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1  | INTRODUC TION

MicroRNA (miRNA) are endogenous small non–coding RNA mole-
cules that have been recognized as key players in carcinogenesis, cell 
proliferation, differentiation and migration.1 For the last ten years, 
microRNA have attracted attention because of their functions as 

predictive and prognostic markers and their potential as a therapeu-
tic agent.2,3

MicroRNA function as post–transcriptional regulators by bind-
ing to the 3′UTR of the target mRNA, whereby they repress protein 
expression.4 Each microRNA targets multiple genes or pathways 
to regulate at the post–transcriptional levels. Consequently, cer-
tain miRNA associate with the tumorigenesis of most cancers and 
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Abstract
Rat sarcoma (RAS) is a well-known oncogene that plays important roles in cancer pro-
liferation, cell survival and cell invasion. RAS exists as three major isoforms, Kirsten 
rat sarcoma (KRAS), Harvey rat sarcoma (HRAS) and neuroblastoma rat sarcoma 
(NRAS). Mutations of these genes account for approximately 30% of all cancers. 
Among them, KRAS mutations are the most common, responsible for 85%, followed 
by NRAS (12%) and HRAS (3%). Although the development of RAS inhibitors has 
been explored for over the past decade, so far, no effective inhibitor has been found. 
MicroRNA (miRNA) are a class of small non–coding RNA that control the gene ex-
pression of pleural target genes at the post–transcriptional level. MiRNA play criti-
cal roles in the physiological and pathological processes at work in cancers, such as 
cell proliferation, cell death, cell invasion and metastasis. MicroRNA-143 (MIR143) is 
known to function as a tumor suppressor in a variety of cancers. One of its known 
mechanisms is suppression of RAS expression and its effector signaling pathways, 
such as PI3K/AKT and MAPK/ERK. Within the last five years, we developed a po-
tent chemically modified MIR143-3p that enabled us to elucidate the details of the 
KRAS signaling networks at play in colon and other cancer cells. In this review, we 
will discuss the role of MIR143-3p in those RAS signaling networks that are related to 
various biological processes of cancer cells. In addition, we will discuss the possibil-
ity of the use of MIR143 as a therapeutic drug for targeting RAS signaling networks.
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regulate the biological processes, such as cell proliferation, metasta-
sis and cell death in cancer cells.5

MicroRNA that suppress the tumor suppressor gene promote can-
cer progression and are called onco-miR.6,7 In contrast, miRNA that 
inhibit the oncogenes are called tumor suppressor miRNA. MIR143-3p 
is one of the best known of the tumor suppressor miRNA. It is down-
regulated in various human cancers, such as breast cancer,8 gastric 
cancer (GC),9 colorectal cancer,10 bladder cancer11 and renal cell 
cancer.12 From previous studies, we learned that MIR143-3p func-
tions as a tumor suppressor by modulating rat sarcoma (RAS) signal-
ing networks, which are critical for cell proliferation, cell growth and 
apoptosis.

In this review, we discuss the roles of MIR143, mainly MIR143-3p, 
in RAS signaling networks in various cancers and its potential as a 
therapeutic agent.

2  | FUNC TIONS OF MIR143

MIR143 is located at chromosome 5q32 and the expression 
of MIR143 is regulated by p53 protein and hypoxia inducible 
factor-1α (HIF-1α).13 MIR143 is co–transcribed with MIR145 in 
the same primary miRNA, and is thereby downregulated in the 
same fashion in various kinds of cancers.14 MIR143-3p (the guide 
strand) and MIR143-5p (the passenger strand) are the two iso-
forms of MIR143, with MIR143-3p being a common isoform in 
normal tissues. In normal cells, it is highly expressed in mesenchy-
mal cells, such as fibroblasts and smooth muscle cells.15 Despite 
the existence of a few reports regarding the suppressive function 
of MIR143-5p, knowledge on the function of MIR143-5p remains 
limited.16

