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Simple Summary: Tumor cells are highly resistant to oxidative stress, but beyond a certain threshold,
it may lead to apoptosis/necrosis. Thus, induced loss of redox balance can be a strategy used in
anticancer therapies. However, the effectiveness of drugs contrasts with unknown mechanisms
involved in the loss of fertility. Considering that cancer patients’ life expectancy is increasing, it raises
concerns about the unknown adverse effects. Therefore, new strategies should be pursued alongside
explaining to the patients their options regarding the reproduction side effects.

Abstract: Tumor cells are highly resistant to oxidative stress resulting from the imbalance between
high reactive oxygen species (ROS) production and insufficient antioxidant defenses. However, when
intracellular levels of ROS rise beyond a certain threshold, largely above cancer cells’ capacity to
reduce it, they may ultimately lead to apoptosis or necrosis. This is, in fact, one of the molecular
mechanisms of anticancer drugs, as most chemotherapeutic treatments alter redox homeostasis by
further elevation of intracellular ROS levels or inhibition of antioxidant pathways. In traditional
chemotherapy, it is widely accepted that most therapeutic effects are due to ROS-mediated cell dam-
age, but in targeted therapies, ROS-mediated effects are mostly unknown and data are still emerging.
The increasing effectiveness of anticancer treatments has raised new challenges, especially in the field
of reproduction. With cancer patients’ life expectancy increasing, many aiming to become parents
will be confronted with the adverse effects of treatments. Consequently, concerns about the impact of
anticancer therapies on reproductive capacity are of particular interest. In this review, we begin with
a short introduction on anticancer therapies, then address ROS physiological/pathophysiological
roles in both male and female reproductive systems, and finish with ROS-mediated adverse effects of
anticancer treatments in reproduction.
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1. Introduction

Surgery and radiotherapy are commonly used in patients with local and non-metastatic
cancer, as they are still the most effective. However, they are very inefficient when cancer is
spread throughout the body. In this case, chemotherapeutic drugs or biological agents are
among the first-line choice therapies, since they are capable of reaching all organs of the
body, through the bloodstream [1].

Chemotherapeutic drugs act primarily by inhibiting the high proliferation rate of
cancer cells. One of the molecular mechanisms by which these drugs act is by increasing
intracellular levels of reactive oxygen species (ROS) [2] largely beyond cancer cells’ capacity
to reduce it, leading to apoptosis or tissue necrosis [3], this has also been observed in the
treatment of reproductive cancer [4–6]. Treatment-associated excess ROS production in
healthy tissues can be the root of cell toxicity observed during chemotherapy treatment,
such as anthracycline-mediated cardiotoxicity, and nephrotoxicity triggered by platinum-
based compounds [7,8]. Additionally, undesirable side effects on fast renewing cells of
the body, such as hair follicles, bone marrow, and gastrointestinal tract cells [1] are also
frequently observed.

Biological agents, on the other hand, are more selective molecules that block specific
transduction pathways or proteins that are overexpressed/mutated in cancer. The use of
biologicals minimizes loss of viability of normal cells and avoids undesirable chemotherapy-
associated side effects [1,9].

Although targeted therapies were promised to be magic bullets with single targets, the
accumulated information obtained through their clinical use has shown side effects of such
therapies [10–12] and wider mechanisms of action, including ROS-mediated ones [13–15].

