g) seem to be
well-conditioned CS matrices. The expected phase
transitions in algorithm performance are observed
for both Steps.

c. For a given partition of variance between linear (L),
nonlinear (NL) and IID error ε, how much data n�

is required before complete selection of causal
variants occurs (i.e., crossing of the phase boundary
for algorithm performance)? Typically if Step 1 is
successful then with the same amount of data Step
2 will also succeed.

LASSO optimization
The L1 penalization (e.g., LASSO) involves minimization
of an objective function O over candidate vectors x̂:

O = ||y − Ax̂||L2 + λ||x̂||L1, (10)

where λ is the penalization parameter. SinceO is convex, a
local minimum is also a global minimum. The minimiza-
tion is performed using pathwise coordinate descent [28,
29]— optimizing one parameter (coordinate), x̂j, at a time.
This results in a modest computational complexity for the
algorithm as a whole.
The solution of each sub-sequence involves a shrinkage

operator S [6]:

S(x̂j, λ) =
⎧⎨
⎩
x̂j − λ, if x̂j > 0 and x̂j > λ;
x̂j + λ, if x̂j < 0 and |x̂j| > λ;
0, if |x̂j| ≤ λ,

(11)

where j = 1, 2, . . . , p. The penalization parameter λ is
estimated according to the following two part procedure.
We first choose λ as the noise variance. Then after run-
ning CS, we obtain the nonlinear variance defined in Eq.
(5). The ultimate λ used in the simulations is taken to be
the sum of the noise variance and the nonlinear variance.
In a realistic setting one could set λ using an estimate of
the additive heritability of the phenotype in question (e.g.,
obtained via twin or adoption study, or GCTA [26, 27]).
A smaller penalization might be sufficient, and allow the
phase boundary to be reached with somewhat less data.
We assume convergence of the algorithm if the fractional
change in O between two consecutive sub-sequences is
less than 10−4. Note that in the case of real genomes
we found that slightly increasing λ beyond the values
described above yielded somewhat better results.
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