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A B S T R A C T   

Background: Human papillomaviruses have been shown to dysregulate the gene expression and 
DNA methylation profiles of their host cells over the course of infection. However, there is a lack 
of information on the impact of low-risk HPV infection and wart formation on host cell’s 
expression and methylation patterns. Therefore, the objective of this study is to analyse the 
genome and methylome of common warts using an integrative approach. 
Methods: In the present study, gene expression (GSE136347) and methylation (GSE213888) 
datasets of common warts were obtained from the GEO database. Identification of the differen-
tially expressed and differentially methylated genes was carried out using the RnBeads R package 
and the edgeR Bioconductor package. Next, functional annotation of the identified genes was 
obtained using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). 
Network construction and analyses of the gene-gene, protein-protein, and signaling interactions 
of the differentially expressed and differentially methylated genes was performed using the 
GeneMANIA web interface, the Search Tool for the Retrieval of Interacting Genes/Proteins 
(STRING) database, and the Signaling Network Open Resource 2.0 (SIGNOR 2.0), respectively. 
Lastly, significant hub genes were identified using the Cytoscape application CytoHubba. 
Results: A total of 276 genes were identified as differentially expressed and differentially meth-
ylated in common warts, with 52% being upregulated and hypermethylated. Functional enrich-
ment analysis identified extracellular components as the most enriched annotations, while 
network analyses identified ELN, ITGB1, TIMP1, MMP2, LGALS3, COL1A1 and ANPEP as signif-
icant hub genes. 
Conclusions: To the best knowledge of the authors, this is the first integrative study to be carried 
out on non-genital warts induced by low-risk HPV types. Future studies are required to re-validate 
the findings in larger populations using alternative approaches.   
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1. Introduction 

Human papillomaviruses (HPV) are a family of epitheliotropic DNA viruses that infect the mitotically active basal keratinocyte 
layer in the cutaneous and mucosal epithelia [1]. More than 200 types of HPV have been identified and they are grouped into three 
main categories: cutaneous, mucocutaneous, and those types associated with epidermodysplasia verruciformis, a rare autosomal 
recessive disorder [2,3]. Several types of HPV are classified as high-risk due to their carcinogenic potential, but the majority of HPV 
types are low risk and cause benign hyper-proliferative lesions known as warts [4]. In immunocompetent individuals, warts are 
self-limiting and spontaneously cleared as a result of cell-mediated immunity [5]. 

HPV-related diseases have been the subject of a wide range of omics studies in recent years, generating a huge number of datasets. 
However, such omics data is highly dimensional and requires complex analysis in order to extract relevant biological insights [6]. To 
overcome this challenge, integrative biological approaches - combining more than one type of omics data - have been introduced for 
malignancies associated with high-risk HPV infection, including cervical cancer, head and neck cancer, and oropharyngeal cancer 
[7–11]. 

In contrast, research on low-risk HPV infection has not been prioritized due to its typically benign effects, and information about 
the impact of HPV-driven wart formation on host gene expression and methylation remains sparse [4]. Therefore, this study aims to 
identify and analyse genes which are both differentially expressed and differentially methylated (DEDM) in warts. To the best of our 
knowledge, this study is the first to apply an integrative analysis of gene expression and methylation in non-genital warts caused by 
low-risk HPV infection. 

Table 1 
List of the top DEDM genes in terms of expression and methylation status.  