The increasing effectiveness of anticancer treatments has raised new challenges, espe-
cially in the field of reproduction. As the life expectancy of cancer patients has been highly
increased, patients who suffered from cancer in their youth will aim to become parents
in adulthood and many will be confronted with fertility issues related to side effects of
anticancer therapies. In parallel, patients that are living with cancer as a chronic illness
through effective therapy may also be faced with this same issue. Therefore, concerns
regarding the adverse effects of anticancer therapies on fertility have increased and are of
particular interest, namely those impairing the adequate state of gonads and normal sexual
functions. As male and female reproductive system(s) and associated gametogenesis, sper-
matogenesis, and oogenesis, respectively, show a wide range of differences, it is expected to
find specific gonadal toxicity for each gender [16–20]. Male fertility dysfunction associated
with anticancer therapies can occur by direct gonadotoxic effects and/or disruption of
the hypothalamic–pituitary axis, the latest resulting in impaired libido, erection, sperm
production, and ejaculation [21]. In females, anticancer drugs can have a direct toxic effect
in the ovary and the uterus and cause dysregulation of the hypothalamic-pituitary axis.
This may lead to a loss of libido, abnormal follicle development, and impairment of ovarian
and uterine function [22,23]. Therefore, in individuals of child-bearing ages, it is necessary
to inform them about the possible side-effects on fertility and available fertility preser-
vation options. Post-treatment inability or difficulty to achieve pregnancy is a possible
outcome. In fact, chemotherapeutic agents induce numeric or structural chromosomal
abnormalities in the germline that, consequently, may impair reproduction by interfering
with embryonic development, increasing miscarriages, or transmitting genetic anomalies
to offspring [24–27].

Studies have reviewed the cytotoxic effects of chemotherapeutic drugs [16,18,21,23,24,28–40],
and, to a lesser extent, target therapies [18,28,32,33] on fertility. However, the mechanisms
by which they impair fertility are still largely unexplored. This knowledge will be impor-
tant to define strategies to prevent or attenuate the impact of cancer therapies upon fertility.
Thereby, in this review, we address the knowledge on the effects of anticancer treatments
(traditional chemotherapy and targeted agents) on fertility, with a special focus on ROS
physiological and pathological roles.
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2. Oxidative Stress and Fertility
2.1. Reactive Oxygen Species and Oxidative Stress

ROS are reactive molecules that contain oxygen atoms and are subdivided into free
radicals and non-radical oxidants [41]. ROS reactivity, half-lives, and diffusion capacity are
widely variable [42–44]. ROS can be generated endogenously by mitochondrial respiratory
chain enzymes, nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase),
microsomal cytochrome P450, or by xanthine oxidase [45]. Beyond endogenous sources,
ROS can also have exogenous sources, including ultraviolet radiation, X- and gamma-rays,
ultrasound, pesticides, herbicides, and xenobiotics [45].

To cope with the continued production of ROS, cells have developed antioxidant
mechanisms that delay or prevent oxidation from happening. In cells, excess ROS are
quenched by enzymatic antioxidants such as superoxide dismutase (SOD), catalase (Cat),
and glutathione peroxidase (GPx) [46], or nonenzymatic antioxidants such as vitamins
A, C, and E, glutathione, and plant polyphenols. Additionally, minerals such as zinc and
selenium can have indirect antioxidant effects by acting as cofactors of antioxidant enzymes
and other proteins that modulate cellular redox balance [47].

ROS are normal products of cell metabolism with known physiological roles. Even in
small amounts, ROS are able to regulate a wide spectrum of signaling pathways, such as
the mitogen-activated protein kinase (MAPK), Janus kinase (JAK)/signal transducer and
activator of transcription proteins (STATs), and phosphoinositide 3-kinase (PI3K)/protein
kinase B (Akt) pathways [48]. They regulate these pathways by modifying the activity
of structural proteins, transcription factors, membrane receptors, ion channels, and pro-
tein kinases/phosphatases [49]. The MAPK cascade, composed of at least three MAPKs,
extracellular signal-regulated kinase (ERK), Janus kinase (JNK/SAPK), and p38 MAPK,
plays important roles in cellular processes such as proliferation, differentiation, develop-
ment, transformation, and apoptosis [50]. The JAK/STAT pathway is used to transduce a
multitude of signals. Its activation stimulates cell proliferation, differentiation, migration,
and apoptosis [51]. PI3K activation affects several cell events like growth, cell cycle entry,
migration, and survival [52] (Figure 1).
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Figure 1. ROS-mediated activation of cell signaling pathways. Major sites of reactive oxygen
species (ROS) production in cells, enzymes responsible for ROS production at each of the cellular
compartments, and principal signaling pathways activated.

