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The gut microbiome is a key factor in determining inter-individual variability in response to

diet. Thus, far, research in this area has focused on metabolic health outcomes such as

obesity and type 2 diabetes. However, understanding the role of the gut microbiome in

determining response to diet may also lead to improved personalization of sports nutrition

for athletic performance. The gut microbiome has been shown tomodify the effect of both

diet and exercise, making it relevant to the athlete’s pursuit of optimal performance. This

area of research can benefit from recent developments in the general field of personalized

nutrition and has the potential to expand our knowledge of the nexus between the gut

microbiome, lifestyle, and individual physiology.

Keywords: gut microbiome, exercise, personalized nutrition, sports nutrition, performance, metabolism, athletes,

optimization

INTRODUCTION

The gut microbiome has been implicated in themodulation of human health andmetabolism (1, 2).
This microbial “organ” has been linked to nutrition-related chronic diseases such as obesity and
diabetes (3–6) and has also been shown to influence systemic functions including immunity (7, 8)
and brain function (9, 10). The gut microbiome may influence health via mechanisms such as the
production of metabolites (2, 11) [e.g., short-chain fatty acids (SCFAs)] that can influence a wide
array of host systems and metabolic pathways (12, 13).

However, the gut microbiome is not a fixed trait, but instead responds to environmental stimuli
and is a malleable part of the human supraorganism (14) (Figure 1). Much of microbiome research
has focused on the effect of lifestyle factors, such as diet (15–17) and exercise (18, 19), on the
gut microbiota. Variability in the composition and function of the gut microbiome (20, 21) has
also fueled research on the relationship between features of the gut microbiota, such as diversity
or the presence, absence, or amount of certain taxa, and host health. Precision nutrition studies
are now investigating how to predict individual differences in glycemic response, triglycerides,
cholesterol levels, and other indicators of health as a way to personalize nutrition recommendations
and prevent diet-related chronic diseases such as obesity and type 2 diabetes. Our previous two-part
review (22, 23) explored the effect of the gut microbiome on inter-individual variability in response
to diet and how this may contribute to metabolic health.

Alternatively, wemay consider the potential effect of the gut microbiome onmeasures of athletic
performance. Successful performance in training, such as a time trial or rep max load, and general
metabolic health are two distinct aspects of metabolic response that are not necessarily directly
coupled (24). While nutrition is an important part of general health and well-being, it is also an
important tool in an athlete’s arsenal to optimize performance (25).

Variability in the physiological response to training and nutrition has been attributed to factors
such as age, sex, training history, initial training status, psychological factors, and the mode,
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FIGURE 1 | The gut microbiome is influenced by numerous biological and

lifestyle factors such as diet, genetics, antibiotics, exercise, and environment

(e.g., pollutants, urban vs. rural, etc.).

duration, intensity, and frequency of training (26). Genetics has
also become a large topic of research in the area of variability in
response to exercise training and potentially ergogenic dietary
components (27–38). It is possible that variability in the gut
microbiome may also influence gains in performance in response
to training and nutrition. Despite the growing interest in the gut
microbiome and personalized nutrition, very few studies have
combined these fields with that of athletic performance. This is
surprising as athletes are extremelymotivated to capitalize on any
advantage, however small, that could increase their performance.
This review focuses on several topics related to the question of
whether the gut microbiome may be used to predict performance
response to dietary and/or training interventions. This includes
topics such as (1) the effect of exercise on the gut microbiome, (2)
the effect of dietary components or patterns relevant to athletic
nutrition on the gut microbiome, and (3) the effect of the gut
microbiome on performance response to diet and exercise. Each
of these related topics will be discussed, as will gaps in the
research and future directions.

METHODS

Numerous reviews have been published highlighting the effect of
exercise on the gut microbiota (39–56). However, the primary
focus of these reviews has been the implications for aspects of
host health, such as the immune system and risk of chronic
diseases. Only a few have discussed the implications for athletic
performance (41, 48, 52). This review aims to provide a more
in-depth discussion of the interactive effect between the gut
microbiota and diet on athletic performance and highlight the

need for further research in this area. A literature search in
PubMed and Google Scholar, including combinations of key
words “gut microbiota”, “exercise”, “performance,” “variability,”
and “effect,” was used to identify relevant studies. References were
also obtained from the above review articles.

The earliest study found was published in 2008 by Matsumoto
et al. (57) but was followed by a host of studies aiming to identify
the effects of exercise on the gut microbiota (19, 58–83). The
majority of these studies have investigated the effect of exercise
on the gut microbiota in rodents (57–75), though some have
studied humans in intervention trials (18, 76–78, 84) and in
cross-sectional or observational comparisons of athletes or active
individuals and sedentary individuals (19, 79–83, 85, 86).

RESULTS

The Effect of Exercise on the Gut
Microbiome
Microbiota Features Affected by Exercise
Table 1 summarizes the studies listed above and their findings of
the effect of exercise on the gut microbiota.

Although there are similarities in microbial factors shown to
be affected by exercise within the literature, directions of the
effects are inconsistent, and some studies show contradictory
results. For example, while some studies show a reduction
in Firmicutes and/or an increase in Bacteroidetes as a result
of exercise (58, 64, 66, 70, 73, 74, 81, 84), others show the
opposite effect (19, 60–62, 68, 71, 81, 86), and others show no
effect (69, 76, 82).

Findings on the effect of exercise on measures of diversity
are also highly variable, some showing increases in α-diversity
(19, 60, 64, 68, 70, 71, 75, 79, 86), some showing decreases (58,
59, 66), and others reporting no difference (18, 59, 63, 65, 69, 76–
78, 82, 83). Brandt et al. (73) also found that exercise attenuated
the decrease in α-diversity that occurred when mice were fed a
high-fat diet.

Bacterial taxa commonly shown to respond to exercise
training include Lactobacillus (typically increased) (58, 60,
62, 68), Bifidobacterium (typically increased) (58, 62, 76,
82), Proteobacteria (typically decreased) (58, 65, 66, 68,
76), Akkermansia (typically increased) (19, 75, 76, 79, 82),
Streptococcus (variable effects) (61, 68, 69), Clostridium (variable
effects) (58, 62, 63, 67, 77), Turicibacter (typically decreased)
(59, 64), and Rikenellaceae (typically decreased) (63, 66, 69) as
well as measures of α- and β-diversity (variable effects) (19, 58,
60, 64, 66, 68, 70, 76, 80).

However, in some studies, changes in taxa are dependent on
other factors such as changes in weight, body fat, and blood
glucose (64, 76). This suggests, that the associated metabolic
effects of the exercise regime may be the proximal cause,
while exercise is the ultimate cause. Related variables, SCFA
production and butyrate-producing taxa, have been consistently
shown to increase in response to exercise (18, 57, 79) and
have also been positively correlated to changes in lean muscle
mass, also suggesting that SCFAs may play an important role
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TABLE 1 | Summary of effect of exercise on the gut microbiome.

References Subjects Type of exercise Type of

study

Diet Microbiota

method

Microbial

diversity

Firmicutes

(phylum)

Bacteroidetes

(phylum)

Lactobacillaceae

(family)

Bifidobacteriaceae

(family)

Other microbiota factors

Rodent studies

Allen

et al. (59)

Mice (C57BL/6J,

6 wk, male)

Voluntary wheel

running (VWR) vs.

forced treadmill

running (FTR) for

6 wk

Intervention Commercial

diet

Composition

(16S)

↓ in VWR

(Chao1)

↔ (Shannon)

↓ Turicibacter in

VWR

Lambert

et al. (62)

Mice (diabetic

db/db C57BL/KsJ-

leprdb/leprdb and

normal db/+, 6 wk,

male)

Treadmill Intervention Chow diet Composition

(qPCR)

↑ Firmicutes,

Clostridium

↓ Bacteroides,

Prevotella

↑ Lactobacillus (not

after adjustment for

body weight and

blood glucose)

↑ Bifidobacterium in

exercised normal vs.

sedentary normal

↓ Bifidobacterium in

exercised diabetic

↓ Enterobacteriaceae in

exercised diabetic vs.

sedentary diabetic

Lamoureux

et al. (63)

Mice (C57BL/6,

6–10 wks, 11 male

and 31 female)

Voluntary exercise

(VE) vs. moderate

forced exercise

(treadmill) (FE) for

8 wk

Intervention Normal diet Composition

(16S)

↔ α-diversity

(species

richness) or

β-diversity

(weighted and

unweighted

UniFrac,

Bray-Curtis)

Random forest predicted

voluntary exercise with 97%

accuracy using Bacteroides,

Lactobacillus, Rikenellaceae,

Lachnospiraceae; predicted

forced exercise with 86%

accuracy using Bacteroides,

Clostridiales, and

Lactobacillales

Liu

et al. (75)

Mice (C57BL/6J, 4

wk, male;

myocardial

infarction (MI),

sham, or

no-surgery)

Treadmill for 4 wk Intervention None Composition

(16S)

↑ α-diversity

(Shannon,

PD_whole_tree)

↑ Butyricimonas, Prevotella,

Akkermansia in

exercise/non-surgery mice

↑ Parasutterella in

control/non-surgery mice

↑ Erysipelotrichaceae,

Sphingobacteriales,

Akkermansia in

exercise/sham mice

↑Corynebacterium,

Staphylococcus,

Enterobacteriaceae in

control/sham mice

↑ Phenylobacterium and

Roseateles in exercise/MI

mice

Brandt

et al. (73)

Mice

(C57BL/6N,8–10

wk, male, loxP

insertions in

Ppargc1a gene)

Voluntary wheel

running (VWR) for

16 wk

Intervention Standard

rodent chow

(CON) vs.

High-fat diet

(HFD) vs. HFD

+ resveratrol

Composition

(16S)

↓ α-diversity in

HFD mice vs.

CON

↑ β-diversity in

HFD mice

vs. CON

↑ Bacteroidetes in

HFD plus exercise

vs. HFD

↓ Actinobacteria in

HFD plus exercise vs.