Gene logFC FDR mean.mean.diff (W-NS) Combined rank score Expression Methylation 

Top upregulated DEDM genes 
CYB561A3 1.840251 1.73 × 10− 11 0.047118 4541 Up Hyper 
FCGRT 2.979764 2.89 × 10− 11 0.041616 4214 Up Hyper 
TNFSF12 2.25828 8.18 × 10− 11 0.038217 4873 Up Hyper 
LRRN4CL 3.924778 2.53 × 10− 10 0.062005 2158 Up Hyper 
RELL1 1.59098 4.76 × 10− 10 0.041974 7093 Up Hyper 
IGFBP4 2.51739 6.88 × 10− 10 0.03439 5789 Up Hyper 
SHISA4 2.395266 1.93 × 10− 09 0.033263 6579 Up Hyper 
SOX10 2.762969 1.97 × 10− 09 0.062117 5707 Up Hyper 
C9orf152 5.112678 2.05 × 10− 09 − 0.06451 1908 Up Hypo 
PAMR1 3.767645 2.84 × 10− 09 0.044544 3774 Up Hyper 
Top downregulated DEDM genes 
SAMD9 − 4.3315 1.02 × 10− 11 − 0.10514 1620 Down Hypo 
OASL − 5.41896 1.40 × 10− 11 − 0.03514 5566 Down Hypo 
FABP5 − 2.71433 1.41 × 10− 11 − 0.06302 4249 Down Hypo 
FUT3 − 3.28519 1.65 × 10− 11 − 0.03794 6010 Down Hypo 
KRT6A − 6.81118 1.82 × 10− 10 − 0.17458 687 Down Hypo 
GJB6 − 3.05702 3.07 × 10− 10 − 0.0811 1150 Down Hypo 
GJB2 − 3.40401 3.11 × 10− 10 − 0.27221 54 Down Hypo 
KRT6C − 9.14735 3.95 × 10− 10 − 0.04832 6118 Down Hypo 
IL36G − 3.68497 4.56 × 10− 10 − 0.06271 2026 Down Hypo 
S100A16 − 1.3326 5.03 × 10− 10 − 0.06332 1985 Down Hypo 
Top hypermethylated DEDM genes 
FABP7 4.427163 1.60 × 10− 05 0.197528 134 Up Hyper 
PHYHD1 2.562795 3.94 × 10− 08 0.183384 356 Up Hyper 
COX7A1 1.549866 1.67 × 10− 05 0.220857 456 Up Hyper 
STAT5A 1.360049 1.14 × 10− 05 0.118592 458 Up Hyper 
MFAP4 4.089278 1.67 × 10− 06 0.143125 593 Up Hyper 
IL11RA 2.775918 1.59 × 10− 07 0.127114 604 Up Hyper 
BHLHE41 1.76519 1.72 × 10− 06 0.116557 650 Up Hyper 
MFAP2 1.806981 2.77 × 10− 06 0.116759 829 Up Hyper 
TFAP2B 1.444659 2.58 × 10− 06 0.117012 837 Up Hyper 
RARRES3 2.305639 1.20 × 10− 03 0.089248 923 Up Hyper 
Top hypomethylated DEDM genes       
AREG − 3.39287 1.38 × 10− 09 − 0.40848 17 Down Hypo 
GJB2 − 3.40401 3.11 × 10− 10 − 0.27221 54 Down Hypo 
S100A8 − 8.4116 1.07 × 10− 08 − 0.16681 164 Down Hypo 
ZBED2 − 1.84179 1.10 × 10− 05 − 0.17879 169 Down Hypo 
SPINK6 − 9.92748 3.67 × 10− 09 − 0.27988 265 Down Hypo 
CALML3 − 1.71347 8.83 × 10− 04 − 0.13474 305 Down Hypo 
S100A7 − 7.53527 2.76 × 10− 08 − 0.12511 414 Down Hypo 
S100A9 − 8.6431 8.98 × 10− 09 − 0.15165 551 Down Hypo 
LGALS9C − 3.30056 7.32 × 10− 07 − 0.10988 554 Down Hypo 
SFN − 1.20378 4.04 × 10− 05 − 0.10243 675 Down Hypo  
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2. Results 

2.1. Differential methylation and expression analysis 

Upon matching the DM (from the RnBeads analysis) and DE (from the edgeR analysis) genes, 276 genes were identified as both 
differentially expressed and differentially methylated (DEDM) in common warts (Table 1). The most upregulated DEDM genes were 
CYB561A3, FCGRT, and TNFSF12, while the most downregulated DEDM genes were the SAMD9, OASL, and FABP5. Likewise, FABP7, 
PHYHD1, and COX7A1 were the most hypermethylated DEDM genes, and AREG, GJB2, and S100A8 were the most hypomethylated 
DEDM genes. 

