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Abstract

Near-infrared (874–1734 nm) hyperspectral imaging (NIR-HSI) technique combined with

chemometric methods was used to trace origins of 1200 Chinese wolfberry samples, which

from Ningxia, Inner Mongolia, Sinkiang and Qinghai in China. Two approaches, named

pixel-wise and object-wise, were investigated to discriminative the origin of these Chinese

wolfberries. The pixel-wise classification assigned a class to each pixel from individual Chi-

nese wolfberries, and with this approach, the differences in the Chinese wolfberries from

four origins were reflected intuitively. Object-wise classification was performed using mean

spectra. The average spectral information of all pixels of each sample in the hyperspectral

image was extracted as the representative spectrum of a sample, and then discriminant

analysis models of the origins of Chinese wolfberries were established based on these aver-

age spectra. Specifically, the spectral curves of all samples were collected, and after

removal of obvious noise, the spectra of 972–1609 nm were viewed as the spectra of wolf-

berry. Then, the spectral curves were pretreated with moving average smoothing (MA), and

discriminant analysis models including support vector machine (SVM), neural network with

radial basis function (NN-RBF) and extreme learning machine (ELM) were established

based on the full-band spectra, the extracted characteristic wavelengths from loadings of

principal component analysis (PCA) and 2nd derivative spectra, respectively. Among these

models, the recognition accuracies of the calibration set and prediction set of the ELM

model based on extracted characteristic wavelengths from loadings of PCA were higher

than 90%. The model not only ensured a high recognition rate but also simplified the model

and was conducive to future rapid on-line testing. The results revealed that NIR-HSI com-

bined with PCA loadings-ELM could rapidly trace the origins of Chinese wolfberries.

Introduction

Chinese wolfberry is a multi-branched shrub in the family Solanaceae, and the fruit, skin, and

leaves can be used as medicine [1]. What’s more, the wolfberry shrubs are widely planted in

Inner Mongolia, Shaanxi, Gansu, Ningxia, Qinghai and Sinkiang and other places in China for

it has excellent soil and water conservation capacity [2]. It is well accepted that the growing
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environment may alter the chemical composition and biological properties of a selected botan-

ical [3]. Most consumers favor the Ningxia wolfberries, which have a characteristic large fruit,

nice shape, high content of active ingredient and a wide range of medicinal value [1]. However,

with the frequent mixing of fruits from different origins in the market in recent years, the qual-

ity of Ningxia wolfberries is difficult to guarantee. According to most researches, the geograph-

ical origins of Chinese wolfberries can be identified based on observing the shape of the

wolfberries and using chemical methods to detect internal quality, however, these methods are

time-consuming, destructive to the samples and with low detection accuracy [4–5]. Therefore,

establishing rapid, nondestructive and high-accurate methods to trace the origin of Chinese

wolfberries is urgent. Meanwhile, these analytical methods are also needed for wolfberry

breeding efforts to obtain improved cultivars with enhanced nutritional and nutraceutical

quality and farm gate value for commercial production of Ningxia wolfberries [6].

Spectroscopic and spectral imaging techniques have been widely used to identify origins

and analyze quality of agricultural products as rapid, nondestructive testing methods in recent

years [7–8]. Near infrared reflectance spectroscopy (NIRS) which is based on the absorption of

electromagnetic radiation in the 780–2526 nm wavelength range can provide comprehensive

structural information on the components and properties of samples at the molecular level. It’s

proven that this region of spectral bands arises from overtones of C-H, C-O, O-H and N-H

stretching vibrations [9]. Several studies have been reported of using NIRS with chemometrics

methods to determinate the wolfberry origins and quality. Wang [10] et al. (2016) used near-

infrared diffuse reflectance spectroscopy (NIDRS) to evaluate the amount of Chinese wolfberry

polysaccharides (LBPs). Li [11] et al. (2017) used a fourier transform near-infrared (FT-NIR)

spectrometer to determine the total sugar content of Chinese wolfberry. Shen [12] et al. (2016)

used NIRS to determinate geographical origins of Chinese wolfberries and flavonoids content

related to origins. Li [13] et al. (2017) used NIRS to determinate geographical origins and

anthocyanin content of black goji berry. They all concluded that NIRS has a high potential for

determination of wolfberry origins and quality. However, the problem is associated with these

methods, that samples were damaged when crushed into powder, making visual recognition

difficult. Furthermore, although NIRS could obtain the internal quality information of samples

from the spectra, NIRS fails to provide external space information of the samples.