HFD

↓ Erysipelotrichaceae,

Verrumicrobioa in HFD plus

exercise vs. HFD

↑ Alistipes in HFD plus

exercise vs. HFD

Campbell

et al. (67)

Mice (C57BL/6NT, 8

wk, male)

Voluntary wheel

running for 12 wk

Intervention Normal diet vs.

High-fat diet

Composition

(TRFLP, 16S)

↑ Allobaculum,

Clostridiales,

Faecalibacterium

prausnitzii

(Continued)
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TABLE 1 | Continued

References Subjects Type of exercise Type of

study

Diet Microbiota

method

Microbial

diversity

Firmicutes

(phylum)

Bacteroidetes

(phylum)

Lactobacillaceae

(family)

Bifidobacteriaceae

(family)

Other microbiota factors

Evans

et al. (64)

Mice (C57BL/6J, 6

wk, male)

Voluntary wheel

running for 12 wk

Intervention Low-fat vs.

High-fat diet

Composition

(16S, qPCR,

TRFLP)

↑ α-diversity

(Shannon) with

high-fat diet and

exercise

↓ Firmicutes (16S),

Turicibacteraceae,

Erysipelotrichaceae

(qPCR)

↔ Firmicutes

(qPCR)

↑ Bacteroidetes/

Firmicutes (qPCR)

↓ Bacteroidetes/

Firmicutes (qPCR)

↑ Bacteroidetes

(16S),

Bacteroidetes/

Firmicutes (qPCR)

↔ Bacteroidetes

(qPCR)

↓ Bacteroidetes/

Firmicutes (qPCR)

↓ Lactobacillaceae

(qPCR)

↓ Actinobacteria

(16S),

Bifidobacteriaceae

(qPCR)

↑ butyrate-producing taxa

McCabe

et al. (74)

Mice (C57BL/6J, 6

wk, male)

Voluntary wheel

running for 14 wk

Intervention Low-fat vs.

High-fat diet

Composition

(16S)

↓ Firmicutes/

Bacteroides in

HF-exercise

↓ Firmicutes/

Bacteroides in

HF-exercise

Kang

et al. (61)

Mice (C57BL/6J, 8

wk, male)

Motorized wheel

running for 16 wk

Intervention Normal diet vs.

High-fat diet

Composition

(16S)

↑ Firmicutes,

Lachnospiraceae

↓

Streptococcaceae

↓ Bacteroidetes ↓ Tenericutes

Denou

et al. (70)

Mice (C57BL/6J, 8

wk, male)

High-intensity

interval training

(HIIT) on treadmill

for 6 wk

Intervention Chow diet vs.

High-fat diet

Composition

(16S) and

function

(PICRUSt)

↑ α-diversity

(Shannon)

↑ Bacteroidetes/

Firmicutes

↑ Bacteroidetes/

Firmicutes,

Bacteroidales

↑ KEGG-annotated

metabolism genes

Choi

et al. (60)

Mice (C56BL/6NT,

11–13 mo, male)

Voluntary wheel

running for 5 wk

Intervention Polychlorinated

biphenyls

(PCBs)

Composition

(16S)

↑ abundance ↑ Firmicutes (mostly

Lactobacillales)

↑ Lactobacillales ↓ Tenericutes

(Erysipelotichaceae)

↑ Proteobacteria (prevented

PCB-induced decrease)

Liu

et al. (65)

Rats

(ovariectomized

(OVX) high capacity

(HCR) and low

capacity (LCR)

runners, 27 wk,

females)

Voluntary wheel

running for 11 wk

Intervention Chow diet Composition

(16S)

↔ α-diversity

(Chao1)

↑ Firmicutes in HCR

↓ Firmicutes in LCR

↓ Proteobacteria,

Cyanobacteria in HCR

↑ Proteobacteria,

Cyanobacteria in LCR

Mika

et al. (50)

Rats (F344, day 24

vs. day 70, male)

Voluntary wheel

running for 6 wk

Intervention Standard diet Composition

(16S)

↓ α-diversity

(Shannon

entropy, species

richness) in

young rats

↑ β-diversity

(unweighted

UniFrac) in

young rats

↓ Firmicutes in

young rats

↑ Blautia,

Anaerostipes in

young rats

↑ Turicibacter in

adult rats

↑ Bacteroidetes in

young rats

↑ Euryarchaeota

(Methanosphaera) in young

rats

↓ Proteobacteria

(Desulfovibrio) in young rats

↓Rikenellaceae in young rats

↑ Rikenellaceae in adult rats

Bacteroides,

Bifidobacterium,

Ruminococcus,

Rikenellaceae,

Parabacteroides,

Christensenellaceae,

Methanosphaera predict

time point in young rats

(Continued)
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TABLE 1 | Continued

References Subjects Type of exercise Type of

study

Diet Microbiota

method

Microbial

diversity

Firmicutes

(phylum)

Bacteroidetes

(phylum)

Lactobacillaceae

(family)

Bifidobacteriaceae

(family)

Other microbiota factors

Matsumoto

et al. (57)

Rats (Wistar, 7 wk,

male)

Voluntary wheel

running for 5 wk

Intervention Casein-

sucrose

diet

Composition

(PCR-TGGE)

Differential clustering

between exercise and

controls

↑ butyrate-producing taxa

Queipo-

Ortuno

et al. (58)

Rats (Sprague

Dawley, 5 wk, male)

Voluntary wheel

running for 6 d

Intervention Activity based

anorexia (ABA,

1 h food intake

w/ exercise),

ABA control

(sedendary),

Exercise (ad lib

w/ exercise),

Ad lib (ad lib

sedentary)

Composition

(PCR-DGGE,

qPCR)

↓ α-diversity

(band richness)

↓ Firmicutes in ABA

vs. Exercise and Ad

lib; in Exercise vs.

Ad lib

↑ Clostridium in

ABA

↑ B. Coccoides-E.

rectale group in

Exercise vs. Ad lib

↓ Clostridium,

Enterococcus in

Exercise vs. Ad lib

↓ Bacteroidetes in

ABA vs. Exercise

and Ad lib

↑ Bacteroides,

Prevotella in ABA

vs. ABA control

↓ Bacteroides,

Prevotella in

Exercise vs. Ad lib

↑ Lactobacillus in

Exercise vs. Ad lib

↓ Actinobacteria in

ABA

↑ Actinobacteria in

Exercise vs. Ad lib

↑ Bifidobacterium in

Exercise

↑ Proteobacteria in ABA vs.

Exercise and Ad lib

Welly

et al. (69)

Rats (obesity prone

OP-CD, 4 wk, male)

Voluntary wheel

running

Intervention High-fat diet

(HFD; groups:

sedentary, w/

exercise,

weight

matched to

exercise)

Composition

(qPCR)

↔ α-diversity

(species

richness)

↑

Streptococcaceae

in Exercise

↔ Firmicutes/

Bacteroidetes ratio

↓ S24–7 in

Exercise

↓ Bacteroidetes in

Exercise and

weight-matched

(trending, not

significant)

↔ Firmicutes/

Bacteroidetes

ratio

↓ Rikenellaceae in Exercise

Feng

et al. (71)

Rats (high capacity

(HCR) and low

capacity (LCR)

runners, sugery or

sham)

Treadmill for 6 wk Intervention None Composition

(16S)

↑ α-diversity

(Shannon) in

LCR rats

↑ β-diversity in

LCR and

HCR rats

↑ Firmicutes in HCR

rats

↓ Bacteroidetes in

HCR rats

Petriz

et al. (68)

Rats (Zucker

(obese), Zucker

(spotaneously

hypertensive), and

Wistar (non-obese,

control), 20 wk,

male/female?)

Forced treadmill

running for 4 wk

Intervention Not reported Composition

(16S)

↑ α-diversity

(Shannon,

rarefaction)

↑ Firmicutes

↓ Streptococcus in

non-obese Wistar

↑ Allobaculum in

hypertensive

↓ Bacteroidetes in

non-obese Wistar

↑ Lactobacillus in

obese Zucker

↓ Proteobacteria

↓ Sutterella,

Aggregatibacter in

hypertensive

Batacan

et al. (72)

Rats (Wistar, 12 wk,

male)

Control (CTL),

sedentary (SED),

light-intensity

trained (LIT), and

high-intensity

interval trained

(HIIT) for 12 wk

Intervention Standard chow

(SC) versis

high-fat

high-fructose

(HF) diet

Composition

(16S)

↔ α-diversity

between activity

groups

regardless of

diet (Chao1,

observed

species,

Shannon,

Simpson,

↓ Firmicutes in

LIT-SC

↑ Clostridiaceae in

HF

↑ Lachnospiraceae

in HIIT-SC

↑ Lactobacillus

johnsonii increased in

LIT-SC

↑ Actinobacteria in

LIT-SC

↓ Bifidobacterium

in HF

↑ Tenericutes, Prevotella

excrementihominis,

Erysipelotrichaceae in

LIT-SC (Erysipelotrichaceae

higher in HF-fed rats)

↓ Turicibacteraceae in SC

↑ polysaccharide degraders

and SCFA producers with

exercise in both SC and HF

(effects weaker in HF)

(Continued)
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TABLE 1 | Continued

References Subjects Type of exercise Type of

study

Diet Microbiota

method

Microbial

diversity

Firmicutes

(phylum)

Bacteroidetes

(phylum)

Lactobacillaceae

(family)

Bifidobacteriaceae

(family)

Other microbiota factors

dominance,

richness,

equitability,

evenness)

↑ β-diversity

(weighted

and/or

unweighted

UniFrac)

Human intervention studies

Allen

et al. (18)

Humans (32

previously

sedentary subjects,

18 lean 14 obese)

Endurance

exercise for 6 wk

progressed from

moderate to

vigorous; followed

by 6 wk sedentary

Intervention Habitual diet Composition

(16S) and

function (qPCR

of select

functional

genes)

↔ α-diversity

(Chao1)