3  | THE A SSOCIATION OF R A S SIGNALING 
NET WORKS WITH C ANCER AND 
MICRORNA REGUL ATING R AT SARCOMA

The RAS gene is one of the best understood of the oncogenes. Its 
main function is to transduce diverse signals from the cell membrane 
to the downstream effector signaling pathways related to the prolif-
eration of cancer cells.17

Rat sarcoma occurs in activated and inactivated forms. RAS is 
inactivated when coupled with GDP, and is activated when it bound 
to GTP by guanine nucleotide exchange factors (GEF; Figure 1). 
In contrast, the activated RAS becomes inactivated by GTPase-
activating proteins (GAP).18 Continuous activation of RAS is mainly 
caused by gene mutations. Amplification and overexpression of 
RAS or upregulated stimulation from tyrosine kinase receptors 
such as EGFR and HER2 result in the continuous activation of RAS 
in cancer cells.19,20 This dysregulation results in the stimulation 
of its effectors, MAPK/ERK, PI3K/AKT and RalGEF/RAL signal-
ing pathways, which are the crucial pathways for tumorigenesis, 
cell proliferation, survival of cancer cells, differentiation and cell 
invasion.21,22

Rat sarcoma is categorized into three major isoforms: Kirsten 
rat sarcoma (KRAS), Harvey rat sarcoma (HRAS) and neuroblastoma 
rat sarcoma (NRAS). KRAS is further sub-classified into KRAS 4A 
and KRAS 4B.23 Dysregulation of these RAS isoforms leads to the 
aberrant activation of downstream effector signaling pathways in 
various cancers, and their mutation rates found in human cancers 
differ among these isoforms. Approximately 98% of RAS mutations 
are observed at codons 12, 13 or 61. The frequency of mutation site 
differs by tumor type. KRAS mutations are most observed at codon 
12 (72.4%-83%), whereas NRAS most frequently harbors a mutation 

F I G U R E  1   Signaling pathways of rat 
sarcoma (RAS) in cancer. RAS transduces 
various stimulations from the cell surface 
to effector signaling pathways, such as 
PI3K/AKT, MAPK and Ral/GEF pathways
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at codon 61 (63%-68.5%).24,25 Mutations of these isoform genes are 
observed in approximately 30% of human cancers; and in those can-
cers, KRAS is the most frequently altered, accounting for 63%-85%, 
followed by 12%-25% for NRAS and 3%-12% for HRAS.25,26

There are several microRNA that regulate RAS expression. In 
2005, MIRLET7 became the first tumor suppressive miRNA re-
ported to downregulate RAS expression in lung tumors.27 Later, 
numerous other miRNA were discovered to target RAS or its ef-
fector molecules in numerous cancers.28 There are several miRNA 
reported to target KRAS other than MIRLET7.29 MIR96, MIR126 
and MIR206 were downregulated in pancreatic cancer and func-
tioned as tumor suppressors.30-32 Regarding gastrointestinal can-
cers, MIR27A targets KRAS in esophageal cancer,33 MIR181C 34 and 
MIR433 35 target KRAS in GC, and MIR30B targets KRAS in col-
orectal cancer.36 For breast cancer, MIR30C and MIR200C target 
KRAS and exhibit anti–tumor effects.37,38 MIR200C functions as a 
tumor suppressor in lung cancer by negatively regulating KRAS ex-
pression.38 However, these miRNA do not decrease the expression 
levels of KRAS-related SOS1, AKT and ERK, as they are silenced 
MIR143-3p. Importantly, p53 functions as a transcription factor 
of MIR143.39 Thus, MIR143-3p could be a major miRNA against 
RAS networks because of its contribution to the p53/MIR143/RAS 
cascade.

4  | THE ROLE OF MIR143-3P ON R AT 
SARCOMA SIGNALING NET WORKS IN 
VARIOUS C ANCERS

Regarding RAS signaling networks, MIR143-3p exerts its anti–
tumor effects in various human cancers by targeting RAS and its 
effector signaling genes, such as AKT and ERK 12,40-42 (Figure 2, 

Table 1). MAPK/ERK pathways and PI3K/AKT pathways are criti-
cal pathways for the survival and proliferation of cancer cells. 
Therefore, the regulation of these pathways is a very important 
strategy for treating RAS-mutant cancers. Therefore, in this 
section, we introduce the role of MIR143-3p on RAS signaling 
networks.