Spectral imaging is the integration of spectroscopy and digital imaging, obtaining the spec-

tral and spatial information of the object simultaneously. The near infrared hyperspectral

imaging (NIR-HSI) is one of the common forms of the spectral imaging. It can obtain a wider

range of internal and external information of the sample, leading to a more comprehensive

analysis [14], which is helpful in discriminating different geographical origins of Chinese wolf-

berries. By hyperspectral imaging system, one pixel of each hyperspectral image has a wave-

length covering the whole spectral range. Finally, a hyperspectral cube, which is composed of a

series of images at each wavelength, is generated. NIR-HSI has been successfully used to dis-

criminate origins and quality of some agricultural products. Marena [7] et al. (2011) used

NIR-HIS to examine single whole kernels of three cereals (barley, wheat and sorghum) with

varying topographic complexity. Paul [15] et al. (2016) used NIR hyperspectral imaging to

classify maize kernels of three hardness categories with two approaches, pixel-wise and object-

wise, however, in their research, three categories and 20–40 kernels of each category were

insufficient to establish robust discriminative models and characteristic wavelengths were

missing to simplify the models. Stephen [16] et al. (2013) used the near-infrared hyperspectral

technique to measure the flour yield, softness and sucrose content of wheat and achieved a reli-

able evaluation of wheat milling quality. Gao [17] et al. (2013) used a pushbroom hyperspectral

imaging system to discriminate different geographical origins of Jatropha curcas L. seeds by
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spectral and image processing technique respectively. Few papers did research on qualitative

and quantitative analysis of Chinese wolfberry origins using NIR-HSI.

In this research, four geographical origins of Chinese wolfberries were studied using NIR-

HSI technique. After acquisition of the hyperspectral data for Chinese wolfberries, all the spec-

tral information of all samples was extracted. First, principal component visualization analysis

was conducted on Chinese wolfberries from different areas in the pixel-wise approach. Then,

the mean spectra of the wolfberry samples were analyzed to build support vector machine

(SVM), neural network with radial basis function (NN-RBF) and extreme learning machine

(ELM) models. Additionally, the characteristic wavelengths were selected to rapidly identify

wolfberry origin from loadings of principal component analysis (PCA) and 2nd derivative spec-

tra. The primary purpose of this research was to study the feasibility of using NIR-HSI to trace

the origins of Chinese wolfberries and build the corresponding robust discriminating models

using chemometric methods.

Materials and methods

Samples and sample preparation

To ensure that geographical origin was the only experimental variable, the wolfberry samples

were collected from the same species called lycium barbarum. In this study, the wolfberries were

purchased from local farmers in four main producing areas, including Zhongning County

(105.67˚E, 37.48˚N, Zhongwei, Ningxia, China), Urad Front Banner (108.65˚E, 40.72˚N, Bayan

Nur, Inner Mongolia, China), Jinghe County (82.88˚E, 44.60˚N, Bortala Mongolia, Sinkiang,

China), Dulan County (98.08˚E, 36.30˚N, Haixi, Qinghai, China). The wolfberry shrubs are

widely planted in Ningxia, Inner Mongolia, Sinkiang and Qinghai in China by local farmers. We

could use these wolfberries as food as well as do studies on them. So, no specific permissions were

required for these locations. In addition, we have confirmed that the field studies did not involve

endangered or protected species. A single wolfberry was used as a sample. From each producing

area, 300 samples were selected, and a total of 1200 samples were collected. To determine the ori-

gin of wolfberries by approximation of value assignment, Ningxia was assigned to 1, Inner Mon-

golia was assigned to 2, Sinkiang was assigned to 3 and Qinghai was assigned to 4. The surface of

each wolfberry sample was wiped clean, and the samples were tiled separated from one another

on the hyperspectral instrument platform. The captured RGB images of the Chinese wolfberries

from the four different origins are shown in Fig 1, with no obvious difference in appearance.

Hyperspectral image acquisition

A laboratory-based hyperspectral imaging system (Fig 2) was used to measure and collect the

information on wolfberries. The system consisted of a N17E-QE imaging spectrometer (Spectral

Fig 1. RGB image of the Chinese wolfberries from four different geographical origins. From left to right,

followed by Ningxia, Inner Mongolia, Sinkiang and Qinghai.

https://doi.org/10.1371/journal.pone.0180534.g001
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Imaging Ltd., Oulu, Finland), C-mount imaging lens (OLES22; Specim, Spectral Imaging Ltd.,

Oulu, Finland), two 150 W tungsten halogen lamps (Fiber-Lite DC950 Illuminator; Dolan Jen-

ner Industries Inc., Boxborough, MA, USA) placed on each side of the camera symmetrically at

a 45˚ angle for illumination, an IRCP0076 Electronically Controlled Displacement Platform

(Isuzu Optics Corp., Taiwan, China), a computer and a black box. Five nanometers was the

spectral resolution. When collecting hyperspectral images, the black box was closed to avoid the

interference from external light.