↔ β-diversity

after exercise/

washout

(weighted and

unweighted

UniFrac)

β-diversity

different

between

lean/obese at

baseline

↑ butyrate-regulating group

in lean and obese

Butyrate group explained

61.2% of variance in

microbiota response and

84% of VO2max response

1Butyrate-producers ∼

1lean mass

Munukka

et al. (76)

Humans (19

overweight,

sedentary women)

Endurance

exercise (bike erg)

for 6 wk

Intervention None Composition

and function

(16S,

metagenomics)

↔ α-diversity

(not reported)

↑ β-diversity

(Jaccard)

↔ Firmicutes ↔ Bacteroidetes ↑ Bifidobacteriaceae

(dependent on weight,

body fat %, android

fat %, total energy

intake, sucrose, fiber)

↓ Proteobacteria

↑ Verrumicrobiaceae,

Akkermansia

↓ genes in fructose,

mannose, alanine, aromatic

amino acid metabolism

Taniguchi

et al. (77)

Humans (31

Japanese adult

males, >60 years

old)

Cycling for 5 wk,

no washout

between

intervention and 5

wk control period

Intervention Habitual diet Composition

and function

(16S,

metagenomics)

↔ α-diversity

(Shannon,

observed

OTUs)

↓ Clostridium

difficile during

exercise

↑ Oscillospira during

exercise (no longer

significant after adjusting for

dietary changes and

treatment sequence)

↑ Metagenomic functions

belonging to “Genetic

Information Processing” and

“Nucleotide Metabolism”

during exercise

Morita

et al. (84)

Humans (32

Japanese sedentary

adult women, >65

years old)

Aerobic exercise

(AE) or trunk

muscle training

(TM) for 12 wk

Intervention Habitual diet Composition

(TRFLP)

↓ Clostridium

subcluster XIVa

decreased in AE

↑ Clostridium IX

in TM

↑ Bacteroides

(negatively

correlated with

pre-Bacteroides)

Cronin

et al. (78)

Humans (74 healthy

Irish adults)

Mixed aerobic

and resistance

exercise training

program for 8 wk

Intervention Whey Protein+

Exercise (EP)

vs. Exercise (E)

vs. Whey

Protein (P)

Composition

and function

(metagenomics)

↔ α-diversity

from baseline

but higher in EP

vs. P group

Differential abundance of

virus species between

groups

(Continued)
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TABLE 1 | Continued

References Subjects Type of exercise Type of

study

Diet Microbiota

method

Microbial

diversity

Firmicutes

(phylum)

Bacteroidetes

(phylum)

Lactobacillaceae

(family)

Bifidobacteriaceae

(family)

Other microbiota factors

after

intervention

↓ Archaea

diversity in E

group

alteration in

β-diversity of

the gut virome

in P and

EP groups

Human cross-sectional studies

Bressa

et al. (82)

Humans [40

premenopausal

Caucasian women;

19 active (ACT), 21

sedentary (SED)]

General physical

activity (measured

for 1 wk)

Cross-

sectional

Habitual diet Composition

(16S, qPCR)

↔ α-diversity

(Chao1,

Observed,

Shannon)

↔ β-diversity

(unweighted or

weighted

UniFrac)

Observed #

species,

Shannon,

Simpson

indices (+) ∼

minimum time

per sedentary

bout (work

days)

↑ Firmicutes

(trending)

↔ F/B ratio

↓ Bacteroidetes

(trending)

↔ F/B ratio

↑ Bifidobacterium in

ACT women

↑ Haemophilus,

Paraprevotella,

Coprococcus,

Ruminococaceae

unclassified 1 in ACT

women (16S)

↓ Desulfovibrionaceae

unclassified, Turicibacter,

Barnesiellaceae,

Odoribacteriaceae,

Ruminococcaceae

unclassified 2,

Ruminococcus in ACT

women (16S)

↑ Faecalibacterium

prausnitzii, Roseburia

hominis, Akkermansia

mucinipihila in ACT women

(qPCR)

Karl

et al. (86)

Humans (73

Norwegian soldiers,

26 provided pre-

and post- stool

samples)

4-day cross

country ski-march

(STRESS)

Cross-

setional

Rations with or

without

protein- or

carbohydrate-

based

supplements

Composition

(16S)

↑ α-diversity

post-STRESS

(Shannon)

↑ Firmicutes ↓ Bacteroidetes Random forest using

microbiota predicted pre-

and post-STRESS samples

with 100% accuracy

Shukla

et al. (81)

Humans (10 myalgic

encephalomyelitis/

chronic fatigue

syndrome (ME/CFS)

patients, 10 healthy

controls)

Cycling (max test) Cross-

sectional

Habitual diet Composition

(16S) in blood

and stool

↑ Firmicutes in

ME/CFS patients

after exercise

↓ Firmicutes in

healthy controls

after exercise

↑ Firmicutes/

Bacilli and

Clostridium in blood

of ME/CFS patients

after exercise (not in

healthy controls)

↓ Bacteroidetes in

ME/CFS patients

after exercise

↑ Bacteroidetes in

healthy controls

after exercise
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TABLE 1 | Continued

References Subjects Type of exercise Type of

study

Diet Microbiota

method

Microbial

diversity

Firmicutes

(phylum)

Bacteroidetes

(phylum)

Lactobacillaceae

(family)

Bifidobacteriaceae

(family)

Other microbiota factors

Barton

et al. (79)

Humans (40

professional rugby

players, 46 controls)

Rugby Cross-

sectional

None Function

(metagenomics)

↑ α-diversity in

athletes vs.

high-BMI

controls

(Shannon,

Simpson) or all

controls

(Phylogenetic

diversity,

Chao1,

Observed

species)

↑ Akkermansia pathways in

athletes vs. high-BMI

controls

↑ pathways (amino acid and

antibiotic biosynthesis,

carbohydrate metabolism) in

athletes

Clarke

et al. (19)

Humans (40

professional rugby

players, 46 controls)

Rugby Cross-

sectional

Habitual diet Composition

(16S)

↑ α-diversity in

athletes vs.

high-BMI

controls

(Shannon,

Simpson) or all

controls

(Phylogenetic

diversity,

Chao1,

Observed

species)

↑ Firmicutes in

athletes vs.

high-BMI controls

↓ Bacteroidetes in

athletes vs.

high-BMI controls

↑ Akkermansia in low-BMI

athletes vs. high-BMI

controls

O’Donovan

et al. (83)

Humans (37

professional Irish

athletes)

16 different sports

across varying

sports

classification

groups (SCGs)

Cross-

sectional

Habitual diet Composition

and function

(metagenomics)

↔ α-diversity

(Shannon and

Simpson)

between SCGs

↑ Bacteroides

caccae ∼ SCGs

with high

static/high

dynamic

components

↑ Bifidobacterium

animalis ∼ SCGs with

low static/high

dynamic components

↑ Streptococcus suis,

Clostridium bolteae,

Lactobacillus phage LfeInf,

Anaerostipes hadrus, flavin

biosynthesis and

fermentation pathways ∼

SCGs with moderate

dynamic component

↑ Lactobacillus acidophilus,

Prevotella intermedia,

Faecalibacterium prausnitzii

∼ SCGs with low static/high

dynamic components

↑ folate and amino acid

biosynthesis pathways ∼

SCGs with high static/high

dynamic components

↑ Nucleotide biosynthesis ∼

SCGs with high static/low

dynamic components

No species associated with

SCGs with high static/low

dynamic components or

high dynamic/moderate

static components
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in mediating the effects of exercise and the gut microbiome
on host response (18). Table 2 summarizes additional
effects of exercise on microbial metabolites, host health, and
dietary interactions.

Potential Causes of Discrepancies Between Studies
Potential reasons for the disparate results of these studies include
study design factors as well as analytic methods (Figure 2). Study
design factors include the choice of model (e.g., humans, mice,
rats), the strain of mouse/rat (e.g., C57BL/6J, Zucker, Wistar,
Sprague Dawley, etc.) (87), choice of diet (72), health or disease
status (75, 81), age (66), gender, and the mode, duration, and
intensity of training (59, 63, 72, 83, 84) as well as analytic
methods such as DNA extraction and PCR primer biases (88–
90), choice of microbiome sequencing methods (e.g., 16S rRNA
gene sequencing, qPCR, metagenomics, etc.) (64), bioinformatic
pipelines (90), and choice of diversity metrics (e.g., Shannon,
Chao1, Simpson, etc.). For example, mouse models often use
forced treadmill running or voluntary wheel running as modes of
training. However, forced treadmill exercise often uses aversive
motivation, such as shocks, which could induce negative stress
responses (91–93) that may also affect intestinal permeability and
the gut microbiome (59, 94, 95). In humans, exercise or sport is a
broad term that can apply to a wide range of modes, durations,
and intensities of activity. O’Donovan et al. (83) attempted
to determine differential effects of different modes of exercise
on the gut metagenome by doing a cross-sectional analysis of
professional athletes from different sports with varying degrees of
static and dynamic components. In this analysis, O’Donovan etal.
found some differences in bacterial taxa and metabolites between
sports classification groups (SCGs) that did not correlate with any
other metadata (e.g., diet, sex, etc.) (83).

In addition to differences in how results are obtained or
measured, there is also a great deal of heterogeneity in what
results are measured, or reported, that make it difficult to
determine the full extent of variability in response between
studies. In order to gain better insight into the potential effects
and pathways by which exercise exerts its effect on the gut
microbiome, it would be beneficial for studies to report effects
on at least a certain standard set of microbiota variables that
have already been shown to be relevant by multiple studies
such as Firmicutes, Bacteroidetes, Lactobacillus, Bifidobacterium,
Akkermansia, Clostridium, and Proteobacteria as well as diversity
(though a standard metric has yet to be determined), butyrate-
producing taxa (96), and SCFA production, even if the result
is no change/difference. Munukka et al. (76) reported a lack of
consistent effects due to inter-individual variability in response
of the gut microbiota to exercise. This too is an important
finding that should be reported and explored to determine
factors that contribute to this variability in response and whether
these differences in microbial response translate to differences in
physiological response. These reporting standards would allow
for better comparison between studies and potentially enable
researchers to determine how different methods impact the
results and elucidate factors that may contribute to variability
in response.
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TABLE 2 | Summary of effect of exercise on the microbial metabolites, host health, and dietary interactions.