Fig. 1A illustrates that the majority of DEDM genes (52%) were both upregulated and hypermethylated, while Fig. 1B shows that 
chromosome 1 has the highest number of DEDM genes (n = 40), which is unsurprising as chromosome 1 is the largest human 
chromosome. 

2.2. Gene annotation 

After identifying the DEDM genes in common warts, we used the Database for Annotation, Visualization, and Integrated Discovery 
(DAVID) web server to functionally annotate and thereby derive the biological meaning behind the DEDM genes. Table 2 lists the top 
most enriched annotations among the 276 DEDM genes in common warts. 

Most prominently, the most enriched disease was palmoplantar keratoderma (p = 7.49 × 10− 09), and the proteins secreted in the 
surroundings were the most enriched functional annotation (p = 1.75 × 10− 08). Regarding gene ontology, the extracellular region (p =
4.41 × 10− 10) and the extracellular space (p = 5.57 × 10− 10) were the most enriched GO terms. Similarly, the chemokine (C–C motif) 
receptor 1 (CCR1) (p = 1.79 × 10− 09) and chromosome 18 open reading frame 21 (C18ORF21) (p = 6.79 × 10− 09) proteins were the 
most enriched interactions. Lastly, the formation of the cornified envelope (p = 2.93 × 10− 10) was the most enriched pathway, and the 
S-100/ICaBP type calcium binding domain (p = 4.64 × 10− 07) was the most enriched protein domain. 

Fig. 2 provides a further analysis of the most enriched GO terms in the DEDM genes, confirming the dominance of extracellular 

Fig. 1. Expression and methylation status (a) and chromosomal location of DEDM genes (b) in common warts.  
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components, the cornified envelope, and keratinization. 

2.3. Gene-gene network analysis 

To understand the potential interactions between the DEDM and related genes, we utilized the GeneMANIA web interface to 
construct gene-gene networks and identify the genes that are functionally associated with the DEDM genes. The constructed gene-gene 
networks are depicted in Figs. 3 and 4, with Fig. 3 focusing on the downregulated DEDM genes and Fig. 4 focusing on the upregulated 
DEDM genes. 

Fig. 3A shows the gene-gene network of the downregulated and hypermethylated DEDM genes in warts, and its functions were 
predicted to involve the response to type I interferon (FDR = 1.20 × 10− 09), response to virus (FDR = 1.20 × 10− 09), cellular response 
to type 1 interferon (FDR = 1.20 × 10− 09), regulation of viral genome replication (FDR = 8.19 × 10− 8), and negative regulation of viral 
process (FDR = 1.28 × 10− 7). Likewise, Fig. 3B shows the gene-gene network of the downregulated and hypomethylated DEDM genes 
in warts, and its functions were predicted to involve keratinization (FDR = 1.65 × 10− 35), epidermal cell differentiation (FDR = 3.82 ×
10− 31), keratinocyte differentiation (FDR = 1.84 × 10− 29), skin development (FDR = 1.84 × 10− 29), and intermediate filament 
cytoskeleton (FDR = 7.04 × 10− 08). 

Fig. 4A shows the gene-gene network of the upregulated and hypermethylated DEDM genes in warts, and their functions were 
predicted to involve extracellular matrix structural constituent (FDR = 4.48 × 10− 06), growth factor binding (FDR = 4.48 × 10− 06), 
extracellular matrix organization (FDR = 8.55 × 10− 04), collagen-containing extracellular matrix (FDR = 2.29 × 10− 02), and cellular 
response to transforming growth factor beta stimulus (FDR = 4.86 × 10− 02). Similarly, Fig. 4B shows the gene-gene network of the 
upregulated and hypomethylated DEDM genes in warts. None of the predicted functions of these DEDM genes were statistically sig-
nificant (FDR >0.05). 