4.1 | Pancreatic cancer

Pancreatic cancer (PC) is very aggressive cancer with a poor prog-
nosis, and, as mentioned above, a KRAS mutation is frequently ob-
served in PC.41,43 The downregulation of MIR143-3p results in the 
activation of KRAS signaling networks, which implies an association 
between MIR143-3p and RAS in PC cells.41 Hu et al showed that the 
ectopic expression of MIR143 reduces the expression level of KRAS 
in PC cell lines and, consequently, inhibits the cell invasion, migration 
and metastasis.44 They demonstrated that the inhibition of KRAS 
led to the low activity of RhoA, which is associated with tumor mi-
gration and invasion. Hu et al also demonstrated the anti–tumor ef-
fect of MIR143-3p in a xenograft tumor model of PC cancer cells.44 
Kent et al45 showed that a KRAS mutation in PC cells suppresses 
the expression levels of MIR143/145 through the inhibition of Ras-
responsive element-binding protein (RREB1).

4.2 | Gastrointestinal cancer

Colorectal cancer is one of the four major causes of cancer death.46 
The growth-suppressive effect of MIR143-3p in colorectal can-
cer cells by targeting KRAS was first reported in 2009.47 Chen 
et al47 demonstrated that MIR143-3p inhibits colorectal cancer 

F I G U R E  2   The suppressive role of 
MIR143-3p in rat sarcoma (RAS) signaling 
pathway. MIR143-3p targets RAS, AKT, 
ERK and Musashi2 and exhibits synergic 
effect with EGFR inhibitor. In addition, the 
schema demonstrates “positive circuit” of 
KRAS expression
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cell proliferation in vitro and in vivo by silencing KRAS expression. 
They validated the growth-suppressive function of MIR143-3p by 
silencing KRAS, which led to the stimulation of cell proliferation. In 
addition, they found that the downregulation of KRAS led to the in-
hibition of phosphorylation of ERK1/2 in colorectal cancer cells. Luo 
et al48 reported that restoration of MIR143-3p expression through 
use of an MIR143-3p-bearing vector demonstrated an anti–tumor 
effect in colorectal cancer cell lines. Pagliuca reported that overex-
pression of MIR143-3p and MIR145 reduces tumor growth both in 
vitro and in vivo and that the anti–tumor effect was mediated by 
profound inactivation of the MAPK/ERK signaling pathway.49

MIR143 is also associated with the chemosensitivity of colon 
cancer cells. Fei et al50 revealed that transfection with MIR143-3p 
increases the sensitivity to paclitaxel in a KRAS mutant cell line. We 

reported the synergistic effect of MIR143-3p with an epidermal 
growth factor receptor (EGFR) inhibitor, cetuximab, in KRAS mutant 
colon cancer cells; it was demonstrated that MIR143-3p systemat-
ically suppresses KRAS signaling networks, including MAPK/ERK 
and PI3K/AKT, and synergizes with cetuximab for growth inhibition 
both in vitro and in vivo.42 In agreement, Gomes et al51 reported that 
ectopic expression of MIR143-3p and MIR-145 increases the sensi-
tivity to cetuximab in both KRAS wild-type and KRAS mutant colon 
cancer cells. They demonstrated that MIR143-3p exhibits its anti–
tumor effect through cetuximab-mediated antibody-dependent cel-
lular cytotoxicity in colon cancer cells. 