References SCFAs Other metabolites Host health GI tract physiology Diet interactions

Rodent studies

Allen et al. (59) ↓ gastrointestinal

inflammation in

VWR,

↑ in FTR

Lambert et al. (62) ↑ glucose in exercised normal vs.

sedentary normal

↔ glucose in exercised diabetic vs.

sedentary diabetic

Liu et al. (75) ↑ Left ventricular ejection fraction (EF),

fractional shortening (FS), cardiac

output (CO), and stroke volume (SV)

FS, EF, CO, SV, and left ventricular end

systolic diameter (LVESD) correlated

with gut microbiota taxa

Brandt et al. (73) ↑ body weight in HFD vs. CON, HFD

plus resveratrol

↔ body weight in HFD vs. HFD plus

exercise

↑ body fat %, subcutaneous, and

visceral adipose tissue in HFD and HFD

plus exercise vs. CON

↓ lean body mass in HFD and HFD plus

exercise vs. CON

↑ serum amyloid A (SAA) in all HFD

groups vs. CON

Campbell et al. (67) Body fat %: High-fat sedentary >

High-fat exercise > low-fat sedentary >

low-fat exercise

↓ inflammatory

infiltrate, COX-2, and

high-fat diet-induced

morphological

changes in exercise

McCabe et al. (74) ↑ Bone volume fraction with exercise [∼

Firmicutes/Bacteroides (–), Clostridia

(–), Lachnospiraceae (–), Actinobacteria

(+)]

↓ Trabecular bond volume with high-fat

diet

↑ Marrow adiposity with high-fat diet

↓ Body weight, fat pad mass, fasting

glucose with exercise and low-fat diet

Kang et al. (61) ↔ high-fat diet-induced anxiety

↑ cognitive abilities

Denou et al. (70) High-fat diet with exercise vs. high-fat

diet:

↔ body mass, fasting blood glucose

↑ insulin tolerance, RER, food intake,

time to exhaustion with exercise

Liu et al. (65) ↓ non-esterified fatty acids (NEFAs)

and triglycerides in LCR rats

↑ non-esterified fatty acids (NEFAs)

and triglycerides in HCR rats

↓ body weight, fat mass, feed efficiency

in LCR rats

↑ body weight, fat mass, food intake,

feed efficiency of HCR rats

Christensenellaceae ∼

food intake

Mika et al. (50) ↓ weight in adult rats

↑ weight, lean mass in young rats

Matsumoto et al. (57) ↑ cecal

n-butyrate

↑ cecum size/weight

Queipo-Ortuno et al.

(58)

↑ body weight in Exercise and Ad lib

↓ body weight in ABA and ABA control

↑ ghrelin [∼Lactobacillus (–),

Bifidobacterium (–)]

(Continued)
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TABLE 2 | Continued

References SCFAs Other metabolites Host health GI tract physiology Diet interactions

↓ leptin [∼Lactobacillus (+),

Bifidobacterium (+)]

Welly et al. (69) ↓ total cholesterol, adiposity,

inflammation in Exercise and

weight-matched sedentary

↑ total energy expenditure in Exercise

and weight-matched sedentary

↓ RQ, insulin resistance, LDL, liver

mass in Exercise

↑ mitochondrial function in brown

adipose in Exercise

Feng et al. (71) Exercise improved preoperative

cognitive impairment in LCR rats

Petriz et al. (68) ↑ velocity

↓ lactate [∼Clostridiaceae (–),

Bacteroidaceae (–), Osillospira (+),

Ruminococcus (–)]

Batacan et al. (72) Samples grouped by

diet (not activity group)

Human intervention studies

Allen et al. (18) ↑ SCFAs in

lean

1Butyrate

∼

1leanmass

↑ lean body mass, bone mineral

density, VO2max

↓ body fat %

1Butyrate and butyrate-producers ∼

1lean mass

Munukka et al. (76) ↑ max power, VO2max, glucose

↓ lactate, HDL, LDL, large VLDL

↔ weight, blood pressure, weight

circumfrence, BMI, fat mass/%

Taniguchi et al. (77) ↑ VO2peak [∼C. difficile (–)], HDL

[∼Oscillospira (+)], total cholesterol

[∼C. difficile (–)] during exercise

↓ CAVI [∼C. difficile (+)], intrahepatic fat

%, HbA1c [∼Oscillospira (–), ∼C.

difficile (+)] during exercise

↔ body fat % [∼Oscillospira (–)];

visceral fat area, SBP, AST, ALT [∼C.

difficile (+)]; LDL [∼C. difficile (–)]

Oscillospira ∼ changes

in light-colored

vegetable, seaweed,

and rice consumption

Cronin et al. (78) ↑ VO2max, lean mass in E and EP

groups

↓ resting heart rate, % body fat, total fat

mass, truck fat mass in E and EP

groups

↔ pro-inflammatory markers

Human cross-sectional studies

Bressa et al. (82) ↑ cysteine aminopeptidase in ACT

women [∼Bacteroides (–)]

↔ α-fucosidase [∼Bifidobacterium

(+), Odoribacter (+)], alkaline

phosphatase [∼Desulfovibrio (–)]

↔ BMI, weight, adiposity and muscle

parameters Turicibacter (–) ∼ BMI

Barnesiellaceae (+) ∼ % body fat

Odoribacter (+), Haemophilus (–) ∼

adiposity index, estimated visceral fat,

% body fat Faecalibacterium (+) ∼

muscle mass index, appendicular

muscle mass index Coprococcus (+),

Lachnospiraceae unclassified 1 (+) ∼

appendicular muscle mass index

Turicibacter ∼ dairy

products, cereals

Bifidobacterium ∼

protein intake %

Odoribacter ∼ fiber, fat

intake %

Ruminococcaceae

unclassified 1&2 ∼ fat

intake %

Karl et al. (86) Random forest using stool

metabolites predicted pre- and

post-STRESS samples with 84%

accuracy

↑ intestinal

permeability (IP)

Pre-STRESS

Actinobacteria

(Continued)
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TABLE 2 | Continued

References SCFAs Other metabolites Host health GI tract physiology Diet interactions

81% of stool metabolites decreased

during STRESS

478 plasma metabolites significantly

changed during STRESS, including

metabolites partially or fully derived

from microbial metabolism

and changes in

serum IL-6 and stool

cysteine accounted

for 84% of variability

in change in IP

Barton et al. (79) ↑ SCFAs in

athletes

In athletes:

↑ TMA, TMAO, L-carnitine,

dimethylglycine, O-acetyl carnitine,

proline betaine, creatine,

acetoacetate, 3-hydroxy-isovaleric

acid, acetone, N-methylnicotinate,

N-methylnicotinamide,

phenylacetylglutamine (PAG),

3-methylhistidine, lysine, and

methylamine

↓ glycerate, allantoin, succinate,

glycine, tyrosine

Propionate ∼ protein

Butyrate ∼ dietary fiber

Clarke et al. (19) Diversity ∼ protein

intake and creatine

kinase

O’Donovan et al. (83) 21 metabolites significantly different

between SCGs (4 with significant

pairwise differences: succinic acid,

cis-aconitate, lactate, and creatinine)

↑ cis-aconitate, succinic acid in SCG

with moderate static/high dynamic

vs. low static/high dynamic

↑ fecal creatinine in SCG with low

static/high dynamic vs. high

static/low dynamic and

moderate/high static and high

dynamic

↓ lactate in SCG with low static/high

dynamic vs. moderate/high static

and high dynamic

ABA, activity-based anorexia; ACT, active [designated group in Bressa et al. (82)]; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; CAVI,

cardio-ankle vascular index; CO, cardiac output; CON, control; E, Exercise [designated group in Cronin et al. (78)]; EF, left ventricular ejection fraction; EP, Whey protein + Exercise

[designated group in Cronin et al. (78)]; FS, fractional shortening; FTR, forced treadmill running; HCR, high-capacity running; HDL, high-density lipoprotein; HFD, high-fat diet; LCR, low-

capacity running; IP, intestinal permeability; LDL, low-density lipoprotein; LVESD, left ventricular end systolic diameter; NEFA, non-esterified fatty acid; PAG, phenylacetylglutamine; RER,

respiratory exchange ratio; RQ, respiratory quotient; SAA, serum amyloid A; SBP, systolic blood pressure; SCFA, short-chain fatty acid; SV, stroke volume; TMA, trimethylamine; TMAO,

trimethylamine-N-oxide; TRFLP, VLDL, very low-density lipoprotein; VO2max , maximal (O2 ) oxygen uptake; VO2peak , highest value of VO2 achieved during high-intensity exercise test.

Effect of Dietary Components Relevant to
Exercise Nutrition on the Gut Microbiome
Confounding Effects of Diet
Diet is also a major factor that influences and shapes the gut
microbiome (15–17). Kang et al. report that diet and exercise
both cause shifts in the gut microbiome but that these changes
are orthogonal (61). However, some of the studies above reported
that dietary factors influenced the gut microbiota independently
of, or in combination with, exercise. Dietary factors found in
the studies presented here to associate with gut microbiome
differences or changes include dairy products (82), light-colored
vegetables (77), seaweed (77), rice (77), cereals (82), sucrose (76),
fiber (76, 79, 82), protein intake (19, 79, 82), fat intake (82),
and total food intake (65, 76) (Figure 3). Some differences or
changes in the gut microbiota that seem to be associated with
exercise may therefore be due to differences or changes in dietary

intake, especially plants and carbohydrates, rather than exercise
itself. There is therefore a need for studies investigating the
link between the gut microbiome and exercise that control and
standardize the dietary intake of participants.