Despite ROS having a physiological function, when redox homeostasis is disturbed,
due to an imbalance between their production and neutralization, a new state referred to as
oxidative stress (OS) may arise. Cells have a graded response to OS. Minor or moderated
changes allow cells to adapt and restore redox homeostasis while violent perturbations
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impair redox signaling, promote biomolecule modifications, and may even induce cell
death [53,54].

2.2. Reactive Oxygen Species, Oxidative Stress, and Male (In)Fertility

Spermatogenesis lasts about 70 days, the time needed for the germ stem cell (spermato-
gonial stem cells) to give rise to the spermatozoon (about 70 million sperm daily), going
through mitotic and meiotic divisions [55]. Spermatogonia, the precursors of all germ cell
types, are located or “resting” on the basal lamina (a modified form of extracellular matrix
(ECM) constituted by collagen and myoid cell layers). Basal lamina plays a significant
role in spermatogenesis. It behaves as a physical support to the seminiferous epithelium,
provides selected access of molecules to the seminiferous epithelium, and enables the
crosstalk between the seminiferous epithelium, myoid cells, and interstitial cells, such
as Leydig cells [56]. Spermatogonia present a continuous self-renewing capacity and are
responsible for making a balance between germ and Sertoli cells [57].

Spermatogonia A dark (SGAd) divides into spermatogonia A pale (SGAp) and SGAd
thus, maintaining the stem cell pool. SGAp then divides to give origin to spermatogonia B
and these to pre-leptotene spermatocytes. Pre-leptotene spermatocytes (primary spermato-
cytes) now enter meiosis and progressively turn into zygotene spermatocytes, and then
into pachytene spermatocytes [58]. At this stage, the cell attains the biggest volume and
starts crossing over (chromosome recombination). Primary spermatocytes then complete
the first meiotic division with separation of chromosomes (not of chromatids as in mitosis)
and give rise to secondary spermatocytes, that go through the second division (separation
of chromatids) and originate haploid round spermatids. Spermatids progressively differen-
tiate into spermatozoa [59], the nucleus condenses and elongates, and a flagellum is formed
(spermiogenesis). The condensation of the nucleus is due to the substitution of histones by
protamines, a basic protein that establishes bisulfite links enabling the compaction of DNA
in order to protect against mechanical and oxidative stresses that sperm will encounter
during the journey until the Fallopian tube where fertilization occurs [60]. From the Golgi,
a series of vesicles fuse and give rise to an acrosomal vesicle that surrounds the anterior
2/3 of the nucleus. This vesicle contains the enzymes necessary to aid in the penetration
of the zona pellucida [61]. When these steps finalize, the sperm retracts from Sertoli cell
junctions (spermiation) and travels through the tubules of the rete testis to the epididymis
where it matures and remains stored up to ejaculation [62] (Figure 2).

During human spermatozoa maturation, differentiated levels of ROS can be produced
by plasmatic membrane NADPH oxidase and by mitochondrial nicotinamide adenine
dinucleotide-dependent oxidoreductase [63,64], being highest in immature spermatozoa
with abnormal head morphology and cytoplasmic retention and lowest in mature sperma-
tozoa and immature germ cells [65,66]. Moreover, spermatogenesis appears to be paralleled
by a differential expression of stress response genes, as suggested by an increase in the
antioxidant enzyme Cu-Zn SOD [67]. This points to changes in susceptibility to OS through
spermatogenesis, which can be rooted in distinct reasons. Late stages of spermatids and
spermatozoa are vulnerable to the deleterious effects of ROS due to high levels of polyun-
saturated fatty acids in the plasma membrane (essential for membrane fluidity), whereas
differentiating spermatogonia and spermatocytes appear susceptible due to their high
mitotic and meiotic activity, respectively [68,69]. ROS have a pivotal role in spermatoge-
nesis, not only in the earliest stages of development, being involved in sperm chromatin
condensation, in inducing apoptosis to adjust the number of germ cells or spermatogonia
proliferation, but also in sperm maturation, participating in capacitation, acrosome reaction,
mitochondrial sheath stability, and sperm motility [70–73].
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ROS are also implicated in sperm-oocyte interaction [74] and participate in the acti-
vation of the steroidogenic pathway by inducing Ras and ERK1/2 activation in Leydig
cells [75]. In the seminal fluid, leukocytes produce high levels of ROS (up to 1000 times
more than spermatozoa) that play an important role in the cellular defense mechanism
against infections and inflammation [76].