2.4. Protein-protein interaction (PPI) network analysis 

To identify the predicted protein interactions of the DEDM genes, we used the Search Tool for the Retrieval of Interacting Genes/ 
Proteins (STRING) database to construct a PPI network. Fig. 5 shows the PPI network of DEDM genes at a high confidence (0.7). Using 

Table 2 
Functional annotation of the 276 DEDM genes in warts.  

Category Keyword Term Count FDR 

Diseases 
UP_KW_DISEASE KW-1007 Palmoplantar keratoderma 11 7.49 × 10− 09 

UP_KW_DISEASE KW-0038 Ectodermal dysplasia 7 3.34 × 10− 03 

DISGENET C4551675 Keratoderma, Palmoplantar 6 4.93 × 10− 03 

DISGENET C0023893 Liver Cirrhosis, Experimental 31 6.10 × 10− 03 

DISGENET C0011616 Contact Dermatitis 8 4.67 × 10− 02 

Functional Annotations 
UP_KW_CELLULAR_COMPONENT KW-0964 Secreted 66 1.75 × 10− 08 

UP_SEQ_FEATURE – CARBOHYD:N-linked (GlcNAc …) asparagine 99 2.06 × 10− 05 

UP_KW_CELLULAR_COMPONENT KW-0403 Intermediate filament 10 3.53 × 10− 05 

UP_KW_PTM KW-0325 Glycoprotein 107 3.53 × 10− 05 

UP_KW_PTM KW-1015 Disulfide bond 90 1.80 × 10− 02 

Gene Ontology 
GOTERM_CC_DIRECT GO:0005576 extracellular region 69 4.41 × 10− 10 

GOTERM_CC_DIRECT GO:0005615 extracellular space 64 5.57 × 10− 10 

GOTERM_CC_DIRECT GO:0001533 cornified envelope 10 5.35 × 10− 07 

GOTERM_CC_DIRECT GO:0070062 extracellular exosome 56 1.63 × 10− 04 

GOTERM_BP_DIRECT GO:0031424 keratinization 10 1.22 × 10− 03 

Interactions 
BIOGRID_INTERACTION 1230 CCR1 28 1.79 × 10− 09 

BIOGRID_INTERACTION 83608 C18orf21 19 6.79 × 10− 09 

BIOGRID_INTERACTION 2805 GOT1 20 6.05 × 10− 06 

BIOGRID_INTERACTION 53820 RIPPLY3 13 1.56 × 10− 05 

BIOGRID_INTERACTION 30815 ST6GALNAC6 13 2.30 × 10− 05 

Pathways 
REACTOME_PATHWAY R-HSA-6809371 Formation of the cornified envelope 19 2.93 × 10− 10 

REACTOME_PATHWAY R-HSA-6805567 Keratinization 19 6.62 × 10− 07 

REACTOME_PATHWAY R-HSA-6798695 Neutrophil degranulation 23 4.20 × 10− 04 

REACTOME_PATHWAY R-HSA-6799990 Metal sequestration by antimicrobial proteins 4 9.04 × 10− 03 

REACTOME_PATHWAY R-HSA-168256 Immune System 50 1.62 × 10− 02 

Protein Domains 
SMART SM01394 SM01394 9 4.64 × 10− 07 

PFAM PF01023 S-100/ICaBP type calcium binding domain 9 6.42 × 10− 07 

INTERPRO IPR013787 S100/CaBP-9k-type, calcium binding, subdomain 9 1.73 × 10− 06 

SMART SM01391 SM01391 10 7.27 × 10− 05 

UP_KW_DOMAIN KW-0732 Signal 96 1.73 × 10− 04  
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the Cytoscape application CytoHubba, the top hub genes in this PPI network were revealed to be elastin (ELN) (n = 10), integrin 
subunit beta 1 (ITGB1) (n = 9), TIMP metallopeptidase inhibitor 1 (TIMP1) (n = 6), matrix metallopeptidase 2 (MMP2) (n = 5), 
galectin 3 (LGALS3) (n = 5), collagen type I alpha 1 chain (COL1A1) (n = 5), and membrane alanyl aminopeptidase (ANPEP) (n = 5) 
genes. 