Effects of Supplements and Dietary Patterns on the

Gut Microbiome
Although studies have shown some dietary interactions with the
gut microbiome in athletes, it is unclear the extent to which
the gut microbiome might be affected by supplements or dietary
patterns commonly used by athletes, and the potential effects of
this on the host. A review by Kårlund et al. (97) comprehensively
discusses the topic of protein supplementation in athletes and
the potential unknown effects on the gut microbiome. Excess
protein may be fermented in the large intestine by various species
from the genera Clostridium, Bacteroides, and others from the
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FIGURE 2 | Potential factors contributing to discrepancies between studies

investigating the effect of exercise on the gut microbiome include aspects of

study design (e.g., health or disease status; choice of model; age and gender;

mode, duration, and frequency of training; and choice of diet) and analytic

methods (e.g., DNA extraction, primer bias, and sequencing method;

bioinformatic method; choice of metrics; and what taxa are measured

and reported).

Proteobacteria phylum (98, 99), resulting in end products such
as ammonia, amines, phenols, and sulfides as well as some SCFAs
that may have systemic and metabolic effects on the host (100,
101). Different protein types have been shown to have differential
effects on the gut microbiome (102–104) and plant-based vs.
animal-based diets have also been shown to induce differences in
the gut microbiome composition in humans (16). Additionally,
different protein types have been assessed in the context of the
anabolic response to exercise (105). However, there are no studies
evaluating the impact of different types of protein supplements
or whole-food protein sources on the gut microbiome and
amino acid fermentation in athletes (97). As protein and protein
supplements are widely advertised and recommended to athletes,
this is an important gap in the research that should be addressed.
Future research should also be sure to compare the effects of
different protein sources as both isolated supplements as well as
in their whole-food form as the matrix of the whole food has
been shown to play an important role in the anabolic response
to exercise and may alter effects based on factors such as the type
and amount of fat (106, 107). Additionally, it would be interesting
to know whether supplementation of plant-based proteins with
amino acids such as leucine, lysine, and methionine, which is a
strategy that has been shown by a couple studies to augment the
anabolic effect of plant proteins (105), alters the effect of these
proteins on the gut microbiome.

Carbohydrate is a primary fuel source for exercise and is
therefore also a primary focus of athletes’ dietary intake (108,

FIGURE 3 | In studies investigating the effect of exercise on the gut

microbiome, confounding dietary factors include dairy, light-colored

vegetables, seaweed, rice, cereals, sucrose, fiber, protein intake, fat intake,

and total food intake.

109). In addition to whole food forms of carbohydrates, such
as bread, pasta, fruit, and potatoes, there is also a wide array
of carbohydrate supplements that may be used before, during,
or after exercise to enhance performance and recovery (110).
The effects of whole food carbohydrates on the gut microbiome
differs widely as a function of fiber content and type (111–113),
though generally fiber tends to increase SCFA producing bacteria
such as Bacteroidetes andActinobacteria and decrease Firmicutes
(114). However, the effects of frequent use of carbohydrate
supplements, which are typically high in sugar and low in
microbiota-accessible carbohydrates, on the gut microbiome
is unknown. It is may therefore be of interest to develop
carbohydrate supplements that also target the gut microbiome.

Though carbohydrates and protein are made the primary
focus of athlete nutrition, fat is also an important fuel source
during prolonged exercise and the popularity of high-fat diets
such as the ketogenic diet has prompted athletes and scientists to
investigate its potential for sports performance (115). However,
evidence suggests that a high-fat diet does not improve exercise
performance more than or as much as a high-carbohydrate
diet (116). Additionally, the lack of microbiota-accessible
carbohydrates on the ketogenic diet makes it questionable
whether or how it would benefit the gut microbiome, though
there has been little research in this area and none of it has been
in athletes (117, 118).

Caffeine is also a widely used ergogenic aid among athletes.
Coffee, one of the primary dietary sources of caffeine, has been
linked to increases in Bifidobacterium and protection against
high-fat diet-induced decreases in Lactobacillus, though these
effects may be due to other bioactive compounds present in coffee
such as chlorogenic acid (119). The effect of these aspects of
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dietary intake on the gut microbiome in athletes is only one
half of the story. The other is the effect of the gut microbiome
on the overall response, in terms of performance and training
adaptation, of the athlete.

Personalized Sports Nutrition and the
Potential Effect of the Gut Microbiome on
Response to Diet and Exercise
The Gut Microbiome in Personalized Sports Nutrition
As discussed in Hughes et al. (22, 23), the gut microbiome is
a potential predictor of response to diet. However, that review
focused on predictors of response relevant to general health
and prevention of chronic disease. Here, the evidence that the
gut microbiome may be a predictor of athletic performance
is reviewed. Personalized sports nutrition has incorporated the
type of sport or activity, the training status of the individual,
the athlete’s goals, the time of the competitive season, and the
athlete’s food preferences (120, 121) as well as biological traits
such as genetic polymorphisms, RNA expression, and epigenetic
modifications (28–30, 34–38) in the attempt to optimize athletic
performance and response to training programs.

The gut microbiome should be incorporated into this system
as it modulates metabolism of diet and dietary supplements, and
therefore has the potential to contribute to variability in response.
Inter-individual variability among athletes in response to dietary
supplements, such as caffeine and antioxidants, has been
attributed to genetic polymorphisms and baseline antioxidant
concentrations (35, 122). However, the gut microbiome has
been identified as an important factor in the bioavailability and
metabolism of antioxidants (123–125) and may be involved
in caffeine metabolism via mechanisms such as modulation of
the expression of the N-acetyltransferase 2 (NAT2) gene (126).
Variability in the gut microbiome has been linked to variability
in serum carotenoid concentrations (127), which suggests that
the gut microbiome does indeed play a role in modulating
antioxidant metabolism. In short, the gut microbiome may affect
the metabolism of dietary components, supplements, and dietary
patterns marketed to and used by athletes, but this is an area of
research that has not yet been adequately explored.

The Effect of the Gut Microbiome on Performance
Though the gut microbiome has been shown to modulate
metabolism of relevant dietary components, as discussed above,
the implications of this for performance are still unclear.

Mostly cross-sectional, studies have examined the correlation
between measures of fitness, such as VO2max and VO2peak,
and the gut microbiota (18, 77, 85, 128–130) (Table 3).
Butyrate-producing bacteria have been shown in both Allen
et al. (18) and Estaki et al. (129) to correlate positively
with VO2max and VO2peak, respectively. Bacteroides and
the Firmicutes/Bacteroidetes ratio have also been shown
to correlate with VO2max (85, 128, 130), although studies
have shown contrasting results. Durk et al. (128) found the
Firmicutes/Bacteroidetes ratio to correlate positively with
VO2max. Conversely, Yu et al. (85) found a lower F/B ratio
in elderly adults with higher exercise capacity and Yang et al.

(130) found that the high VO2max group had lower Eubacterium
rectale-Clostridium coccoides (Erec), which are members of
the Firmicutes phylum, and higher Bacteroides. Yu et al. (85)
also identified several other taxa that were correlated with
VO2peak in their elderly population such as Lactobacillales,
Blautia, Ruminococcus, E. coli, and Alcaligenaceae. Taniguchi
et al. (77) found an inverse correlation between Clostridium
difficile and changes in VO2peak in elderly Japanese men during a
cycling intervention.

Few studies have directly investigated the effect of the
gut microbiome on athletic performance (Table 4). Hsu et al.
(131) and Huang et al. (132) both used germ free (GF) mice
(C57BL/6JNarl) and compared these to mice colonized with
bacteria to determine potential effects of the presence of the
microbiome as well as specific bacteria on physical performance.
Specific pathogen free (SPF) mice were found to have the highest
exercise capacity and germ-free mice the lowest (131, 132). Mice
colonized with individual bacterial taxa showed improvements
in exercise capacity compared to their GF counterparts (131),
though not all bacteria showed the same degree of impact (132).
Hsu et al. (131), compared germ free (GF) mice, gnotobiotic
mice colonized with Bacteroides fragilis (BF), and specific
pathogen free (SPF) mice in a test of endurance swimming. In
a similar study, Huang et al. (132) compared germ-free mice
to gnotobiotic mice monocolonized with either Eubacterium
rectale,Clostridium coccoides, or Lactobacillus plantarumTWK10
on performance in a swim-to-exhaustion test. In Hsu et al. (131),
swim-to-exhaustion time was significantly different among all
groups, with SPF mice having the greatest endurance, followed
by BF mice, with GF mice having the least endurance capacity.
In Huang et al. (132), gnotobiotic mice colonized with E. rectale
showed significantly higher performance, both with and without
aerobic training, than the GF mice as well as the mice colonized
with C. coccoides and L. plantarum.

The potential mechanisms of these effects differed between the
two studies. Differences in endurance capacity in Hsu et al. were
accompanied by differences in antioxidant enzyme systems, with
SPFmice showing greater serum and hepatic antioxidant enzyme
activity, and physiological metrics, such as weight of muscle
and brown adipose tissue (131). The gut microbiome modulates
adipose tissue thermogenic pathways, including browning of
white adipose and activity of brown adipose, via potential
mechanisms such as bile acids and the endocannabinoid system
(143). The gut microbiome may also modulate skeletal muscle
anabolism and function via SCFA production and alteration
of the availability of intramuscular fuels (55). Mice colonized
with E. rectale and C. coccoides in Huang et al. showed higher
lactate levels and higher glucose levels while mice colonized with
E. rectale showed a lower creatine kinase (CK), a marker of
muscular stress, and higher wheel running distance compared to
both GF mice and the other gnotobiotic mice (132).

It is worth noting, however, in Huang et al. (132) that
L. plantarum and C. coccoides did not colonize stably in the
mice, fecal analysis showed no significant increases of these
microbes, while E. rectale did colonize and increase over time.
Therefore, it is unclear whether the ergogenic effect was due
to the presence of E. rectale specifically, or simply due to the
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TABLE 3 | Summary of studies investigating the correlation between gut microbiota composition and measures of fitness.