Recently, we found that the expression level of MIR143-3p is also 
downregulated in HER2-positive GC cells and that ectopic expression 
of MIR143 induced cell growth suppression in those cells.52 In that 

TA B L E  1   The functions of MIR143 in variety types of cancers

Types of cancer Target genes Functions Reference
Genomic location of miRNA-
target interaction

Pancreatic cancer KRAS Inhibition of cell invasion and migration 44 <Genomic location of 
MIR143a >

chromosome 
5:149428918-149429023

<Location of target 
interaction>

KRAS 3′UTR: 109-115
RREB1 3′UTR: 1528-1534
AKT 3′UTR: 1029-1035
ERK (MAPK1) 3′UTR: 

1059-1065
SOS1 3′UTR: 3438-3444
ERK5 3′UTR: 120-127
NRAS 3′UTR: 3080-3086

KRAS, RREB1 Inhibition of tumor growth through Ras-responsive 
element-binding protein (RREB1)

45

Colorectal cancer KRAS Inhibition of cancer cell growth 47

KRAS Inhibition of cancer cell proliferation 48

KRAS Inhibition of tumor growth 49

KRAS Inhibition of cell growth and enhancement of 
sensitivity to cetuximab

42

KRAS Increasing the sensitivity to paclitaxel 50

KRAS Enhancement of sensitivity to cetuximab and 
antibody-dependent cellular cytotoxicity (ADCC)

51

Gastric cancer KRAS Inhibition of tumor growth. Downregulation of 
expression levels of HER2

52

Lung cancer KRAS Suppression of cancer progression through TGF-β 40

EGFR, AKT, ERK Inhibition of cell proliferation 53

Renal cell carcinoma KRAS Suppression of tumor growth 12

Bladder cancer KRAS, SOS1, 
AKT, ERK

Inhibition of tumor growth 54

AKT,ERK Inhibition of cell growth 11

KRAS Inhibition of cell growth. Negative regulation of 
Musashi-2

55

Prostate cancer KRAS Enhancement of chemosensitivity to docetaxel 56

Laryngeal squamous 
cell carcinoma

KRAS Inhibition of tumor growth 57

Nasopharyngeal 
cancer

KRAS Suppression of cell growth 58

Cervical cancer ERK5 The inhibition of cell proliferation 59

Breast cancer KRAS Inhibition of cell invasion and metastasis 61

ERK5 Inhibition of epithelial mesenchymal transition 
(EMT)

8

AKT Inhibition of cell proliferation 62

Endometrial cancer MAPK1 (ERK) Inhibition of cell invasion and cell migration 63

Brain tumor NRAS Suppression of tumor growth. Increasing 
chemosensitivity to temozolomide

65

aGenomic location of MIR143 was presented according to Ensemble Release 98 (September 2019). 
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same study we demonstrated that MIR143-3p targets KRAS effector 
signaling genes such as KRAS, AKT and ERK, leading to suppression 
of GC cell growth, and clarified that MIR143-3p indirectly silences 
human epidermal growth factor receptor 2 (HER2), resulting in sup-
pression of KRAS activation and its effector signaling pathways.52

4.3 | Lung cancer

Lung cancer is the leading cause of cancer-related deaths in both 
males and females worldwide.46 Chen et al identified the suppres-
sive effect of MIR143-3p in non–small cell lung cancer cell progres-
sion. They also demonstrated that MIR143 expression is modulated 
by TGF-β and that MIR143-3p suppresses lung cancer progression 
through the silencing of KRAS.40 EGFR is highly expressed in over 
60% of non–small cell lung cancers (NSCLC), implying that EGFR, 
RAS, MAPK and PI3K/AKT signaling pathways are potential ther-
apeutic targets for NSCLC.53 Dong and Hu demonstrated the cell 
growth suppression of exogenous MIR143 through the downregu-
lation of the expression levels of EGFR, AKT and ERK1/2 and the 
phosphorylation of EGFR, AKT and ERK1/2 in NSCLC in vitro. They 
also found that the overexpression of MIR143 resulted in the promo-
tion of the apoptosis of lung cancer cells.53