The pathophysiological role of ROS in spermatogenesis has also been studied. Intrin-
sic ROS overproduction depletes sperm antioxidant systems, leading to OS [77,78]. OS
impinges on molecular components, inducing oxidation in lipids, proteins, carbohydrates,
and DNA. Oxidative modifications to proteins alter their structure and function, with
repercussions both on spermatogenesis and fertility [79]. Peroxidative damage to mem-
brane lipids leads to membrane structure and fluidity instability and membrane-associated
processes dysregulation [79,80]. Even sperm motility is affected by lipid peroxidation to
mitochondrial membranes, leading to a decrease in mitochondrial membrane potential
and defects in the sperm mid-piece and axonemal region [81]. OS also has deleterious
effects on the spermatic nucleus, impinging on DNA integrity, increasing the rates of sperm
DNA fragmentation [73,74,82]. Since spermatozoa lack DNA repair mechanisms, in case
of excessive DNA damage apoptotic cascades are activated, leading to reduced sperm
concentrations and consequently male infertility [83]. Recently, it has been observed that
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about 30–80% of infertile men have abnormal semen characteristics with elevated seminal
ROS levels [84].

2.3. Reactive Oxygen Species, Oxidative Stress, and Female (In)Fertility

During early embryo development, primordial germ cells migrate to the developing
gonads, undergo mitotic divisions (before entering meiosis), colonizing it. Primordial
germ cells become oogonia and rearrange themselves in structures described as germ-cell
nests. After entering meiosis, individual oocytes are encapsulated by a single layer of
squamous pre-granulosa cells, forming primordial follicles [85]. After a programmed cell
nest breakdown, only around 30% of the initial oogonia survive and become the pool
of primordial follicles. Oocytes remain arrested in the first meiotic division until latter
activation to proceed development [86]. Early activation, during childhood and until
puberty, results in atresia (degeneration of follicle into scar tissue). For this reason, in
puberty, ~300,000 primordial follicles remain [87,88]. Of this pool, as little as 400 follicles
will complete development and ovulate; all the others will suffer atresia [89,90].

From puberty, and until menopause, hormones produced by the hypothalamus, pitu-
itary gland, and the ovaries are the messengers responsible for the ovarian cycle, which
can be divided into two phases: follicular and luteal. The follicular phase concerns the de-
velopment of follicles until ovulation. In short, once a selected batch of primordial follicles
is activated, their granulosa cells change shape and give rise to primary follicles. These
follicles express cell proliferation markers which will allow their growth and ultimately the
formation of a multi-layered follicle—the secondary follicle. The antral stage follows and is
achieved by the formation of a cavity (the antrum) filled with fluid. In humans, only one
dominant follicle will develop, until ovulation. The ovulated oocyte, arrested at metaphase
I, will complete meiosis only if fertilization occurs (Figure 3).

The luteal phase starts after ovulation, with the formation of the corpus luteum, and is
characterized by changes in hormone levels (an increase in progesterone and in estrogen
and a decrease in follicle-stimulating hormone (FSH) and in luteinizing hormone). These
hormonal fluctuations will regulate uterine transformations to enable implantation [91].
Upon fertilization, the zygote moves through the fallopian tube until reaching the uterine
endometrium, where implantation may take place [92]. If a pregnancy does not occur,
hormone production by corpus luteum declines, causing endometrial shedding, and marking
the end of the luteal phase [91,93–95]. For a more detailed description see [91].

