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Stroke is a disease with high incidence, mortality and disability rates. It is also the main
cause of adult disability in developed countries. Stroke is often caused by small emboli on
the inner wall of the blood vessels supplying the brain, which can lead to arterial embolism,
and can also be caused by cerebrovascular or thrombotic bleeding. With the exception of
recombinant tissue plasminogen activator (rt-PA), which is a thrombolytic drug used to
recanalize the occluded artery, most treatments have been demonstrated to be
ineffective. Stroke can also induce peripheral organ damage. Most stroke patients have
different degrees of injury to one or more organs, including the lung, heart, kidney, spleen,
gastrointestinal tract and so on. In the acute phase of stroke, severe inflammation occurs
in the brain, but there is strong immunosuppression in the peripheral organs, which greatly
increases the risk of peripheral organ infection and aggravates organ damage.
Nonneurological complications of stroke can affect treatment and prognosis, may
cause serious short-term and long-term consequences and are associated with
prolonged hospitalization and increased mortality. Many of these complications are
preventable, and their adverse effects can be effectively mitigated by early detection
and appropriate treatment with various medical measures. This article reviews the
pathophysiological mechanism, clinical manifestations and treatment of peripheral
organ injury after stroke.

Keywords: stroke, peripheral organ injury, lung, heart, kidney, spleen, gastrointestinal tract
1 INTRODUCTION

Stroke refers to cerebrovascular damage and focal or widespread brain tissue damage due to a
variety of causes, including ischemic stroke and hemorrhagic stroke. Stroke involves brain cell and
tissue necrosis and has obvious seasonality, especially during the cold season. Although there are an
increasing number of in-depth studies on stroke, few methods can be used to treat stroke (1).

Stroke has the second highest death rate worldwide. Although the mortality rate of stroke has
decreased significantly in various countries due to the continuous development of medical
technology, the incidence of stroke is on the rise (2). According to incomplete statistics, as of,
2016, there were 67.6 million people suffering from ischemic stroke and 15.3 million people
suffering from hemorrhagic stroke. From 2006 to, 2016, the prevalence of ischemic stroke increased
by 2.7%, while the prevalence of hemorrhagic stroke decreased by 1.7% (3).
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The pathophysiological mechanism of stroke is complex, and
brain damage usually affects the normal function of peripheral
organs and can even cause serious damage (4). At the same time,
injury to peripheral organs after stroke often aggravates brain
injury and affects patient recovery (Figure 1). With a focus on
pathophysiology, this review discusses the pathophysiological
mechanism underlying peripheral organ injury after stroke and
closely links the brain with peripheral organs to identify a more
effective and comprehensive method for the treatment of stroke.

1.1 Lung Injury After Stroke
Stroke breaks out a strong inflammatory cascade in the brain, but
the peripheral immune system is inhibited by immune regulation
of compensatory release of neurotransmitters, this phenomenon
is defined as stroke-induced immunosuppression (SIIS) (5). The
direct consequence of SIIS is to make stroke patients more
vulnerable to infections, of which stroke-associated pneumonia
(SAP) is the most common and often fatal (6). It has been proved
in clinical trials that stroke-induced immunosuppressive
syndrome is an independent risk factor for stroke-associated
pneumonia (7). Previous studies have shown that older and more
severe nerve damage and dysphagia are important factors for
pneumonia after stroke (8–12). About 1/10 of stroke patients
develop pneumonia in the acute phase (13). The occurrence of
post-stroke pneumonia is related to 30-day and 1-year mortality,
longer hospital stays and dependence on discharge (14). In
addition, neurogenic pulmonary edema (NPE) is also one of
the common pulmonary complications after stroke. The
mechanism of NPE may be the damage of alveolar capillary
barrier caused by a large number of nervous system discharges
after severe craniocerebral injury and the lung volume overload
caused by the increase of systemic vascular resistance. Due to the
lack of effective and timely treatment, NPE is usually associated
with higher mortality, which suggests that NPE may be one of
the causes of poor prognosis in patients with stroke (15). In this
review, we focus on the pathogenesis and emerging treatments of
SAP and NPE, and further speculate on the role of immune
factors in it.

1.1.1 Pathophysiological Mechanism of Lung injury
After Stroke
There are two main theories about the pathophysiological
mechanism of SAP: Aspiration Theory and stroke-induced
immunosuppression (SIIS) (16). A small amount of inhaled
substances caused by dysphagia in stroke patients is a key
factor in SAP, which may be related to the abnormal
transmission of dopamine (17). An experiment in guinea pigs
has shown that blocking D1 dopamine receptors in guinea pigs
can inhibit swallowing reflexes and reduce substance P in
terminal organs (18). Due to the decrease of dopamine
production in substantia nigra and striatum of stroke patients,
the expression of substance P in glossopharyngeal nerve and
cervical parasympathetic ganglion decreased, resulting in
dysphagia (17). The risk of SAP is related to substance P
deficiency. Treatment with angiotensin converting enzyme
(ACE) inhibitors in stroke patients can increase the level of
Frontiers in Immunology | www.frontiersin.org 2
substance P and reduce the incidence of pneumonia in patients
with dysphagia (19).