References Subjects Type of exercise Type of study Microbiota

method

Performance

metric(s)

Results

Allen et al. (18) Humans (32

previously sedentary

subjects, 18 lean 14

obese)

Endurance for 6 wk

progressed from

moderate to

vigorous; followed

by 6 wk sedentary

Intervention Composition (16S)

and function (qPCR

of select functional

genes)

VO2max Butyrate-regulating bacteria group

explained 61.2% of variance in microbiota

response and 84% of VO2max response

Durk et al. (128) Humans (healthy

young adults)

Treadmill test Cross-

sectional

Composition (qPCR) VO2max Firmicutes/Bacteroidetes (F/B) ratio

positively correlated to VO2max VO2max

explained ∼22% of variance in F/B ratio

Estaki et al. (129) Humans (varying

cardiorespiratory

fitness levels)

Cycle ergometer Cross-

sectional

Composition (16S)

and function

(PICRUSt)

VO2peak VO2peak accounted for ∼20% of variation

in α-diversity and positively correlated with

abundance of butryate-producing taxa

VO2peak + sex, fiber, and sugar intake

explained 15.5% of variation in functional

categories Protein associated with

Bacteroides and explained 12.7% of

taxonomic composition

Taniguchi et al. (77) Humans (31

Japanese adult

males, >60 years

old)

Cycling for 5 wk, no

washout between

intervention and 5

wk control period

Intervention Composition and

function (16S,

metagenomics)

VO2peak Abundance of Clostridium difficile was

negatively correlated with the increase in

VO2peak achieved during the exercise

intervention

Morita et al. (84) Humans (32

Japanese sedentary

adult women, >65

years old)

Aerobic exercise

(AE) or trunk muscle

training (TM)

Intervention Composition

(TRFLP)

Trunk muscle

strength

(Kraus-Weber

test), 6-min

walk test

(6MWT)

Abundance of Bacteroides positively

correlated with increases in distance

during 6MWT

Yang et al. (130) Humans

(premenopausal

mostly

overweight/obese

Finnish women with

low fitness levels)

Cycle ergometer Cross-

sectional

Composition (flow

cytometry, 16S

rRNA gene

hybridization,

DNA-staining)

VO2max High VO2max group had higher

Bacteroides and lower Eubacterium

rectale-Clostridium coccoides (EreC)

Association between VO2max and EreC

disappeared after correction for fat %

(association mediated by body fatness)

Yu et al. (85) Humans (56

hypertensive

Chinese adults,

65–80 years old)

Cardiopulmonary

treadmill exercise

test

Intervention Composition (16S) VO2peak 3 groups based on VO2peak: Weber A

(normal exercise capacity), Weber B (mildly

impaired exercise capacity), Weber C

(moderately impaired exercise capacity)

Lower F/B ratio in Weber A group (not

statistically significant)

No difference in α-diversity

Betaproteobacteria, Ruminococcaceae,

Faecalibacterium increased in Weber A

group

Blautia and Eubacterium increased in

Weber B

Escherichia increased in Weber C

Eubacterium and Blautia positively

correlated with CRP; Alcaligenaceae

negatively correlated with CRP

Lactobacillales, Blautia, Ruminococcus,

and E. coli negatively correlated with

VO2peak; Alcaligenaceae positively

correlated with VO 2peak

6MWT, 6-minute walk test; DNA, deoxyribonucleic acid; EreC, Eubacterium rectale-Clostridium coccoides; F/B ratio, Firmicutes-to-Bacteroidetes ratio; PICRUSt, Phylogenetic

Investigation of Communities by Reconstruction of Unobserved States; qPCR, quantitative polymerase chain reaction; rRNA, ribosomal ribonucleic acid; VO2max , maximal (O2 ) oxygen

uptake; VO2peak , highest value of VO2 achieved during high-intensity exercise test.

successful colonization by a microbe. These studies suggest
that the gut microbiome may influence performance. They also
indicate that a more diverse microbiome may be more beneficial

as SPF mice performed better than monocolonized BF mice
(131). While Huang et al. (132) suggests that individual taxa such
as E. rectalemay be partially responsible for performance effects,
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TABLE 4 | Summary of studies investigating the effect of the gut microbiota or probiotic supplementation on exercise performance.

References Subjects Type of

exercise

Microbiota

analysis/supplementation

method

Performance

metric(s)

Performance results Host health results

Hsu et al. (131) Mice

(C57BL/6JNarl,

specific pathogen

free (SPF), germ

free (GF),

gnotobiotic

Bacteroides fragilis

(BF); 12 wk, male)

Endurance

swimming

N/A Swim-to-

exhaustion

time

Swim-to-exhaustion time SPF > BF

> GF Antioxidant systems

glutathione peroxidase (GPx) and

catalase (CAT) SPF > GF and BF;

superoxide dismutase (SOD) activity

SPF and GF > BF

Levels of antioxidant exyme activity GPx,

SOD, and CAT: SPF > BF > GF % weight of

liver, muscle, brown adipose tissue, and

epididymal fat pad SPF > BF & GF

Huang et al. (132) Mice

(C57BL/6JNarl;

germ free (GF),

maintained germ

free or colonized

with Eubacterium

rectale, Clostridium

coccoides, or

Lactobacillus

plantarum TWK10;

6 wk, male)

Endurance

swimming

N/A Swim-to-

exhaustion

time

Swim-to-exhaustion time in specific

pathogen free (SPF) > GF mice

both before and after training (time

increased in both SPF and GF mice

after training) After training,

swim-to-exhaustion time in E.

rectale-colonized mice > GF, C.

coccoides, and L. plantarum

E. rectale and C. coccoides mice showed

higher lactate level vs. GF and L. plantarum

Ammonia level increased more in GF group

Creatine kinase (CK) lower in E. rectale vs. C.

coccoides (no difference between GF and L.

plantarum) Glucose levels higher in E. rectale

and C. coccoides vs. GF and L. plantarum

(GLUT4 higher in E. rectale vs. GF and L.

plantarum) Hepatic glycogen higher in GF vs.

SPF, E. rectale, L. plantarum, and C.

coccoides Basal metabolic rate (BMR) higher

in L. plantarum and C. coccoides mice vs.

GF and E. rectale Wheel running distance

higher in gnotobiotic mice (E. rectale > L.

plantarum and C. coccoides > GF) Growth

curve higher in GF and E. rectale vs. L.

plantarum and C. coccoides

Chen et al. (133) Mice (ICR, specific

pathogen free

(SPF), 6 wk, male)

Grip strength

and

endurance

swimming

N/A Probiotic

supplementation

(Lactobacillus plantarum

TWK10—dose-response in

mice)

Grip strength

and swim-to-

exhaustion

time

Probiotic supplementation

increased grip strength and

endurance swimming time after

exercise

Probiotic supplementation decreased body

weight, serum lactate, ammonia, urea

nitrogen, albumin, CK, creatinine,

triacylglycerol (TAG), and glucose and

increased relative muscle weight, number of

type I muscle fibers in gastrocnemius muscle

Huang et al. (134) Humans (16 male

runners)

Running

(treadmill

test)

N/A Probiotic

supplementation (1 × 1011

CFU Lactobacillus

plantarum TWK10)

Run

time-to-fatigue

Probiotic supplementation

increased run time-to-fatigue but

not VO2max

Blood glucose levels higher in TWK10 group

vs. placebo after exercise No significant

differences in lactate, ammonia, free fatty

acids (FFAs), or CK

Huang et al. (132) Humans (54

healthy adults with

no prior training; 27

men, 27 women)

Running

(treadmill

test)

N/A

Probiotic supplementation

(Lactobacillus plantarum

TWK10 - placebo, low dose

3 × 10∧10 CFU, high dose

9 × 10∧10 CFU)

Run

time-to-fatigue

Probiotic supplementation

increased time to exhaustion in

both TWK10 groups but was

significantly higher in the high-dose

compared to low-dose group

Lactate accumulation and ammonia

production improved in the TWK10 groups

during exercise and recovery phase.

Blood glucose higher in high-dose group

during exercise.

Decrease in body fat and increase in muscle

mass in high-dose group.

(Continued)
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TABLE 4 | Continued

References Subjects Type of

exercise

Microbiota

analysis/supplementation

method

Performance

metric(s)

Performance results Host health results

Jäger et al. (135) Humans (29

recreationally-

trained

men)

Resistance

training

N/A Probiotic

supplementation (1 × 1010

CFU Bacillus coagulans

GBI-30,

1 rep max (RM)

one-legged leg

press Vertical

jump power

Wingate power

Probiotic supplementation did not

improve 1 RM or vertical jump

power though a decrease in

Wingate power was attenuated in

the probiotic group

Probiotic supplementation increased

perceived recovery and decreased perceived

muscle soreness and measured muscle

damage as indicated by CK

Lamprecht et al.

(136)

Humans (23 trained

men)

Cycling

(cycle

ergometer

test)

N/A Probiotic

supplementation (1 × 1010

CFU Bifidobacterium

bifidum W23, Bif. lactis

W51, Enterococcus faecium

W54, L. acidophilus W22, L.

brevis W63, L. lactis W58)

Incremental

cycle ergometer

exercise test

Probiotic supplementation did not

improve VO2max or VO2max relative

to body weight

Probiotic supplementation decreased zonulin

and tendentially decreased carbonyl proteins

and TNF-a but had no significant effects on

a1-antitrypsin, malondialdehyde, total

oxidation status of lipids, or IL-6

Martarelli et al. (137) Humans (24 male

cyclists)

Cycling Plate and Randomly

Amplified Polymorphic DNA

(RAPD)

Probiotic supplementation

(1 × 10∧9 CFU/g 1:1

Lactobacillus rhamnosus

IMC 501 and Lactobacillus

paracasei IMC 502)

vs. control

Intense exercise

training

No performance results reported.