2.5. Signaling network analysis 

Lastly, we utilized the Signaling Network Open Resource 2.0 (SIGNOR 2.0) to carry out a signaling network analysis of the DEDM 
genes. Fig. 6 shows the signaling network generated from the DEDM genes with the highest confidence (0.9). The ITGB1 gene had the 
highest number of interactions (n = 6). 

Fig. 2. Analysis of the top five most significant GO terms obtained for the DEDM genes in terms of expression (A) and methylation (B).  
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3. Discussion 

Extracellular components, along with the cornified envelope and keratinization, were the most enriched GO terms among DEDM 
genes in common warts. Previous studies on diseases associated with high-risk HPV infection showed that these GO terms were 
similarly enriched (Table 3). This is unsurprising, as papillomaviruses are the only viruses known to begin their infection process at an 

Fig. 3. Gene-gene networks of the downregulated and hypermethylated (A) as well as the downregulated and hypomethylated (B) DEDM genes in 
warts. The size of a circle is proportional to the number of correlations with other genes in the gene-gene network. Striped circles represent the DEDM genes, 
while unstriped circles indicate associated genes. 
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Fig. 4. Gene-gene network of the upregulated and hypermethylated (A) as well as the upregulated and hypomethylated (B) DEDM genes in warts. 
The size of a circle is proportional to the number of correlations with other genes in the gene-gene network. Striped circles represent the DEDM genes, while 
unstriped circles indicate associated genes. 
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Fig. 5. Protein-protein network of DEDM genes in warts. The interaction score was set at the highest confidence (0.900), and disconnected nodes are 
not shown. 
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extracellular location [12]. In fact, extracellular events play a key role in the entry of HPV virions into squamous epithelial cells via the 
basement membrane, which is composed of thin layers of ECM and is the primary site of HPV attachment [13–15]. However, it is 
important to note that the studies listed in Table 3 involved high-risk HPV infection, limiting the applicability of those findings to the 
present study, which focused on low-risk HPV infection. 

Our findings revealed that the upregulated and hypermethylated DEDM genes in common warts were predicted to function as ECM 
structural and organizational components (Fig. 4A). In vitro, papillomaviruses have been shown to gain infectious entry into cells by 
binding to ECM components secreted by keratinocytes [26]. The ECM plays a critical role in tissue homeostasis and repair, and 
exploitation of the ECM allows HPV to enter basal keratinocytes [27]. Interestingly, genes encoding essential ECM components were 
among those identified as DEDM in common warts, including annexin a9 (ANXA9), collagen type I alpha 1 (COL1A1), elastin (ELN), 
integrin beta-1 (ITGB1), galectin-3 (LGALS3), and matrix metalloproteinase-2 (MMP2). 

This study showed that the ELN gene was the top hub gene among the DEDM genes. ELN encodes the critical skin protein elastin, 
one of two components that make up the elastic fibers that confer elasticity and extensibility to the skin [28]. Elastic fibers are a major 
feature of the ECM and have been shown to be degraded by MMP2 induction in ligamentum flavum hypertrophy [29]. On the contrary, 
elastin-derived peptides were reported to upregulate MMP2 activation and subsequently enhance melanoma cell invasion [30]. 

In the present study, MMP2 was identified as a DEDM gene in common warts that was also a hub gene. MMP family proteins are 
calcium-dependent zinc-containing endopeptidases which function in remodeling and breakdown of the ECM under normal conditions 
and pathological ones [31]. In the context of HPV infection, high-risk HPV types have been reported to possibly upregulate MMP2 
expression in lung adenocarcinomas and cervical cancer cells [32,33]. Likewise, certain S100 proteins such as S100A8, S100A9, and 
S100A14 - which are also DEDM in the present study, have been reported to promote cell motility and invasiveness by modulating 
MMP2 expression [34–36]. 