The main causes of SIIS are the transformation from Th1
phenotype to Th2 phenotype of lymphocytes, the decrease of
lymphocytes and NK cells in blood and spleen, and the
impairment of defense mechanism of monocytes and
neutrophils (5). One of the causes of SIIS may be that stroke
activates the sympathetic system and the hypothalamus-
pituitary-adrenal axis (20). An experimental study shows that
injection of 200 Streptococcus pneumoniae colony-forming units
into the nasal cavity of stroke mice can cause pneumonia and
bacteremia, while 200000 colony-forming units are needed in
fake animals to induce similar diseases. but it can be prevented by
adrenoceptor blockers (21). The immunosuppressive state
caused by sympathetic activation after stroke is characterized
by Th-mediated lymphopenia and functional inactivation of
monocytes and Th1 (22), which is more obvious in mice with
large cerebral infarction (23). A series of clinical and
experimental evidence shows that damaged brain tissue
produces a variety of pro-inflammatory cytokines, which can
activate the hypothalamus-pituitary axis system, resulting in
increased adrenocorticoid secretion and T lymphocyte
apoptosis (20).

Neurogenic pulmonary edema (NPE) after acute stroke is an
acute respiratory distress syndrome (ARDS), which is characterized
by acute onset, obvious infiltration of pulmonary interstitial fluid
and rapid regression (15). The pathophysiological mechanism of
NPE is the joint participation of nervous system, circulatory system
and respiratory system. The occurrence of NPE may be due to the
activation of a specific trigger area of the central nervous system
located in the brainstem, resulting in excessive sympathetic nerve
activation leading to peripheral vasoconstriction, increased systemic
vascular resistance (SVR) and enhanced venous reflux. After these
changes, the pulmonary capillary hydrostatic pressure (PCP)
increased, the alveolar wall was damaged, and fluid and red blood
cells infiltrated into the pulmonary interstitium and alveoli to form a
typical NPE (24).

1.1.2 Treatment
Post-stroke pneumonia is usually directly associated with
bacterial infections, including aerobic Gram-negative bacilli
and Gram-positive cocci (25),the most common bacterial
infections are Pseudomonas aeruginosa and Staphylococcus
aureus (26). Selecting targeted antibiotics according to the type
of bacteria infected is an important step in the treatment of SAP,
and ampicillin + sulbactam group is a good choice (27).
According to the pathophysiological mechanism of SAP, head
raising, oral care and dental treatment for stroke patients can
effectively improve swallowing function and cough reflex
sensitivity, which is the key to the treatment and prevention of
SAP. For elderly stroke patients, angiotensin converting enzyme
inhibitors can well improve cough reflex sensitivity, thus
reducing the risk of SAP (Table 1).

The treatment of NPE mainly includes two aspects. on the
one hand, it is based on the treatment of primary central nervous
system injury, with emphasis on reducing intracranial pressure
June 2022 | Volume 13 | Article 901209
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to prevent sympathetic nerve discharge, which is considered to
be the main culprit of lung injury (45). Another important aspect
is supportive treatment, including vasoactive substances,
diuretics, rehydration, supplement oxygen and mechanical
ventilation if necessary (29). Studies have shown that
intravenous injection of 25% albumin does not improve the
prognosis of patients with ischemic stroke, but increases the risk
of pulmonary edema (46, 47). A study on the treatment of 12
cases of aneurysmal SAH with NPE shows that endovascular
treatment of severe SAH with NPE is an effective regimen (48).
However, due to the lack of sample size, further research is
needed to ensure the reliability of the conclusion.

1.2 Heart Injury After Stroke
Adiovascular disease is regarded as the predis-posing risk factor for
stroke (49),cardiovascular complications are also the second leading
cause of death after stroke (50). In the first few days after stroke,
cardiac complications are a common problem, including
arrhythmia, heart failure, myocardial injury, non-fatal coronary
syndrome, Takotsubo syndrome and other neurocardiogenic
syndrome. The study of the interaction between brain and heart
has been going on for centuries and has made great progress in the
last decade (51), more and more clinical and neuroimaging studies
as well as animal studies suggest that this series of cardiac
complications may have the same underlying mechanism (52). In
this review, we summarize these cardiac complications as stroke-
heart syndrome. The main pathophysiological mechanisms include
hypothalamus-pituitary-adrenal axis(HPA) (53), the gut dysbiosis
(54) and immune and inflammatory response (55), linking the
effects of these mechanisms may help us to find new treatments.
Some studies have shown that stroke-heart syndromemay originate
from the structural or functional changes of central autonomic
neural network (CAN) after stroke (52), and affect heart rate and
cardiac contractility through sympathetic nervous system and
parasympathetic nervous system (56). When brain injury occurs,
Frontiers in Immunology | www.frontiersin.org 3
different areas and degrees of injury will lead to different results. For
example, stimulating the orbit of the frontal lobe and anterior
cingulate gyrus can affect blood pressure and heart rate, ischemia in
the insular cortex may lead to changes in blood pressure and
arrhythmias (57). In addition, clinical trials have shown that
patients with LDL levels below 70 mg per deciliter have a lower
risk of cardiovascular events than patients with LDL levels ranging
from 90 mg to 110 mg per deciliter after ischemic stroke. This
suggests that LDL may be an independent risk factor for
cardiovascular events after stroke (58).