Probiotic supplementation

increased counts of Lactobacillus in

stool (in different proportions for

each subject)

Reactive oxygen metabolite (ROM)

concentrations significantly increased after

exercise in control group but not in probiotic

group (though ROM levels not significantly

different between the two groups)

Biological antioxidant potential (BAP)

increased after probiotic supplementation

and were higher in probiotic group vs.

control group

Salarkia et al. (138) Humans (46

adolescent females)

Swimming N/A Probiotic

supplementation (4 × 1010

CFU/ml Lactobacillus

acidophilus spp, L.

delbrueckii bulgaricus, Bif.

bifidum, Streptococcus

salivarus thermnophilus) vs.

ordinary yogurt

400m swim time

Harvard step

test

Probiotic supplementation

increased VO2max but did not

improve 400m swim time

Probiotic supplementation reduced frequency

and duration of respiratory infections and

some symptoms (dyspnea and ear pain)

Shing et al. (139) Humans (10 male

runners)

Running

(treadmill

test)

N/A Probiotic

supplementation (4.5 ×

1010 Lactobacillus

acidophilus, L. rhamnosus,

L. casei, L. plantarum, L.

fermentum, Bifidobacterium

lactis, Bif. breve, Bif.

Bifidum, Streptococcus

thermophilus)

Run

time-to-fatigue

Probiotic supplementation

increased run time-to-fatigue

Probiotic supplementation reduced serum

lipopolysaccharide (LPS), slightly reduced

lactulose:rhamnose (gastrointestinal

permeability), and gastrointestinal discomfort

(Continued)
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TABLE 4 | Continued

References Subjects Type of

exercise

Microbiota

analysis/supplementation

method

Performance

metric(s)

Performance results Host health results

Townsend et al.

(140)

Humans (25 male

baseball athletes)

Off-season

training

N/A

Probiotic supplementation

(1 × 109 CFU/day Bacillus

subtilis DE111) vs. placebo

1 rep max (RM)

squat and

deadlift, 10 yd

sprint, standing

long jump

No significant differences in

performance between probiotic and

placebo groups

TNF-α concentrations significantly lower in

probiotic group (not in any other biochemical

markers)

No significant differences in body

composition, testosterone, cortisol, IL-10,

zonulin, salivary immunoglobulin A (SIgA),

and SIgM

Scheiman et al.

(141)

Humans (15

athletes pre- and

post- marathon, 87

ultramarathoners

and olympic trial

rowers pre- and

post-exercise

(validation cohort)

vs. 10 sedentary

controls)

Running Composition (16S) Marathon run No performance results reported.

Veillonella increased post-exercise

in athletes

Mice (CL57BL/6,

12 wk,

male/female?)

N/A Probiotic

supplementation

(Lactobacillus bulgaricus

(control) or Veillonella

atypica 5×109 CFU/ml)

Run-to-

exhaustion

time

Veillonella atypica increased

run-to-exhaustion time (via lactate

→ propionate)

Decreased inflammatory cytokines in

Veillonella-treated mice

Soares et al. (142) Rats (Wistar, 11 wk,

male)

Running

(treadmill

test)

N/A Probiotic

supplementation

(Saccharomyces boulardii 1

× 108 CFU/ml)

VO2max, run

time-to-fatigue

Saccharomyces boulardii increased

VO2max, run time-to-fatigue, max

speed attained, and total work

Yeast supplementation had no effect on body

mass gain or food intake

BF, gnotobiotic colonized with Bacteroides fragilis; BMR, basal metabolic rate; CAT, catalase; CFU, colony forming unit; CK, creatine kinase; FFA, free fatty acid; GF, germ-free; GPx, glutathione peroxidase; ICR, Institute of Cancer

Research; IL-6, interleukin-6; LPS, lipopolysaccharide; RM, rep max; SOD, superoxide dismutase; SPF, specific pathogen free; TAG, triacylglycerol; TNF-α, tumor necrosis factor alpha; VO2max , maximal (O2 ) oxygen uptake.
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further research is needed to determine exactly what aspects
or taxa contribute to this ergogenic effect. These studies also
did not investigate responses to a dietary or training regimen,
leaving room for further research on the potential of the gut
microbiome to mediate or modify exercise performance response
to diet.

The Effect of Probiotic Supplementation on Athlete

Health and Performance
While there are a number of studies on probiotic
supplementation in animals and human athletes, most focus
on effects such as frequency of respiratory and gastrointestinal
illness or biomarkers of inflammation and immune function
(137, 144–146). Supplementation of probiotic bacteria to boost
the abundance or activity of potentially beneficial taxa may
also serve as a potential method of modifying performance
response to training. Our review of the literature found
eleven studies investigating the ergogenic effect of probiotic
supplementation (133–142, 147) (Table 4). Common probiotic
bacteria used were strains of Lactobacillus or Bifidobacterium
(133, 134, 136–139, 147). Additional strains tested included those
belonging to species Bacillus subtillis (140) or Bacillus coagulans
(135), Veillonella atypica (141), or even yeast Saccharomyces
boulardii (142).

The majority of studies investigated the effect of probiotic
supplementation on aerobic exercise performance measures
such as run time-to-fatigue, VO2max, max speed attained, 10-
yard sprint, or 400-meter swim time (132–134, 136, 138, 139,
141, 142). However, some studies also investigated strength
and anaerobic outcomes such as grip strength, vertical jump
power, standing long jump, Wingate power, or 1 rep max (RM)
lifts (133, 135, 140).

Effects on performance variables were highly mixed between
studies, though a number of studies found beneficial effects
on performance parameters such as time-to-fatigue (132–
134, 139, 141, 142). However, some studies found no effects
of probiotic supplementation on performance metrics (136,
140) while other studies found mixed effects, with probiotic
supplementation improving some performance measures, but
not others (134, 135, 138). For example, Huang et al. (134) found
that probiotic supplementation with Lactobacillus plantarum
TWK10 increased run time-to-fatigue but not VO2max. Thus,
studies reporting effects of probiotic supplementation on only
one performance outcome may not be providing a complete
picture of the ergogenicity of probiotic bacteria. Additionally,
all but one study (137) of probiotic supplementation of
humans lacked confirmation of probiotic colonization and this
study acknowledged that individuals showed different levels of
colonization by the probiotic bacteria. It is important that future
studies investigating probiotic supplementation also collect fecal
samples from participants before and after the intervention to
determine whether differences in probiotic colonization may
contribute to inter-individual variability in the ergogenic effect
of probiotic supplementation.

In addition to performance variables, many of these studies
investigated effects on body composition and inflammation.
Again, results were mixed, with some studies reporting

significant effects of supplementation on outcomes such as fat
mass and muscle mass (132, 133) or inflammatory markers (133,
137, 139, 141, 147), though results were often mixed with some
biochemical markers showing no significant effect of probiotic
treatment and some studies showing no significant effects at all
on these outcomes (134, 142). However, as none of these variables
were analyzed, further research is necessary to determine the
mechanism of the effects as well as whether the same effects are
seen in humans.

The Effect of Antibiotic Treatment on Exercise

Performance
Conversely to the use of probiotics to determine the potential
effect of the gut microbiome on athletic performance, the use
of antibiotics in mouse models has recently been explored to
determine the potential effects of a lack of gut microbes and their
metabolites on exercise capacity and muscle function (148, 149).
Table 5 displays the findings of these recent studies. In both
studies, antibiotic treatment decreased the exercise capacity of
the mice, tested using forced treadmill running. Additionally,
this phenotype could be rescued by either natural reseeding
(148) or acetate infusion (149). Nay et al. also found reduced
gene expression of SCFA receptor G-protein coupled receptor 41
(GPR41) and sodium/glucose cotransporter 1 (SGLT1) as well as
reduced muscle glycogen in antibiotic-treated mice, suggesting
that the reduced exercise capacity in these mice may have
been mediated by muscle glycogen availability (148). Okamoto
et al. concluded that the reduced exercise capacity of antibiotic-
treated mice was due to the lack of acetate available for use as
a substrate during exercise as acetyl-CoA (149). With regards
to changes in the gut microbial community, Okamoto et al.
reported that relative abundance of Firmicutes was increased in
antibiotic-treated mice while Bacteroidetes, α-diversity, and fecal
bacterial DNA concentration was reduced (149). Nay et al. found
that fecal bacterial DNA was reduced in antibiotic-treated mice
but only reported differences in composition between control
mice and mice treated with antibiotics but naturally reseeded,
which showed no significant differences in α- and β-diversity,
Bacteroides, and Firmicutes (148).

Okamoto et al. additionally tested the effect of a low
microbiota-available carbohydrate diet (LMC) vs. a high
microbiota-available carbohydrate (HMC) diet to determine with
substrate availability for the gut microbiome altered exercise
capacity. In these treatment groups, treadmill running time was
decreased in the LMC mice, concomitant with a decrease in
muscle mass, fecal SCFA, and plasma acetate and proprionate as
well as an increase in Firmicutes and decrease in Bacteroidetes
and other SCFA producing bacterial taxa (149). This reduced
exercise capacity phenotype was rescued when mice were given
a fecal microbiota transplant (FMT) from HMC mice and a dose
of inulin prior to exercise. The increased exercise capacity in
LMC+FMT+inulin mice was not accompanied by changes in
body mass or muscle mass but there was an increase in fecal
SCFAs, again suggesting that SCFA concentration may act as a
direct substrate or mediate substrate availability in such a way as
to influence exercise capacity.
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TABLE 5 | Summary of studies investigating the effect of antibiotics on exercise performance.