Furthermore, the S100/ICaBP type calcium binding domain was shown to be the most enriched protein domain among the 276 
DEDM genes in common warts. Although their functions are not well elucidated, the S100 proteins are known to have calcium and 
zinc-binding properties and tissue-specific expression patterns [37]. Various S100 proteins have been reported to be involved with 
diseases associated with high-risk HPV infection, as can be seen from Table 4. 

Likewise, LGALS3 had the second highest number of protein-protein interactions with other DEDM genes. The LGALS3 gene en-
codes the β-galactoside-binding lectin galectin-3, which is abundantly expressed in the cytoplasm of normal keratinocytes and is 
involved in inflammatory skin diseases, HPV-positive head and neck squamous cell carcinoma, and HPV-induced warts [54–56]. A 
previous study focusing on retinal pigment epithelial cells showed that extracellular galectin-3 is a positive regulator for the clustering 

Fig. 6. Signaling network of DEDM genes in warts. The interaction score was set at the highest confidence (0.9).  
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of CD147 and ITGB1 [57]. 
ITGB1, a broadly expressed cell surface receptor, was identified by signaling network analysis as a hub gene and forms a part of the 

fibronectin receptor integrin α5β1, which is used by different viruses to attach and gain entry into host cells [58,59]. ITGB1 also acts as 
an upstream regulator of caveolin-1, a scaffolding protein that facilitates viral entry into host cells [60]. In fact, caveolin-1 facilitates 
HPV31 entry into human keratinocytes and is upregulated by HPV16 [61,62]. In a murine model, blocking ITGB1 function decreased 
epidermal hyperproliferation and thickness, but another study showed that ITGB1 deletion converts the airway epithelium from a 
monolayer to a multilayer [63,64]. 

Our findings show that palmoplantar keratoderma (PK) is the most enriched disease among DEDM genes, largely due to the overlap 
of the gap junction and keratin genes. PK refers to a heterogeneous group of skin conditions that cause excessive thickening of the 
epidermis of the palms and soles. PK can be acquired through environmental factors - including HPV infection - or it can be hereditary 
[65]. Epidermodysplasia verruciformis, an inherited disorder with PK as a feature, is characterized by high susceptibility to infection 
by certain HPV types [2]. Interestingly, 19 of the DEDM genes in the current study overlapped with those significantly expressed in 
pachyonychia congenita, a hereditary skin disorder characterized by painful plantar keratoderma and thickened toenails [66]. 

There are several limitations to our findings that merit exploration in future studies. The sample size used in the microarray datasets 
is relatively small (n = 12), which might prevent the extrapolation of our findings to populations outside of the datasets. However, it is 
worthwhile to note that some strengths of the utilized datasets are that the cohort was all male (which reduces gender-specific 
variation) and that the normal skin biopsies were taken from sites adjacent to the wart biopsies for most samples (which reduces 
inter-organ variation). Moreover, as our study focused on an all-male cohort, it would be interesting to explore the impact of HPV 
infection on host gene expression and DNA methylation in the prostate of males and breast tissue of females, as previous studies have 
revealed possible links between HPV infection and certain cancers of the prostate and breast [67–69]. Furthermore, the utilized 
datasets did not include histological analysis of the wart samples, meaning that their gene expression and DNA methylation profiles 
contain a combination of expression patterns from the basal and suprabasal layers of the epidermis. Lastly, future studies would be 
useful to re-validate our findings by qPCR analysis in a separate cohort of samples. 