In the ovaries, ROS can be generated by macrophages, steroidogenic cells, and en-
dothelial cells, modulating follicular fluid microenvironment and consequently oocyte
development [96]. ROS are involved in the loss of sensitivity of granulosa cells to go-
nadotropins and steroidogenic function, thus influencing follicular atresia and having a
role in the selection of the dominant follicle [97,98]. In the pre-ovulatory follicles, steroid
production increases cytochrome P450 activity and consequently the levels of ROS, which
are important inducers of ovulation. In fact, decreased ROS production impairs ovula-
tion [99,100]. During oocyte maturation, the expression of enzymatic antioxidants such
as Cu-ZnSOD and MnSOD revealed that oocytes are exposed to high levels of ROS and
that the balance between ROS and antioxidant enzymes is an important modulator of this
process [101]. Although ROS have important physiological roles, the cyclic production of
these damaging agents over time and a reduction in ovarian antioxidant capacity may be
the root of local inflammation and fibrosis and contribute to tissue dysfunction and the loss
of fertility [102–104].

In the uterus, ROS have also been implicated in the regulation of the endometrial cycle
alongside variations in the expression of SOD, GPx, and lipid peroxides (in response to sex
hormones) [105–107]. NADPH-oxidase-derived O2 has been shown to activate the nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-kB) signaling cascade promoting
prostaglandin secretion, vasoconstriction, and ultimately endometrial shedding [108,109].
Thus, ROS have a determinant role in the regulation of angiogenesis and the endometrial
cycle [110,111]. NF-kB exacerbated activation, due to increased uterine levels of ROS,
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may result in signaling pathways disruption and, consequently, in a broad spectrum of
uterine-related infertility disorders (e.g., endometriosis) [112,113].
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ROS play a bivalent role (physiological and pathophysiological) not only in the uterus
and the ovaries but also in the process of placentation, as previously reviewed [114].
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3. Current Evidence of OS-Mediated Effects on Fertility Derived from Cancer Therapies
3.1. Carcinogenesis, Anticancer Therapies and Oxidative Stress

Low-to-moderate ROS levels act as instigators of neoplastic transformation, by promot-
ing genomic DNA mutations and increasing cell proliferation [115,116]. After neoplastic
transformation, during hyperproliferation, cancer cells present uncontrolled metabolism
and high basal levels of ROS [117]. Their survival under such adverse conditions is achieved
due to antioxidant system adaptations [118]. However, if ROS levels increase above a cer-
tain threshold (even in neoplastic cells), it will lead to antioxidant system exhaustion and
evoke irreversible oxidative damage. The majority of agents used in anticancer therapies
aim to induce an accelerated and cumulative oxidative damage, which will surpass the
cytotoxic threshold and “selectively” kill cancer cells [119].

There are two major approaches of eliciting intracellular ROS accumulation that are
harnessed by anticancer therapies: direct ROS generation or cellular antioxidant system
inhibition [120] (Table 1).

Table 1. Major anticancer compounds and respective ROS-mediated actions.

Name Mechanism of Action Role in Redox System Ref

Direct ROS generation

5-fluorouracil Thymidylate synthase inhibitor p53-dependent ROS [121]
Bortezomib Proteasome inhibitor ER stress-induced ROS [122]

Cisplatin nDNA adducts generation mtDNA and ETC damage [123]

Doxorubicin nDNA intercalation; topoisomerase-II-mediated
nDNA repair disruption Generation of free radical through iron chelation [124]

Erlotinib EGFR tyrosine kinase inhibition Loss of MM potential [125]
Imatinib Bcr-Abl tyrosine kinase inhibition Loss of MM potential [126]

Rituximab Anti-CD20 Bcl-2 inhibition [127]

Antioxidant process inhibition

Buthionine
sulfoximine - GSH synthesis inhibitor [128]

Imexon Ribonucleotide reductase inhibitor GSH activity disruption via thiol binding [129]

Abelson (Abl); B-cell lymphoma 2 (Bcl-2); breakpoint cluster region protein (Bcr); cluster of differentiate 20 (CD20);
electron transport chain (ETC); endoplasmic reticulum (ER); epidermal growth factor receptor (EGFR); glutathione
(GSH); mitochondrial DNA (mtDNA); mitochondrial membrane (MM); nuclear DNA (nDNA); reactive oxygen
species (ROS).