1.2.1 Pathophysiological Mechanism of Heart Injury
After Stroke
1.2.1.1 Hypothalamus-Pituitary-Adrenal Axis
The mediator of cortisol is the hypothalamus-pituitary-adrenal
axis, and the HPA axis plays a key role in the process of balance in
the body (59). Corticotropin-releasing hormone is secreted by the
hypothalamic paraventricular nucleus, which stimulates the
pituitary gland to release corticotropin, which stimulates the
adrenal gland to release the steroid hormone cortisol (60).
Elevated cortisol levels increase the mortality of stroke patients
(53). In the study of the animal model of middle cerebral artery
occlusion (MCAO) in rats, it was found that the activation of
paraventricular nucleus was due to the activation of N-methyl-D-
aspartate (NMDA) receptor by glutamate, which led to arrhythmia
(61). Inhibition of oxidative signals in the paraventricular nucleus
can be used as a new method for the treatment of heart failure
caused by myocardial infarction (62). Elevated catecholamine levels
play an important role in stroke-heart syndrome. Animal studies
have shown that plasma catecholamine levels increase after middle
cerebral artery occlusion, whichmay lead tomyocardial injury (63).
Catecholamine acts on cardiac b-receptors, activating cyclic
adenosine monophosphate-protein kinase A signal and
increasing intracellular Cyclic adenosine monophosphate
(CAMP). CAMP binds to protein kinase A and phosphorylates
FIGURE 1 | Injury of various peripheral organs after stroke. The activation of sympathetic nerve, hypothalamus-pituitary-adrenal axis and immune system after stroke
leads to a series of systemic events and finally leads to the injury of various peripheral organs. The most common peripheral injuries include the Lung, Heart,
Gastrointestinal tract, Kidney and Spleen.
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L-type calcium channels, which makes mitochondrial overload
trigger oxidative stress and eventually lead to cardiomyocyte death
(50). In vitro and in vivo studies have shown that the intermediates
formed during the oxidation of catecholamines are related to
cardiotoxicity (64). The consequence of this increase in
catecholamine levels is cardiomyocyte necrosis, hypertrophy and
fibrosis, and the production of reactive oxygen species, alteration of
the calcium-handling proteins, coronary blood flow
redistribution (65).

1.2.1.2 Immuno-Inflammatory Response
Immuno-inflammatory response plays a significant role quickly
after stroke and is also an important factor in stroke progression
(66). In the early stage of stroke, both innate immunity and
acquired immunity are involved in local and systemic
inflammation (50). The complex interaction involves a variety
of mechanisms. In this article, we focus on the immune and
inflammatory responses that mediate stroke cardiac syndrome.

In the early stage of acute brain injury, local inflammatory
responses in the brain parenchyma (including microglia
proliferation, astrocyte proliferation and cytokine/chemokine
secretion) maintain endothelial cell activation. During this
period of ischemia, a large number of reactive oxygen species
(ROS) are produced in the brain and immune cells. Then, reactive
oxygen species can activate endothelial cells, cause oxidative stress
and destroy the blood-brain barrier (67). Resident macrophages
transform into M1 phenotypes, exacerbating inflammation by
releasing pro-inflammatory cytokines (68). After ischemia, the
brain releases damage-associated molecular patterns (DAMP),
stimulates pathogen recognition receptors Toll-like receptors
and TLR-4, and increases the production of pro-inflammatory
mediators IL-6, IL-1 b, TNF-a, chemokine and their receptors
(Figure 2). Through these mediators, the brain recruits peripheral
immune cells to the site of brain injury and then crosses the
damaged blood-brain barrier (68). Enter the systemic circulation
to produce possible secondary heart injury. An animal
experimental study reported that abnormal inflammation and
TABLE 1 | Injury types and treatment of different organs after stroke.

Organs Types of Injury Treatment References

Lung Pneumonia after stroke Angiotensin-converting enzyme inhibitors, b-adrenergic receptor blocker,
Ampicillin and sulbactam

(21, 27, 28)

Lung Neurogenic pulmonary
edema

Vasoactive substances, diuretics, rehydration, supplement oxygen and mechanical ventilation (29)

Heart Arrhythmia Antiarrhythmic drugs,
Pernanent pacemaker implantation, Cardioverter-defibrillator implantation, Urgent coronary

angiography,
Supportive care and correction of electrolyte abnor- Malities, b-blockers

(30–32)

Heart Atrial fibrillation Atrial fibrillation, Antiplatelet (33)
Heart High blood pressure Nicardipine, Nitroprusside, Labetalol, ACEI (32, 34)
Heart Heart failure Antithrombotic treatments (35)
Heart Myocardial Infarction Alteplase, Coronary angioplasty and PCI (36)
Kidney Acute kidney injury Dialysis, Apisaban, Rivasaban, Aspirin (37–39)
Spleen Spleen shrinking Intravenous infusion of human umbilical cord blood cells,

Multipotential adult progenitor cells treatment
(40, 41)

Gastrointestinal
tract

Gastrointestinal bleeding Antiplatelet drugs, Misoprostol, Proton pump inhibitors (42)

Gastrointestinal
tract

Intestinal flora disorder Rhubarb anthraquinone glycosides, Probiotics (43, 44)
Frontiers in Immunolo
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FIGURE 2 | ATP is released from damaged neurons, activating purinergic
receptors on microglia and macrophages and leading to the production of
pro-inflammatory cytokines. Interleukin-1 converting enzyme (ICE; caspase1)
is embedded in a polyprotein complex (NLRP3 or inflammatory body) and
activated by P2X7 receptors in microglia. Cell death leads to the formation of
DAMPs, which activates TLR, especially TLR2 and TLR4. DAMPs released by
ischemia includes high mobility group protein B1, heat shock protein 60 and
so on. TLRs binds to scavenger receptors (such as CD36) and up-regulates
the expression of inflammatory genes through transcription actor nuclear
factor-kB. DAMPs is also produced by matrix decomposition caused by
lyases released by dead cells and the effect of reactive oxygen species on
lipids. Finally, the production of cytokines and the activation of complement
lead to the increase of leukocyte infiltration and tissue damage, which leads
to the production of more DAMPs. The antigen revealed by tissue injury was
presented to T cells, which laid the foundation for adaptive immunity.
rticle 901209
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apoptotic cells appear in the cerebellum and heart of non-human
primate transient global cerebral ischemia (TGI) model (69),
suggesting a potential correlation between inflammation and
heart injury. Tumor necrosis factor-a leads to ubiquitin and
then degradation of troponin I, which eventually leads to a
decrease in the contractile function of cardiomyocytes (70).
Transforming growth factor-b 1 (TGF-b 1) induces increased
expression of IL-6 (71). IL-6 is a cytokine that can regulate the
growth, apoptosis and survival of cardiac cells (72). Recent studies
have suggested that activation of TLR-4 and elevated levels of IL-1
b are associated with heart failure (73). In patients with ischemic
stroke and cerebral hemorrhage, systemic inflammatory response
is activated (74). Systemic inflammatory response syndrome is
usually characterized by abnormal white blood cell count,
increased respiration and heart rate, and abnormal body
temperature. This increases the risk of intracranial and systemic
complications. The number of CD74+ cells and the expression of
CD74mRNA in peripheral blood monocytes increased
significantly in patients with ischemic stroke (75). CD74+ cells
are mainly distributed on CD4+T cells, monocytes and dendritic
cells (75). Monocytes are related to cardiac salvage function
damage and poor left ventricular remodeling after acute
myocardial infarction (76), and can be used as a new treatment
for ischemic brain injury in the future.