4.4 | Urinary system cancer

We demonstrated that MIR143-3p silences KRAS and its effector 
molecules, such as AKT and ERK, in renal cell carcinoma and bladder 
cancer cells both in vitro and in vivo.12 Yoshikawa et al demonstrated 
that the ectopic expression of MIR143 led to the downregulation 
of the expression levels of SOS1, which switches inactivated RAS 
to the activated RAS, KRAS, AKT and ERK.54 Noguchi et al dem-
onstrated the combination therapy with the ectopic expression of 
MIR143 and MIR145 showed the synergistic inhibition of bladder 
cancer cells through modulating PI3K/AKT and MAPK signaling 
pathways.11 Recently, we discovered that MIR143-3p negatively 
regulated the KRAS/Musashi-2 cascade and, consequently, sup-
pressed the cell growth in bladder cancer through downregulation 
of the KRAS protein expression level at the translational step.55 Xu 
et al56 demonstrated that MIR143 overexpression inhibits KRAS ex-
pression and its effector MAPK/ERK signaling pathway, which re-
sults in enhanced chemosensitivity to docetaxel in prostate cancer.

4.5 | Head and neck cancer

Zhang et al57 reported that MIR143-3p exhibits an anti–tumor ef-
fect on laryngeal squamous cell carcinoma, the most frequent 
cancer of the head and neck cancers, by targeting KRAS and its ef-
fector MAPK/ERK signaling pathway. In addition, Xu’s group dem-
onstrated that the MIR143 overexpression inhibits the cell growth 
of nasopharyngeal cancer both in vitro and in vivo.58 Zheng et al 

demonstrated that the overexpression of MIR143 suppressed the 
cell proliferation of cervical cancer cells in vitro.59 They found that 
MIR143-3p negatively regulated ERK5 expression, which led to the 
suppression of cervical cancer cell lines.

4.6 | Breast cancer

Even though KRAS mutations are detected in <5% of breast cancer 
patients, the mutation rate is reported to be 10%-12% in the case 
of metastatic breast cancer.60 The ectopic expression of MIR143 
inhibits cell growth and cell invasion by silencing KRAS and the epi-
thelial–mesenchymal transition, which is one of the key processes 
involved in metastasis.61 The MAPK/ERK signaling pathway, which 
is the effector signaling pathway of RAS, plays a critical role in me-
tastasis as well as cell proliferation. ERK5 is the essential molecule 
for the activation of MAPK/ERK signaling pathways.8 MIR143-3p 
strongly suppressed the function of ERK5, which modulated a key 
molecule for EMT, and, consequently, led to the inhibition of metas-
tasis in breast cancer.8 Garcia Vazquez et al reported that ectopic 
restoration of MIR143 inhibited cell proliferation through targeting 
AKT and its phosphorylation in breast cancer cells.62

4.7 | Female genital system tumors

As mentioned above, the MAPK/ERK signaling pathway is a key 
signaling pathway of RAS networks, which play a role in metastasis. 
In endometrial cancer (EC), the downregulation of MAPK1 was ob-
served with the ectopic expression of MIR143 and the suppression 
of invasion and migration was observed.63

4.8 | Brain tumor

Glioma is an aggressive type of brain tumor with a poor prognosis.64 
Wang et al65 demonstrated that the overexpression of MIR143 in-
hibits the tumor growth of glioma in vitro and in vivo through si-
lencing NRAS. In addition, they demonstrated that the restoration 
of MIR143 enhances the chemosensitivity to temozolomide, which 
is the standard initial drug for the treatment of glioma.65

5  | FUTURE PERSPEC TIVES:  CM-MIR143-
3P A S A C ANDIDATE OF THER APEUTIC 
AGENTS THAT TARGET R AT SARCOMA 
SIGNALING NET WORKS