ROS-promoting agents can: increase the production of O2 by impairing respiratory
chain function and causing mitochondrial dysfunction [130] or by activating NADPH-
oxidase activity [131]; increase radical intermediates by reacting with flavoprotein reductases
(e.g., cytochrome P450 reductase) in the presence of reduced NADPH [132]; lead to hydroxyl
radical formation by triggering Fenton-type reactions [133]. Doxorubicin promotes an
increase in ROS by intracellular chelation of iron, which may trigger a Fenton-like reaction,
generating the high reactive hydroxyl radical, and by interfering with cytochrome P450
forming radical derivatives, which can generate superoxide, in the presence of oxygen [134].

Agents that strategically interfere with ROS metabolism by inducing the depletion
of the reduced glutathione (GSH) pool or restricting redox modulating enzymes (e.g.,
peroxidases and peroxidoxins) have a profound effect on the ability of cells to detoxify
ROS. GSH-conjugating compounds, such as Imexon [135] or targeting its synthesis, such as
Buthionine sulphoximine, fall into this group [128]. Specific inhibitors of other antioxidant
enzymes are being identified, developed, and used in anticancer treatments. ATN-224, an
inhibitor of SOD [136,137], and AT, an inhibitor of Cat [138], fall into this category.

Understanding the distinct mechanisms of action of each drug, either ROS-dependent or
-independent is vital to attenuate their deleterious side effects. In fact, cotreatments with an-
tioxidants have been used to ameliorate chemotherapy-mediated toxicity (e.g., nephrotoxicity
and ototoxicity). Kilic and colleagues have demonstrated that cotreatment with melatonin
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significantly reduces NF-kB expression and is able to attenuate nephrotoxicity through the
activation of nuclear factor-erythroid factor 2-related factor 2 (Nrf-2)/Heme oxygenase-1 path-
way [139]. This pathway regulates the expression of several antioxidant genes and protects
against OS and inflammation [139,140]. Additionally in the specific context of chemothera-
peutical treatments, flavonoids and carotenoids (plant-derived phytochemicals) have been
shown to have beneficial properties against ROS-associated secondary effects [141–143].

3.2. Treatment-Induced OS and Its Impact on Fertility

Although anticancer therapies aim to specifically disrupt the redox balance of cancer
cells, unwanted effects on normal cells also occur. Encephalo-, cardio-, nephron-, oto-,
hepato-, myeolo-, myo-, and gastrointestinal toxicities have been described [144–148].
Similarly, distinct gonad toxicity has also been reported [149,150], reflecting the differences
between the two gametogenesis processes.

In males, depending on the type of spermatogonia affected, damage can result in
transient or persistent oligozoospermia or azoospermia. Spermatogonia type B are more
susceptible to cytotoxicity because of their active mitotic proliferation, whereas spermato-
gonia stem cells (type A) are less susceptible due to their low mitotic activity [16]. In
severe gonad toxicity, all spermatogonia are destroyed and azoospermia is established.
Additionally, even Sertoli or Leydig cells can be damaged. Leydig cell damage also affects
hormone production [151–153] (Figure 4).
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Figure 4. Spermatogenesis dysfunction after anticancer treatment. ROS overproduction due to treat-
ments depletes the antioxidant systems, leading to OS. Both the normal and abnormal spermatozoa
can be damaged by ROS; however, in the treatment case (right side), damage is more prevalent since
ROS are present/produced in higher quantity due to anticancer treatments. OS impinges on sperma-
tozoa (represented by the red stars) and damages to cell/sperm and mitochondria membranes, DNA
damage, and defects in the sperm mid-piece and axonemal region can be observed. The establishment
of this compromised process leads to abnormal semen characteristics and is responsible for the fertility
decline present in men submitted to anticancer treatments. Reactive oxygen species (ROS).
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Females, unlike males, have a limited reproductive life span that is dependent on
the number of primordial follicles (see Section 2.3 of this review). As such, conventional
chemotherapeutic agents can lead to permanent ovarian failure and amenorrhea due to
oocyte depletion [154,155]. This can occur by direct damage to granulosa cells, as these
cells are an easy target for chemotherapeutic agents due to their highly proliferative rate.
Reduced number of granulosa cells might deprive the oocyte of nutrient supply and
disrupt granulosa/oocyte communication (vital for oocyte maturation), inducing oocyte
apoptosis [156]. Even when gametes are spared, it is still possible that the damage caused
to other ovarian components, such as ovarian vasculature and stroma, will also contribute
to premature ovarian failure [157–159] (Figure 5).
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anticancer treatment, due to increased ROS production and impaired antioxidant response leads 
to the establishment of an oxidative microenvironment. In a post-treatment ovarian stroma, it can 
be observed a depletion in the number of primordial and primary follicles, and the presence of 
collagen deposition (fibrosis). The establishment of this compromised microenvironment impairs 
ovarian function and is the responsible for the fertility decline present in women submitted to 
anticancer treatments. Reactive oxygen species (ROS). 
  