1.2.1.3 Intestinal Biological Disorder
More and more experimental studies have shown that there are
interactions between intestinal microbiota and central nervous
system as well as heart, which are called brain-gut axis and
intestine-heart axis. The main function of the gut-blood barrier
is to regulate the absorption of nutrients, electrolytes and water,
and to prevent pathogenic microorganisms and toxic substances
from entering the bloodstream (54). Stroke can lead to the
destruction of the intestinal-blood barrier, thereby increasing
intestinal permeability, imbalance of intestinal microflora and
transfer to the bloodstream (35).Increased intestinal permeability
can promote inflammation (54), while systemic inflammation can
aggravate cardiac dysfunction, which has been explained above.
Trimethylamine N-oxide (TMAO) is an important gut microbe-
dependent metabolite synthesized by dietary choline, betaine and
L-carnitine (77). TMAO mediates platelet overactivation and
thrombosis, and it also enhances inflammation by acting on
dendritic cells, macrophages and platelets (77). Changes in
TMAO levels are associated with atherosclerosis, myocardial
infarction, thrombosis and heart failure (78, 79).

1.2.2 Treatment
The incidence of stroke-cardiac syndrome after stroke is very high,
and the damage of cardiac function affects the prognosis and
mortality of patients to a great extent. Almost 80% of AIS
patients develop hypertension for various reasons. The side effects
of severe hypertension increase the risk of cardiopulmonary
complications, cerebral hemorrhage and cytotoxic edema, and are
associated with adverse outcomes after AIS (80). Drugs such as
nicardipine, nitroprusside and labetalol are recommended for the
treatment of hypertension in the acute phase of stroke (systolic
blood pressure is greater than 180mmHg) (34). b-blockers can not
Frontiers in Immunology | www.frontiersin.org 5
only inhibit sympathetic activation and inflammation, but also
prevent chronic remodeling and treat arrhythmias (81), and may
reduce heart injury after stroke. Among them, propranolol has been
proved to play a neuroprotective effect by blocking the upregulation
of IL-6, thus improving the prognosis after brain injury (82). As
recommended in the current clinical guidelines (83), secondary
stroke prevention with oral anticoagulants can effectively control the
risk factors of cardiovascular disease, but there is no good plan for
the treatment and prevention of cardiac complications after stroke.
With the in-depth study of the pathophysiology of brain-heart
interaction, new and more comprehensive treatments may emerge
in the future.

1.3 Renal Injury After Stroke
Acute renal injury (AKI) is one of the common complications after
stroke, which can lead to renal failure (84). Studies have shown
that acute renal injury after stroke is associated with higher
mortality and poor functional prognosis (85). In a systematic
retrospective study of 12,325,652 patients with ischemic stroke, the
incidence of acute renal injury (AKI) was 9.6% (86). High score of
National Institutes of Health Stroke Scale (NIHSS)and
hypertension are important indicators for the incidence of AKI
in stroke patients on admission (85). In addition, diabetes, elevated
plasma osmotic pressure and the use of cyclic diuretics are also risk
factors for AKI after stroke (87–89). Chronic kidney disease
(CKD) refers to the damage of kidney structure or function
caused by various causes for more than 3 months, which is
mainly characterized by a decrease in glomerular filtration rate
(GFR), which usually develops with the passage of time and
increases the risk of stroke (90). CKD is usually diagnosed and
staged by measuring glomerular filtration rate (GFR), creatinine
clearance and albuminuria, while lower GFR and albuminuria are
associated with poor prognosis after stroke (91, 92), which has
been demonstrated in other clinical trials (93) (Table 2).

There is a strong two-way relationship between stroke and
kidney disease, which may be related to their similarities in
anatomy, hemodynamics and vascular regulation (110). The
glomerular afferent arterioles located in the paramedullary
renal artery and cerebral perforating artery in the kidney and
brain, respectively, originate directly from the short arterioles
and large arteries, and are responsible for maintaining perfusion
pressure and blood flow (111). Even if arterial blood pressure is
constantly changing, the brain and kidneys can be automatically
regulated to maintain a certain range of blood perfusion (84).The
pathophysiological interaction between brain and kidney is
complex, but many studies have focused on brain dysfunction
caused by renal injury. In this review, we focus on the
pathophysiological mechanisms of renal injury after stroke,
including neuroendocrine system, inflammatory and immune
response, extracellular vesicles (EVS) and microRNA(miRNA),
as well as related prevention and treatment.