The aberrant activation of PI3K/AKT and MAPK/ERK signal-
ing pathways is often seen in many kinds of cancers, and many 
therapeutic agents targeting molecules related to these pathways 
have been developed.66,67 The regulation of these pathways is a 
very important strategy for treating RAS-mutant cancers. In fact, 
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numerous inhibitors targeting these pathways have been clini-
cally evaluated. For instance, for the MAPK pathway, the inhibi-
tors for RAF, MEK and ERK have been clinically evaluated, as well 
as the inhibitors for the PI3K/AKT pathway.26,68 However, the 
challenge of suppressing RAS-driven cancers remains. Global sup-
pression of these signaling pathways is crucial for a durable ef-
fect on cancers, because inhibition of only a single pathway will 
result in resistance to the agent through activation of alterna-
tive signaling pathways. For instance, a PI3K inhibitor will cause 
the upregulation of HER2 or HER3, which induces the upregula-
tion of the MAPK signaling pathway in breast cancer.69,70 In ad-
dition, a MEK inhibitor will lead to the upregulation of the PI3K/
AKT pathway in colorectal cancer.71 For these reasons, another 
strategy to attack RAS-driven cancers is necessary. One potential 
approach is to downregulate KRAS expression with small interfer-
ing RNA or miRNA. Numerous microRNA, such as MIRLET7 and 
MIR200C, have been reported in preclinical models to function as 
tumor suppressors in various types of cancer.27,38 However, these 
miRNA cannot possess the function to suppress KRAS networks 
systematically. Therefore, we developed and reported on a chemi-
cally modified MIR143-3p (CM-MIR143-3p). We developed more 
than 120 different MIR143 derivatives for two main reasons. The 
first reason is to make MIR143 RNase resistant. The other reason 
is to enhance the ability to bind the target genes of MIR143 and 
the ability to suppress the translation of those genes. Among the 
derivatives, CM-MIR143-3p, which is chemically modified only in 
the passenger strand (Figure 3), showed strikingly potent anti–pro-
liferative activity. The CM-MIR143-3p systemically inhibits the 
KRAS signaling networks, which include RAS-MAPK and PI3K-
AKT effector signaling pathways, by silencing KRAS, SOS1, AKT 
and ERK both in vitro and in vivo in colon cancer cells.42 In the 
same study, we further demonstrated the synergistic effect of an 
EGFR inhibitor and CM-MIR143-3p in KRAS mutant cells.51 In line 
with this result, Gomes et al51 reported that MIR143 increases the 
sensitivity to cetuximab in both KRAS wild-type and KRAS mutant 
colon cancer cells. These results suggest the potential combina-
tional therapy of MIR143 and EGFR inhibitors. Other than colo-
rectal cancer, MIR143-3p displayed tumor suppressor effects on 
various types of cancers, such as PC, head and neck cancers, lung 
cancers and breast cancers.45,53,58,62 Our group also found that 
CM-MIR143-3p exerts efficient suppression of KRAS networks in 
renal cell cancer 12 and bladder cancer 54 by systematically sup-
pressing the KRAS networks, including PI3K/AKT and MAPK/
ERK pathways. Importantly, we demonstrated that the silencing of 
KRAS alone induces a “positive circuit” of KRAS expression; that is, 

the downregulation of KRAS is transient, finally leading to re–up-
regulation of KRAS expression, because KRAS is one of the target 
genes of each KRAS effector signaling pathway (Figure 2). Thus, 
CM-MIR143-3p enabled us to understand the detailed networks 
and KRAS positive circuit in KRAS-driven colon cancers.

Despite the remarkable effects of CM-MIR143-3p, there is a lim-
itation to its use as a therapeutic agent in clinical practice. The main 
issue is the mode of its delivery to the target organs. A stable mode 
of delivery of miRNA is essential, because miRNA is degraded by RNA 
nuclease, which exists in abundance throughout the circulation. Thus, 
virus and non–virus methods are being developed as delivery vehicles. 
Retrovirus, adenovirus, adeno-associated virus and herpes virus have 
been used as vectors for overexpressing or suppressing miRNA.72 
Non–viral delivery vehicles that are positively charged form a complex 
with the negatively charged miRNA or other nucleic acids.73

6  | CONCLUSION

In this review, we discussed the anti–cancer effects of MIR143-3p 
on different types of cancers, with suppression realized by target-
ing the genes related to RAS signaling networks. Recent translational 
research has revealed the importance of suppressing multiple signal-
ing pathways to treat cancers. Our CM-MIR143-3p has enabled us to 
understand the detailed signaling networks of KRAS and related sign-
aling cascades. Given the critical effects of CM-MIR143-3p in sup-
pressing the expression of both RAS and its effector signaling genes, 
we cannot help but speculate that CM-MIR143-3p efficiently func-
tions as a therapeutic agent to impair the KRAS signaling networks.
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