Figure 5. Ovarian tissue dysfunction after anticancer treatments. Increase in OS-derived from anti-
cancer treatment, due to increased ROS production and impaired antioxidant response leads to the
establishment of an oxidative microenvironment. In a post-treatment ovarian stroma, a depletion
in the number of primordial and primary follicles and the presence of collagen deposition can be
observed (fibrosis). The establishment of this compromised microenvironment impairs ovarian func-
tion and is responsible for the fertility decline present in women submitted to anticancer treatments.
Reactive oxygen species (ROS). Cisplatin and doxorubicin are two widely used chemotherapeutic
drugs to treat several types of cancer, including those of the reproductive tract. Their ROS-mediated
effects on fertility will now be revised.

Cisplatin is a highly reactive molecule that binds to DNA and forms nDNA (nuclear
DNA) adducts (mechanism of cytotoxicity) and mitochondrial DNA (mtDNA) adducts
(ROS-promoting mechanism). Cisplatin interacts with DNA by mainly forming Pt-d (GpG)
di-adducts, which if not repaired by the DNA damage response will block replication
and/or transcription and lead to apoptosis [123,160]. Cisplatin also binds to RNA and pro-
teins. Mitochondrial membrane proteins, particularly voltage-dependent anion channels,
are preferential binding sites [161]. Cisplatin also interferes with the activity of several
proteins involved in the maintenance of redox balance. In the testicular tissue, cisplatin
decreases GSH and Cat activity, which may increase the vulnerability of germ cells to
ROS deleterious effects [162,163]. An increase in cisplatin-mediated ROS, at the testicular
ECM, activates fibroblasts (by transforming growth factor-beta upregulation), and increases
collagen accumulation with deleterious consequences in the structure of the seminiferous
epithelium and a reduction in the spermatogenic activity [162,164]. In Leydig cells, dysfunc-
tion was also observed, as cisplatin exerts an inhibitory action at the level of cytochrome
P450, inhibiting testosterone synthesis [165,166]. Broader cisplatin damage on spermato-
genic parameters includes abnormalities in sperm motility and sperm morphology [167]. In
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the ovaries, cisplatin increases primordial follicle activation and granulosa cells apoptosis,
leading to primordial follicles depletion [168,169]. It also increases the end-product of lipid
peroxidation, malondialdehyde (MDA), and decreases SOD and GSH antioxidant activity.
Chemoprotective effects have been observed with the use of molecules with antioxidant
properties [170–172].