1.3.1 Pathophysiological Mechanism of Renal Injury
After Stroke
1.3.1.1 Neuroendocrine System
After stroke, the hypothalamus-pituitary-adrenal axis can be
activated to regulate the release of glucocorticoids from the
June 2022 | Volume 13 | Article 901209
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adrenal gland. High levels of glucocorticoids can directly affect
the function of glomeruli and renal tubules, resulting in the
decrease of GFR (112). At the same time, elevated glucocorticoid
levels can lead to vascular and hemodynamic changes, which
indirectly affect renal blood flow (RBF) and glomerular function
(112) (Figure 3). On the one hand, patients with acute brain
injury due to excessive excitation of the sympathetic nerve,
resulting in glomerular filtration function decreased, renal
blood flow decreased (113). On the other hand, patients with
acute cerebral ischemia often present with elevated
catecholamines (114), and persistent excitation of the
sympathetic nervous system leads to binding of catecholamines
and angiotensin II to renal artery receptors, prompting renal
artery contraction and renal ischemia (115). It can be seen that
the increased levels of glucocorticoid and catecholamine may be
related to the damage of renal function after stroke.

Activation of the renin-angiotensin-aldosterone system can
promote systemic and glomerular capillary hypertension, and
the direct fibrogenic and pro-inflammatory effects of angiotensin
II and aldosterone may also lead to renal damage (116). Renin-
angiotensin system (RAS) is involved in the pathogenesis of
ischemic brain injury, and angiotensin II levels are increased in
stroke patients (117). Angiotensin II can directly activate the
Frontiers in Immunology | www.frontiersin.org 6
expression of glomerular cytokines, inflammation and fibrosis
factors, which has an effect on renal hemodynamics (118). In
addition, angiotensin II also stimulates macrophage aggregation
in glomeruli and tubular cells, increases the production of
cytokines such as IL-1, tumor necrosis factor-a and monocyte
chemoattractant protein-1, and acts on glomerular cells to
promote the occurrence and development of glomerular injury.
Angiotensin II induces the expression of TGF- b 1 and
angiotensinogen genes, and induces the proliferation of renal
interstitial fibroblasts through AT1 receptors, which may be
involved in the pathogenesis of renal fibrosis (119). Another
study showed that angiotensin II can induce the production of
IL-6 in the kidneys. IL-6 can induce fibrosis gene expression and
ET-1 gene expression, which leads to renal injury (120).
Excessive activation of the sympathetic nervous system after
stroke increases the release of Antidiuretic hormone (ADH),
FIGURE 3 | After stroke, the levels of glucocorticoid, catecholamine,
angiotensin II and aldosterone increased due to the activation of HPA
axis and renin-angiotensin-aldosterone system. Especially when the level
of glucocorticoid is too high, the renal blood flow decreases significantly,
which leads to the decrease of glomerular filtration rate. Catecholamine
and angiotensin II bind to renal artery receptors and promote renal artery
contraction and renal ischemia. Activation of renin-angiotensin-aldosterone
system can promote systemic and glomerular capillary hypertension, and
the direct fibrogenic and pro-inflammatory effects of angiotensin II and
aldosterone may also lead to renal injury. In addition, angiotensin II can
increase the levels of IL-1, IL-6, tumor necrosis factor-a and monocyte
chemoattractant protein-1, thus reducing glomerular blood flow. On the
other hand, after stroke, neurons are damaged, the blood-brain barrier is
destroyed, and the production of M1 macrophages is increased, which
induces the production of inflammatory factors such as C-reactive protein,
IL-6, IL-1 b, tumor necrosis factor and matrix metalloproteinase-9, which
leads to renal injury. These events eventually lead to decreased glomerular
filtration rate, decreased renal function, and irreversible kidney damage.
TABLE 2 | Clinical trials targeting the peripheral organs injury after stroke.

Organs Clinical trials References

Lung Stroke-associated pneumonia– The Predict
study

(7)

Lung Biomarkers for predicting pneumonia after
stroke

(94)

Lung Comparison of diagnostic utility of SAP (95)
Lung ALIAS (Albumin in Acute Ischemic Stroke) Trial (46, 47)
Heart COSSACS trial (96, 97)
Heart A comparison of two LDL cholesterol targets

after Ischemic Stroke
(58)

Heart AREST trial (98)
Heart Direct oral anticoagulants after stroke onset (99)
Heart The Insulin Resistance Intervention after Stroke

(IRIS) trial
(100)

Heart Urate predicts subsequent cardiac death in
stroke survivors

(101)

Spleen Post-stroke infections associated with spleen
volume reduction

(102)

Spleen Acute splenic responses in patients with
ischemic stroke

(74)

Kidney Acute kidney injury in acute ischemic stroke
patients

(86)

Kidney Effect of high-dose Atorvastatin on renal function
in patients with stroke

(103)

Kidney The eGFR predicted long-term mortality after
ischemic stroke

(93)

Kidney The URICO-ICTUS trial (104)
Kidney The effect of Clopidogrel added to Aspirin on

kidney function
(105)

Gastrointestinal
tract

Risk score to predict gastrointestinal bleeding
after acute ischemic stroke

(42)

Gastrointestinal
tract

The NAVIGATE-ESUS trial (106)

Gastrointestinal
tract

Pharyngeal electrical stimulation in the treatment
of dysphagia after stroke

(107–109)
June 2022 | Volume 13 | Article 901209
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resulting in glomerular Mesangial contraction, glomerular blood
flow reduction (121), resulting in renal function damage.