References Subjects Type of

exercise

Type of

study

Diet and treatment

groups

Microbiota

method

Performance

effects

Health effects Microbiota effects

Nay et al. (148) Mice (C57BL/6J

mice, 14 wk,

male)

Forced

treadmill

running

Intervention control (CTL) vs.

antibiotics (ATB) vs.

antibiotics followed

by natural reseeding

(NAT)

Composition

and function

(RT-qPCR, 16S,

metagenomics)

↔ maximal aerobic

velocity (MAV),

extensor digitum

longus (EDL)

maximal strength in

all groups

↓ time to exhaustion

in ATB and NAT

(restored in NAT

after reseeding)

↓ EDL muscle

fatigue index in ATB

vs. CTL and NAT

↑ cecum weight in ATB vs. CTL

↓ cecum weight in NAT vs. ATB

↔ muscle mass (gastrocnemius,

quadriceps, EDL soleus) in ATB vs. CTL

(body weight normalized without cecum

weight)

↔ myofiber phenotype, mitochondrial

metabolism, inflammatory signaling, Lat1

expression, GPR40, GPR120, blood

glucose

↑ Fiaf expression in ATB vs. CTL and NAT

↓ GPR41 and Sglt1 expression, muscle

glycogen in ATB vs. CTL and NAT

↓ bacterial DNA in

ATB and NAT

(completely restored

in NAT after

reseeding)

↔ α- and β-diversity,

Bacteroides,

Firmicutes between

CTL and NAT

Okamoto et al.

(149)

Mice (C57BL/6J

mice, 10 wk,

male)

Forced

treadmill

running

Intervention antibiotic treatment

(Abx) or

antibiotic-free

(Abx-free) group

Acetate vs. saline

infusion in Abx

Butyrate infusion in

Abx

Composition

(16S)

↓ treadmill running

time in Abx

↑ treadmill running

time in Abx+acetate

↔ treadmill running

time in

Abx+butyrate and

Abx+saline

↑ dietary intake, ceca size in Abx

↔ body mass gain, blood glucose

↓ muscle, white adipose, SCFA (fecal and

plasma) in Abx

↔ body mass, muscle mass in

Abx+acetate

↑ Firmicutes in Abx

↓ Bacteroidetes,

diversity (Shannon),

fecal bacterial DNA

concentration in Abx

Low microbiome-

accessible

carbohydrate (LMC)

vs. high MC (HMC)

diet FMT+inulin in

LMC

↓ treadmill running

time in LMC group

↑ treadmill running

time in

LMC+FMT+inulin

vs. LMC

↓ muscle, fecal SCFA, plasma acetate and

proprionate in LMC

↔ body mass gain, dietary intake

↑ white adipose in LMC

↔ body mass, tibialis anterior mass in

LMC+FMT+inulin vs. LMC

↑ fecal SCFA in LMC+FMT+inulin vs. LMC

↑ Firmicutes, F/B

ratio, Lactococcus,

Allobaculum in LMC

↓ Bacteroidetes,

Prevotella, S24-7,

diversity (Shannon)

in LMC

Abx, antibiotic; Abx-free, non-antibiotic treated; ATB, antibiotic; CTL, control; EDL, extensor digitum longus; F/B, Firmicutes/Bacteroidetes; FMT, fecal microbiota transplant; GPR, G-protein coupled receptor; HMC, high microbiome-

accessible carbohydrate; LMC, low microbiota-accessible carbohydrate; MAV, maximal aerobic velocity; NAT, antibiotic-treated and naturally reseeded; RT-qPCR, real time quantitative polymerase chain reaction; SCFA, short-chain

fatty acid.
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FIGURE 4 | The gut microbiome may influence performance via mechanisms such as antioxidant enzyme activity, immune modulation, gastrointestinal permeability,

substrate utilization and storage, mitochondria cross-talk, and/or the gut-brain axis.

Summary of Findings and Putative Mechanisms of

the Effect of the Gut Microbiome on Athletic

Performance
These studies suggest that there may be an effect of the gut
microbiome on exercise performance via mechanisms such as
SCFA availability, muscle glycogen content, antioxidant enzyme
activity, gastrointestinal permeability, and lactate metabolism
(Figure 4). Additional speculative mechanisms may involve
alterations in substrate utilization (142) as well as glycogen
metabolism and storage (150), changes in neural function (142),
as well as immune modulation (142) or cross-talk between the
gut microbiome and mitochondria in energy production and
inflammation (45). The gut microbiota has been hypothesized to
impact skeletal muscle physiology and function via metabolites
such as SCFAs, folate, tryptophan, glycine betaine, vitamins B2
and B12, and urolithins that may act through various pathways
such as stimulation of insulin-like growth factor-1 (IGF-1),
prevention of oxidative stress or inflammation, and promotion
of mitochondrial biogenesis (151). However, these data also
indicate that improvements in these functions do not always
translate to improvements in performance. Further research is
needed to investigate the effects of different probiotic strains, the
interaction with dietary composition (e.g., differences of effect in
athletes who have different overall dietary patterns), the use of
dietary supplements, and in different modes of exercise, such as
strength training.

CONCLUSIONS AND FUTURE
DIRECTIONS

The gut microbiome represents an open field of study in the
realm of personalized sports nutrition. High interindividual
variability in response to training and physical activity is regularly
reported (152) and the gut microbiome may contribute to
this variability by impacting individual metabolism of food
components and/or adaptation to the homeostatic stress, or
training load, of the exercise stimulus (153). More research is
needed to determine whether the gut microbiome could be
an important predictor of athletic performance in response
to dietary and exercise interventions. Researchers should refer

to guides such as Ross et al. (36), Hecksteden et al. (152),
Mann et al. (153), Swinton et al. (154), and Hopkins et al.
(155) for statistical frameworks to interpret inter-individual
variability in response and identify factors that contribute to
this variability.

Specific questions that could be addressed are the role of
specific bacterial taxa or groups of taxa involved in gains in
athletic performance in response to certain dietary factors (e.g.,
protein sources such as whey, casein, soy, etc.; macronutrient
distribution; or supplements such as caffeine, beta-alanine,
antioxidants) or exercise stimuli. This could be investigated
by using a combined dietary-exercise intervention, measuring
both baseline and final microbiome and performance variables,
and using predictive machine learning algorithsms such as
random forests (156) to determine whether baseline abundance
or changes in certain bacterial taxa can predict an individual’s
physical performance response. Another question is whether
different taxa are involved in different responses (e.g., VO2max,
time-to-fatigue, rep max loads, etc.) and the mechanisms of
these effects (e.g., SCFA production, antioxidant enzyme activity,
muscle protein synthesis, glycogen formation, energy harvest
and fuel utilization, inflammation, etc.). While the first question
could be addressed by a study measuring multiple exercise
performance outcomes within the same population, determining
the mechanisms of these effects would require in vitro or animal
models and measurement of potential mediating metabolites,
such as SCFAs, and physiological variables, such as muscle mass
or muscle glycogen content. Furthermore, larger and longer
studies are needed to address whether effects or responses differ
between demographics (e.g., gender, age, ethnicity, etc.) and
whether modulation of the gut microbiome via probiotics and/or
prebiotics or modulation of the dietary or exercise stimulus (e.g.,
amount or type of supplement; mode, duration, intensity of
exercise) may serve to increase positive response to the stimulus,
decreasing the number of “non-responders.” For example, a
study using the same participants and measuring microbiome
and performance responses to stepwise increases in the duration
and/or intensity of exercise may serve to elucidate what type
of exercise may be optimal for certain individuals and their
microbiomes. Additionally, studies that have measured changes
in performance in response to probiotic supplementation have
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not looked at individual’s gut microbiota composition directly.
This is a limitation of these studies as different strains of
probiotic bacteria show differing rates of survival through the
gastrointestinal tract (157) and the composition of an individual’s
gut microbiota may also influence the persistence and function
of probiotic bacteria in the gut (158–160). Therefore, not all
probiotic strains may survive in sufficient quantities to make it
down to the gut microbiome and, even if the probiotic bacteria
reach the gut microbiome, it may not last as long or have the same
effect in each individual.

Additional challenges and limitations in the area of research
are numerous and must be taken into consideration when
making claims about the exercise-microbiome connection.While
the effects of diet and exercise have been shown to be orthogonal
to one another (61), diet can still be a confounding factor within
and between studies. Thus, conclusive effects of exercise on
the gut microbiome must standardize the diet of participants,
which has not yet been done. In addition to diet, variables
such as genetics (32, 161), epigenetics (162), sleep behavior
(163, 164), gender (165, 166), age (66, 167), and a host of other
factors contribute to variability in the gut microbiome as well
as performance response. This variability makes it extremely
difficult to draw concrete conclusions about the effects of the gut
microbiome and should always be considered when designing
or interpreting studies on the interaction of the gut microbiome
and host.

A related body of research has developed investigating
the “gut-muscle axis” as it relates to age-related changes
in muscle mass (i.e., sarcopenia) and physical frailty (151,
168–174) as well as its potential role in the “muscle-gut-
brain” axis and neurodegenerative diseases in aging (175,
176). This field of research has the potential to inform the
research in the field of the gut microbiome and exercise
performance. Though this research focuses on preservation of
muscle mass rather than physical or athletic performance, it
is extremely relevant to identifying the pathways that connect
these systems and how they can be modulated. Taxa, such
as Faecalibacterium prausnitzii (151), or supplementation with

prebiotics (177), butyrate (178), or other microbial metabolites
such as urolithin A (179, 180) have shown beneficial associations
or effects on muscle function and protection against aging-
related atrophy. It has also been postulated that the aging gut
microbiome may play a role in the phenomenon of anabolic
resistance, not by altering protein metabolism per se, but
by mechanisms such as gut barrier function, inflammation,
and mitochondrial dysfunction (168, 170). Thus, by looking
at how age-related changes in the gut microbiome may
contribute to sarcopenia and decreases in muscle function,
we may better understand how to modify or supplement this
community to both maintain health as well as potentially
increase performance.

In conclusion, there are several different fields of research
that have touched on the question of the role of the gut
microbiome in exercise and athletic performance. However, there
are many gaps and limitations in the research thus far that
must still be addressed. While there have not yet been any
conclusive findings, further research and collaboration among
disciplines may help shed light on the connection between
exercise and the gut microbiome and the potential implications
on athletic performance.
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