Doxorubicin, an antiproliferative (by inhibition of topoisomerase II), highly reactive
(by DNA intercalation), and ROS promotor (by iron chelation) molecule, does not exclu-
sively damage neoplastic cells, but also healthy dividing cells, as germ cells. In males,
unwanted reproductive side effects occur through an increase in testicular oxidative stress,
inflammation, and apoptosis [173–175]. A reduction in sperm quality (e.g., loss of acrosome
integrity or morphological abnormalities, and motility) has been seen after doxorubicin
treatment [176,177]. A decrease in body and relative testicular weights, reduced seminif-
erous tubule diameter, and germinal epithelium thickness have also been observed [178].
These changes probably result from atrophy of Leydig cells and the reduction in the germ
cell number and spermatogenic proliferative rate [179,180]. Additionally, in the testicular
tissue of doxorubicin-treated subjects, the levels of apoptotic-related genes (e.g., caspase 3
and B-cell lymphoma 2 genes) and MDA are increased, and the activities of antioxidant
enzymes (SOD and GPx) are reduced [176,179]. In female mice, doxorubicin administration
induced an imbalance in the redox state, by interfering with the activation of the antioxidant
Nrf-2 pathway and the expression of antioxidant enzymes SOD, Cat, and GPx [181,182].
Divergent results regarding the expression of antioxidant enzymes in response to doxoru-
bicin treatment have been reported and may result from experimental designs used and the
specific self-protective response of cells (oocytes, granulosa, and cumulus) [181,182]. Nev-
ertheless, beneficial effects were observed with the use of molecules that modulate redox
balance [181–183]. Just like in males, doxorubicin influences the inflammatory response by
inducing a significant increase in the expression of pro-inflammatory cytokines (e.g., tumor
necrosis factor-alpha, interleukin 6 and 8) [184]. Inflammation activates matrix metallo-
proteinases (MMPs) and induces alterations in the degradation of the extracellular matrix
that may favor an excessive collagen deposition and contribute to ovarian fibrosis [185].
Additionally, MMPs activation may also regulate the local recruitment and availability of
inflammatory mediators, acting as a positive feedback loop of inflammation. Doxorubicin
treatment is associated with local inflammatory responses and morphological damage
to oocytes and stroma, and protective effects of antioxidant molecules were, once more,
observed [184].

Although studies on the effects of molecular target therapy on fertility are still scarce,
some data on male fertility are available [186,187]. Bortezomib, an antineoplastic agent and
a proteasome inhibitor frequently used for multiple myeloma and mantle cell lymphoma,
induces tumor cell apoptosis via the induction of endoplasmic reticulum stress (the capacity
to fold proteins becomes saturated), increased expression of p53 (tumor suppressor), and
activation of caspase-3 (cell death inductors) [188]. In males, bortezomib induces germ cell
development arrest, impairing the spermatogenic process [189]. In fact, a study by Li and
colleagues demonstrated that OS induced by bortezomib increased testicular MDA and
decreased GPx and total SOD protein levels [190]. Besides, it also caused an imbalance
in cell signaling, disrupted Sertoli-germ cell anchoring junctions, and interfered with
spermatogenesis. Additionally, the study also provided evidence that FSH counteracted
bortezomib’s negative effects by regulation of a pro-survival response to OS-mediated
insults to Sertoli cells (via Akt/ERK pathway) [190].

Other less investigated anticarcinogenic agents, their ROS-dependent mechanisms of
action, and effects on fertility are summarized in Table 2.
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Table 2. Other anticarcinogenic agents and their effects on fertility.

Name Fertility Effect Ref ROS-Known Effect Ref

5-fluorouracil Decreased sperm count (rat) [191] Inflammation, autophagy, apoptosis, and
senescence induction [192–194]

Erlotinib - Increase radical’s production through
NOX4 [195]

Imatinib

Reduces sperm count and density (human) [196]
Reduces MMP and complex I activity of

ETC, leading to mitochondrial OS [197]Decrease vasculature of placenta (mouse) [198]

Diminishes primordial follicles (mouse) [198]

Rituximab No mentionable effects (human and mouse) [199–201] -

Buthionine sulfoximine - Mitochondrial impairment [202,203]

Imexon - GSH depletion and induction of ER stress [129,135]

Electron transport chain (ETC); endoplasmic reticulum (ER); glutathione (GSH); metalloproteinases (MMP);
NADPH oxidase 4 (NOX4); oxidative stress (OS).

4. Conclusions

Induced loss of redox balance can be a strategy used in anticancer therapies. However,
the effectiveness of drugs contrasts with new problems and challenges that arise from the
increase in patients’ survival and their aims to become parents. As ROS have a pivotal
role in male and female gametogenesis processes, ROS-associated side effects of anticancer
therapies on reproductive systems can compromise fertility. For this reason, there has
been an increase in studies aiming to shed light on the mechanisms involved in the loss of
fertility associated with anticancer treatments and innovative ways of ameliorating them.

It is important to continue the pursuit of such new strategies and in parallel explain to
patients the available options to bypass anticancer treatment side effects on the reproduc-
tive system.
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