1.3.1.2 Inflammatory and Immune Response
Immune and inflammatory responses play an important role in
the progression of stroke and are also important causes of AKI
and CKD (84). Macrophages are significant mediators of
inflammation and immune regulation, and classical pro-
inflammatory M1 macrophages are associated with renal
disease (118). Macrophage-derived cytokines (ROS, IL) and
inflammatory factors such as C-reactive protein (CRP), IL-6,
IL-1 b, TNF- a and matrix metalloproteinase-9 (MMP9) after
brain injury are related to renal injury (118). CRP is an acute
inflammatory protein, mainly synthesized by hepatocytes, which
increases 1000-fold in the site of infection or inflammation (122).
CRP levels increased after ischemic stroke (123), and high levels
of CRP decreased glomerular filtration rate (124). Reactive
oxygen species (ROS) levels increase rapidly in the acute phase
of stroke and enter the bloodstream through the blood-brain
barrier (BBB) (125). Reactive ROS can cause different types of
cell damage, especially lipid peroxidation and membrane damage
(126). In the kidney, ROS mainly degrades the glomerular
basement membrane and changes the function of glomerular
and tubular cells (126). Microglia and macrophages produce and
secrete IL-1 b after stroke (127). Il-1b can lead to renal injury and
renal fibrosis (128). The expression of MMP-9 is increased
during cerebral ischemia, which leads to neuronal injury,
apoptosis and opening of BBB (129). It plays a special
physiological role in the main cells of renal collecting duct
(130). Another experimental study in rats has shown that
increased circulating MMP-9 activity is associated with
refractory albuminuria, which may lead to the progression of
CKD in patients (131).

1.3.1.3 Extracellular Vesicles and microRNA
In the kidney, EVS can come from blood cells, endothelial cells,
podocytes or renal tubular epithelial cells (132). EVS may be a
biomarker of kidney disease, which is related to inflammation,
thrombosis and immunosuppression (132). The production of
EVS after brain injury affects the normal physiological function
of the kidney. EVS is related to the pathogenesis of acute renal
injury and chronic renal disease, including AKI, CKD, renal
fibrosis and various glomerular diseases (37). No matter what
kind of dialysis treatment is performed, the level of platelet-
derived EVS is increased, indicating that dialysis does not clear
EVS (38). However, as far as the current research is concerned,
the mechanism of EVS causing renal function damage through
brain-kidney interaction is not clear. MiRNA is a small non-
coding RNA molecule that regulates gene expression and
participates in the occurrence and development of
tubulointerstitial sclerosis and glomerular lesions (133). The
level of miR expression changes after stroke. An experimental
study in a mouse model of unilateral ureteral obstruction showed
that TGF- b induced up- regulation of miR-21 expression, which
was mediated by Smad2 signal, thus promoting renal fibrosis
(134). Another in vitro study reported that astragaloside IV (AS-
IV) improved renal function and renal fibrosis by inhibiting
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podocyte dedifferentiation and Mesangial activation induced by
overexpression of miR-21 (135). It can be seen that the inhibition
of Smad2/miR-21 signal pathway may be used as a new
treatment to inhibit renal fibrosis in the future. In addition,
miR-29c is the characteristic miRNA in diabetes. By knocking
down miR-29c with specific antisense oligonucleotides, the
proteinuria and glomerular Mesangial matrix in diabetic mice
are significantly decreased (136).

1.3.2 Treatment
When we treat stroke patients with renal injury, we need to
evaluate the effectiveness and risk of intravenous thrombolysis
and anticoagulation therapy. Studies have shown that stroke
patients receiving intravenous injection of rt-PA increase the risk
of decreased glomerular filtration rate and cerebral hemorrhage
(137). Because the new oral anticoagulants apisaban and
rivasaban are excreted mainly or partly by the kidneys, the
half-life is prolonged in CKD patients, which not only
enhances the antithrombotic effect, but also increases the risk
of bleeding (138). There are no significant benefits of aspirin as a
traditional antiplatelet drug in the treatment of stroke patients,
but studies have shown that aspirin treatment of CKD patients
has a greater absolute reduction in major cardiovascular events
and mortality, this benefit seems to outweigh the increased risk
of massive hemorrhage (139). Many anticoagulants and
thrombolytic agents are used clinically to treat stroke, which
increases the risk of use when patients are complicated with renal
insufficiency. One of the reasons is that we do not know enough
about the mechanism of brain-kidney interaction. Further
exploration of this interaction will help us to find drugs that
have dual protective effects on the brain and kidney.

1.4 Spleen Injury After Stroke
In the human body, the spleen, as one of the most important
immune organs, has innate and acquired immune function and
plays a vital role after stroke. After stroke, the brain broke out a
serious inflammatory cascade reaction. Due to the role of
chemokines and cytokines, the brain recruited a large number
of spleen-derived immune cells to the brain injury site to combat
the inflammatory response (4, 140). Many studies have found
that shortly after stroke, the spleen shrinks sharply and the
number of cells in the spleen decreases accordingly (74, 140–
142). This change may reflect the increase of immune cell
outflow from spleen to peripheral circulation and the increase
of spleen cell group death (143). In one study, carboxyfluorescein
diacetate succinimidyl ester (CFSE) was used to label the
migration of splenocytes after cerebral ischemia. It was proved
that after cerebral ischemic injury, NK cells, T cells, monocytes
and NK cells entered the systemic circulation and migrated to the
brain, aggravating brain injury (144). In addition, due to the role
of cytokines and chemokines, IL-6, IFN- g, TNF-a, MCP-1 and
other molecules are recruited to the brain injury site and
aggravate the brain injury (145, 146). At present, the exact
mechanism of spleen activation after stroke is not clear, but
the activation of sympathetic nervous system, antigen
presentation of central nervous system and the production of
chemokines have been proved to be important factors (143).
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1.4.1 Pathophysiological Mechanism of Spleen Injury
After Stroke
1.4.1.1 Sympathetic Nervous System
Shortly after stroke, activation of the sympathetic nervous system
leads to an increase in norepinephrine and epinephrine in the
systemic circulation. In rodents, the spleen shrinks after MCAO,
which may be due to the expression of a-1 adrenergic receptor in
the splenic sac of rats, which leads to splenic contraction after
activation (141). Both norepinephrine and epinephrine have
been shown to cause significant splenic atrophy (147). Prazosin
or carvedilol could prevent the spleen from shrinking, but only
carvedilol could significantly reduce the infarct volume (148).
These results suggest that a and b adrenergic receptors seem to
mediate the response of the spleen to stroke.