4. Conclusions 

In the present study, an integrative analysis of the gene expression and DNA methylation profiles of common warts was carried out. 
Our findings showed that 52% of DEDM genes were both upregulated and hypermethylated, with extracellular components being the 
most enriched GO terms among DEDM genes. Unsurprisingly, genes encoding essential extracellular components were among those 
that were DEDM, including ELN and MMP2, which were also found to be significant hub genes. However, there were also several 
DEDM genes with functions that have not been well-elucidated in previous studies. It is important to note that the extrapolation of our 

Table 3 
Previously reported associations of the top five most significant GO terms obtained for DEDM genes in common warts with other HPV-related 
diseases.  

Study samples Ref. HPV 
type 

GO:0001533 GO:0005576 GO:0005615 GO:0031424 GO:0070062 

Cervix 
Cervical cancer [16] n/a ✓    ✓ 
Cervical pre-cancer lesions [17] n/a ✓ ✓ ✓ ✓  
Cervical squamous cancer [18]  ✓ ✓ ✓  ✓ 
Cervical squamous cell carcinoma [19] n/a  ✓ ✓  ✓ 
Cervical squamous cell carcinoma [18] n/a ✓ ✓ ✓  ✓ 
Head and neck 
Head and neck squamous cell carcinoma [20] n/a  ✓ ✓  ✓ 
Head and neck squamous cell carcinoma [21] n/a  ✓ ✓  ✓ 
Head and neck squamous cell carcinoma [22] High 

risk   
✓ ✓ ✓ 

Murine model 
K14E6/K14E7 transgenic mice [23] High 

risk  
✓ ✓ ✓  

Vulva 
HPV-transformed primary cell lines from neoplastic 

vulval lesions 
[24] High 

risk 
✓ ✓ ✓ ✓  

Vulvar squamous cell carcinoma [25] High 
risk  

✓   ✓ 

GO:0001533 – cornified envelope - A type of plasma membrane that has been modified through addition of distinct intracellular and extracellular 
components, including ceramide, found in cornifying epithelial cells (corneocytes). 
GO:0005576 – extracellular region – The space external to the outermost structure of a cell. 
GO:0005615 – extracellular space – That part of a multicellular organism outside the cells proper, usually taken to be outside the plasma membranes, 
and occupied by fluid. 
GO:0031424 – keratinization – The process in which the cytoplasm of the outermost cells of the vertebrate epidermis is replaced by keratin. 
GO:0070062 – extracellular exosome – A vesicle that is released into the extracellular region by fusion of the limiting endosomal membrane of a 
multivesicular body with the plasma membrane. 
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Table 4 
Role of S100 proteins in HPV-associated and other diseases.  

Type DEDM in the current 
study? 

May be associated with Ref. 

S100 
proteins 

n/a Replication stage of HPV infection in HPV-positive cervical stroma [38] 

S100A2 Yes Progression of human prostate adenocarcinoma [39] 
S100A4 Yes Progression of human prostate adenocarcinoma [39] 
S100A7 Yes Prognosis of HPV-positive base of tongue squamous cell carcinoma [40] 
S100A8 Yes Onset and progression of HPV-positive oral squamous cell carcinoma [41] 
S100A8/A9 Yes Induction of granulocyte chemotaxis into HPV8-infected epidermodysplasia verruciformis lesions [42] 

Regulation of HPV16 E7 phosphorylation mediated by casein kinase II [43] 
S100A9 Yes Maintenance of the differentiated state of the epithelium, with S100A9 downregulation associated with increased susceptibility to esophageal squamous cell 

carcinoma tumors 
[44] 

S100A10 No Trafficking of HPV16 particles into host cells via an interaction with HPV16 and annexin [45] 
S100A11 No Proliferation, migration, invasion, and epithelial-mesenchymal transition of cervical cancer cells [46] 
S100A12 No Prognosis of HPV-negative hypopharyngeal squamous cell carcinoma [47] 
S100A14 Yes Prognosis of oral squamous cell carcinoma [48] 

Progression of epithelial ovarian tumors [49] 
Regulation of proliferation, migration, and invasion in cervical cancer cells [49] 

S100A16 Yes Involvement in cancer stem-like cells [50] 
Proliferation, migration, and tumor angiogenesis of HeLa cells via the regulation of the PI3K/AKT signaling pathway [51] 

S100B Yes Putative therapeutic target of neurological disorders, inflammatory bowel disease, obesity, diabetes, and cancer [52] 
S100P No Contribution to the outgrowth of aggressive tumor cells that are resistant to cytotoxic therapy [53]  
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findings is limited by the microarray datasets’ relatively small and all-male cohort. Future studies on common warts are needed to 
corroborate our findings in a larger population. 