1.4.1.2 Antigen Presentation of the Central Nervous System
In the early stage after stroke, the activation of danger-associated
molecular patterns (DAMP) causes the damaged brain to secrete
various antigens such as ATP, high mobility group protein 1
(HMGB1), heat shock protein (HSP) and nicotinamide adenine
dinucleotide (NAD) (149). These antigens interact with antigen-
presenting cell receptors to activate innate and acquired immune
responses, eventually recruiting immune cells to the injured
brain (150).

1.4.1.3 Production of Cytokines and Chemokines
After MCAO, the levels of TNF-a, IFN-g, IL-6, MCP-1 and IL-2
secreted by mouse splenocytes increased significantly (151). In
addition, IFN g can also activate the expression of chemokine
interferon-inducible protein 10, leading to neurodegeneration
(40). In cerebral ischemic injury, CCL2 (MCP-1) mediates
monocyte and neutrophil infiltration. Inhibition of CCL2/
CCR2 axis can reduce brain edema and leukocyte infiltration
to improve the results of cerebral reperfusion (41). The treatment
of MCAO mice with the antibacterial drug moxifloxacin (MFX)
significantly reduced the expression of CCR2 in spleen tissue and
brain after ischemia, and reduced the area of cerebral infarction
(152). Other cytokines, such as CCL3, CCL5 and CXCR4-
CXCL12, have been shown to play a role in splenic response
after stroke (153).

1.4.2 Treatment
Some experiments have proved that compared with the rats without
splenectomy two weeks before permanent middle cerebral artery
occlusion, the area of cerebral infarction was significantly reduced
and thenumber ofmacrophages, activatedmicroglia andneutrophils
was also greatly reduced (154). However, it is obvious that
splenectomy can’t be used as a practical clinical stroke treatment,
because froma long-termpointof view, the riskof infectioncausedby
failure to maintain normal immune function after splenectomy is
greatly increased. Therefore, drugs and cell-based therapy for the
interaction between the peripheral immune system and the brain
may be used as stroke treatment options (155, 156). There is growing
evidence that intravenous injection of various types of stem cells can
reduce neurological damage caused by stroke to a greater extent than
intracerebral administration (157). Intravenous infusion of human
umbilical cordblood cells (HUCB) to strokepatients can improve the
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cerebral ischemic microenvironment and restore neurological
function (142, 158). Transplantation of HUCB cells after MCAO
increased the production of anti-inflammatory cytokines IL-10,
decreased the production of inflammatory cytokines TNF- a and
interferon-g, and inhibited the proliferation of splenic CD8+T cells
(157). In addition, multipotential adult progenitor cells (MAPC)
treatment can increase the number of Treg cells in the spleen, up-
regulate the level of serum IL-10, reduce the release of IL-1b and IL-6
from splenocytes, and restore the reduction of spleenmass caused by
stroke (159). These evidences suggest that spleen is a key target for
MAPC to regulate immune response, regulate local cerebral
microenvironment and promote rehabilitation after stroke (159).

1.5 Gastrointestinal Bleeding After Stroke
Stroke cuts off the connection between the central nervous
system and the gastrointestinal system, resulting in dysphagia,
gastrointestinal bleeding, delayed gastrointestinal emptying, etc
(160). Dysphagia and gastrointestinal bleeding (GIB) are
common complications after stroke and are related to poor
prognosis. Since dysphagia has been described in post-stroke
pneumonia, we will not repeat it here.

GIB is a common complication in patients with acute stroke
and may affect stroke treatment, such as antiplatelet or
anticoagulation therapy (161). The incidence of gastrointestinal
bleeding after stroke is 1.5%-7.8%, which may be related to the
subtype of stroke (162, 163). Patients with gastrointestinal
bleeding after stroke were characterized by sudden hematemesis,
decreased hemoglobin or orthostatic hypotension. Advanced age,
disturbance of consciousness, severe neurological impairment,
infection and posterior circulation infarction are independent
risk factors for GIB in patients with acute stroke, and GIB is
also a high risk factor for death within 1 year after acute stroke
(164). At present, clinical trials have demonstrated that AIS-GIB
score is an effective clinical grading standard for predicting GIB
during hospitalization after acute ischemic stroke, which plays a
certain role in helping the incidence of GIB and improving
prognosis after AIS (42).

1.5.1 Pathophysiological Mechanism of GIB
At present, the pathogenesis of GIB after stroke is not fully
understood. Stress ulcer caused by acute brain injury, increased
gastric acid secretion or mucosal ischemia caused by overactivity
of vagus nerve may be one of the causes of GIB.