5. Materials and methods 

5.1. Microarray datasets 

The DNA methylation and gene expression datasets of HPV-induced common warts were retrieved from the National Center for 
Biotechnology Information’s (NCBI) Gene Expression Omnibus (GEO). GSE213888 included the methylation data from 12 common 
warts and 12 matched controls from Jordanian males, while GSE136347 contained the gene expression data from the same samples 
and cohort. The inclusion criteria for the datasets were being male and clinical diagnosis of common warts, while the exclusion criteria 
were the presence of any comorbid autoimmune or dermatological conditions [70,71]. 

5.2. Identification of DEDM genes 

Differentially methylated (DM) genes between warts and normal skin were calculated using the R package RnBeads. Basically, the 
methylation level of genes was calculated and given a ranking score using 3 criteria: mean β difference between warts and normal skin, 
relative effect sizes (log2 of the quotient in methylation), and AP. The worst scores of these 3 measurements were combined into one 
single score called “combined ranking score” as described previously [72]. The top 3000 genes with the lowest “combined ranking 
score” were selected. The selected 3000 differentially methylated (DM) genes had an AP=<0.04, mean β difference >0.03 and < − 0.03 
and log2 of the quotient with a maximum value of 1.686 and a minimum value of − 1.751. 

On the other hand, differentially expressed (DE) genes were calculated using edgeR version 3.22.3 package [73]. Adjusted p-value 
(AP) < 0.05 and absolute fold change (|FC|) >2 were set as the threshold for DE genes. Using these cut-off measurements, a total of 
3140 genes were identified as DE genes in warts compared to normal skin samples. 

To explore the relationship between DNA methylation and gene expression, the DM genes were matched to the DE genes, and only 
the overlapped genes, i.e., both differentially expressed and differentially methylated (DEDM) genes, could be selected for further 
analysis. 

5.3. Enrichment analysis of DEDM genes 

The functional annotation of DEDM genes was performed using the Database for Annotation, Visualization, and Integrated Dis-
covery (DAVID). DAVID is a web server that provides functional annotation and enrichment tools to facilitate the biological inter-
pretation of large lists of genes. It collects information on the annotations of species-specific gene/protein identifiers from public 
genomic resources such as Uniprot, DisGeNET, Gene Ontology, BioGRID, Reactome, and KEGG [74,75]. 

5.4. Network construction and analysis 

A gene-gene network of DEDM genes was constructed using the GeneMANIA web interface. GeneMANIA identifies the genes that 
are related to the query genes through its very large functional association dataset, allowing users to identify new members of 
pathways or complexes [76]. 

A protein-protein interaction (PPI) network was created using the Search Tool for the Retrieval of Interacting Genes/Proteins 
(STRING) database version 11.5. The aim of the STRING database is to gather, score, and integrate all publicly accessible data on 
known and predicted protein-protein interactions [77]. 

After inputting the genes into STRING, CytoHubba was utilized to choose the hub genes in the PPI network based on the connection 
degree. CytoHubba is a Cytoscape application that predicts significant hub genes in a biological network through topographical 
analysis [78]. 

Lastly, a signaling network was constructed using the Signaling Network Open Resource 2.0 (SIGNOR 2.0). SIGNOR 2.0 collects 
signaling information from the scientific literature and stores the data as binary causative relationships between biological entities that 
can be represented in a graphical format [79]. 
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