Aspirin is a commonly used antiplatelet drug in patients with
stroke, and its low-dose side effects may also cause gastrointestinal
mucosal damage, leading to gastroduodenal ulcer (165). A meta-
analysis shows that cilostazol is less likely to have gastrointestinal
bleeding than aspirin, although other gastrointestinal adverse
reactions are more likely to occur (166). In addition to stress
ulcer and antiplatelet effect, systemic inflammation and oxidative
stress may be the pathophysiological mechanism of gastrointestinal
mucosal injury after stroke (167). During ischemic stroke, ulcers can
also be formed due to the decrease of gastric mucosal blood flow.
Some animal experimental studies have shown that norepinephrine
neurons reduce gastric mucosal blood flow through a-adrenergic
receptors in rats with cerebral ischemia, resulting in damage to the
June 2022 | Volume 13 | Article 901209

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wang et al. Peripheral Organ Injury After Stroke
integrity of gastric mucosa. Vagotomy can eliminate the decrease of
gastric mucosal blood flow during cerebral ischemia (168). In
addition, malnourished stroke patients are also more likely to
develop gastrointestinal bleeding (169).

1.5.2 Treatment
The treatment and prevention of stroke patientswith gastrointestinal
bleeding should follow routine guidelines. ASA (antiplatelet-statin-
antihypertensive) is a drug used for secondary stroke prevention to
prevent cerebrovascular thrombosis in patients with cerebrovascular
disease or patients at risk of cerebrovascular disease (160). However,
antiplatelet drugs should be carefully selected when treating this type
of patients, and their anti-platelet and gastrointestinal mucosal
damage may increase the risk of bleeding. Therefore, antiplatelet
therapy for secondary stroke prevention must be individualized
according to the patient’s complications, including the risk of
bleeding (170). Studies have shown that antiplatelet drugs in
combination with proton pump inhibitors (PPI) or misoprostol
can reduce the risk of gastrointestinal injury (171). PPI can
effectively inhibit the secretion of basal gastric acid and stimulating
gastric acid, andmake thePHofgastric juicemore than6.0. therefore,
it can induce hemostasis by body fluid and platelet. In addition, PPI
can also promote gastric mucosal blood, improve local
microcirculation, accelerate mucosal regeneration and repair, and
further control bleeding.
2 CONCLUSION

Peripheral organ injury and dysfunction are very common
after stroke, which usually occur within one week after stroke,
so measures need to be taken to prevent and treat them in
time. The most common complications after stroke include
pulmonary infection, heart failure, acute renal injury and
Frontiers in Immunology | www.frontiersin.org 9
gastrointestinal bleeding. Understanding the pathogenesis, high
risk factors and onset time of these complications is helpful for
early diagnosis and treatment. The interaction between brain and
peripheral organs after stroke is almost always carried out through
humoral regulation and neuroregulation. The activation of the
immune system and inflammatory response are very important
for stroke. They affect many peripheral organs and thus affect the
outcome of stroke. Here, we also emphasize and discuss the role of
immune and inflammatory responses in all the organs under
discussion, hoping to clarify the relationship between them and
stroke. However, there are still many problems that have not yet
been overcome. The injury of peripheral organs after stroke is
usually not caused by the interaction of two or several systems, but
by the participation of multiple systems throughout the body.
There is no experimental model that can summarize all aspects at
present. Elucidating the interaction between central and peripheral
organs and peripheral organs will help us to develop more
effective treatments.
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GLOSSARY

ACEI Angiotensin converting enzyme inhibitors
ADH Antidiuretic hormone
AIS Acute ischemic stroke
AKI Acute kidney injury
ALIAS Albumin in Acute Ischemic Stroke
ARDS Acute respiratory distress syndrome
AREST Apixaban for Early Prevention of Recurrent Embolic Stroke and

Hemorrhagic Transformation
ASA Antiplatelet-statin-antihypertensive
BBB Blood-brain barrier
CAMP Cyclic adenosine monophosphate
CAN Autonomic neural network
CKD Chronic kidney disease
COSSACS Continue Or Stop post-Stroke Antihypertensives Collaborative

Study
CNS Central nervous system
CRP C-reactive protein
DAMPs Damage-associated molecular patterns
EVS Extracellular vesicles
GFR Glomerular filtration rate
GIB Gastrointestinal bleeding
HMGB1 High mobility group protein 1
HPA Hypothalamus-pituitary-adrenal axis
HSP Heat shock protein
HUCB Human umbilical cord blood cells
ICH Intracerebral hemorrhage
IL Interleukin
IFN Interferon
IRIS Insulin Resistance Intervention after Stroke
MAPC Multipotential adult progenitor cells
MCAO Middle cerebral artery occlusion
MCP Membrane cofactor protein
MFX Moxifloxacin
MMP9 Matrix metalloproteinase-9
NAD Nicotinamide adenine dinucleotide
NAVIGATE-
ESUS

l New Approach Rivaroxaban Inhibition of Factor Xa in a Global trial
versus acetylsalicylic acid to prevent embolism in Embolic Stroke of
Undetermined Source

NIHSS National Institutes of Health Stroke Scale
NMDA N-methyl-D-aspartate
NPE Neurogenic pulmonary edema
PCP Pulmonary capillaryhydrostatic pressure
PPI Proton pump inhibitors
RAS Renin-angiotensin system
RBF Renal blood flow
RT-PA Recombinant tissue plasminogen activator
ROS Reactive oxygen species
SAH Subarachnoid hemorrhage
SAP Stroke-associated pneumonia
SIIS Stroke-induced immunosuppression
SVR Systemic vascular resistance
TGF Transforming growth factor
TGI Transient global cerebral ischemia
TLR Toll-like receptor
TMAO Trimethylamine N-oxide
TNF Tumor necrosis factor
URICO-
ICTUS

Efficacy Study of Combined Treatment With Uric Acid and r-tPA in
Acute Ischemic Stroke
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