During hyperspectral image acquisition, the exposure time of the camera, the speed of plat-

form movement and the distance between the lens and the sample were set. These three

parameters affected one another, and the purpose of parameter adjustments was to produce

sizeable, clear, ametabolic and undistorted collected images. After repeated attempts, the dis-

tance between the lens and the sample was set to 31 cm, the exposure time was set to 4 ms, and

the speed of platform movement was set to 18.3 mm/s. The resolution of the near-infrared

hyperspectral image was 320 × 256 pixels. Image acquisition software was provided by Taiwan

Wuling Optics Company. Images were processed with ENVI 4.6 (ITT Visual Information

Solutions, Boulder, Utah, USA) and MATLAB 7.12 (The Math Works, Natick, MA, USA).

Before image processing, the acquired spectral images required correction, and the image cor-

rection was conducted using the following equation, where Ic is the corrected image, Iraw is the

raw image, Iwhite is the white reference image, and Idark is the dark reference image. The spec-

trum of the hyperspectral image had a corresponding relationship with the image. In this

research, the full-pixel spectra of all Chinese wolfberries were extracted, and the spectral mean

of all pixels of each Chinese wolfberry was used as the average spectrum of a sample.

Ic ¼
Iraw � Idark

Iwhite � Idark
ð1Þ

Data analysis

Characteristic wavelengths selection. Much redundant and collinear information occurs

within the spectral information, which greatly disturbs the extraction of effective spectral

information. Moreover, abundant spectral data cause models to be complex and the

Fig 2. Schematic diagram of the primary components of the hyperspectral imaging device. All primary

components were listed.

https://doi.org/10.1371/journal.pone.0180534.g002
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calculations therefore time consuming. In this research, loadings of principal component anal-

ysis (PCA loadings) and 2nd derivative spectra were used to select the characteristic wave-

lengths to reduce the influence of redundant and collinear information, simplify the model

and reduce the computational burden.

The loadings of principal component analysis reflect the degree of correlation between the

principal components and the raw wavelength variable. Larger loadings of the principal com-

ponent analysis indicate greater importance of the corresponding wavelength variable, with

more information contained [18–19]. To select the characteristic wavelengths by PCA load-

ings, the contribution rate of different principal components (PCs) was determined, and then

the cumulative contribution rate of analyzed PCs and the number of PCs were selected. Then,

to determine the loadings of the corresponding PCs, the threshold was set and the peaks or val-

leys were selected based on the wavelength-loading map as the characteristic wavelengths.

One of the commonly used methods of spectral preprocessing is derivative spectra, which

can effectively highlight the characteristic information of the spectrum [20]. Derivative spectra

are used to select the characteristic wavelength [21–22] by selecting the appropriate peaks or

valleys. In this research, the characteristic wavelength was selected based on the second deriva-

tive spectra. Because noise greatly influenced the derivative spectrum, before selecting the

characteristic wavelengths, the raw spectra were smoothed by Savitzky-Golay [23] (SG)

smoothing to minimize the noise of the raw spectrum.

Discriminant analysis methods. In this research, first, the principal component analysis

(PCA) visualization analysis of all-pixel spectral information of Chinese wolfberry from four

different areas was conducted. Then, the support vector machine (SVM), neural network with

radial basis function (NN-RBF) and extreme learning machine (ELM) discriminant analysis

models were established based on the average spectral information of all samples.

PCA [24] is an effective algorithm to solve the problem of data multicollinearity, extract fea-

ture information of data and realize data compression. PCA transforms multiple variables into

a new coordinate system by linear transformation, and the largest variance of the data is pro-

jected on the first coordinate (the first principal component, PC1), the second largest variance

is projected on the second coordinate (the second principal component, PC2), etc., to obtain

the same number of principal components as the number of variables. In this research, the

first five principal components were selected according to the cumulative contribution rate,

and the scores were graphed. By combining the score information and the spatial information

of spectral variables, the principal component was visualized.

SVM [25–27] is a statistical learning method based on structured risk minimization. With

SVM, the sample space is mapped to a high-dimensional or infinite-dimensional feature space

by nonlinear mapping. Linear partitioning or regression is achieved in a high-dimensional fea-

ture space by a linear hyperplane. This method can solve the problems of fewer samples, non-

linearity and high dimensions and overcome the local minimum in the neural network. In this

study, different penalty parameters (c) and kernel function parameters (g) were chosen to

achieve the highest recognition rate.

NN-RBF [28] is a 3-layer feed-forward neural network, which has the advantages of fast

training speed, great generalization ability and arbitrary approximation. The purpose of the

learning of NN-RBF is to determine the number of hidden layer neurons, the category of

NN-RBF function, center and width and then determine the weight between the hidden layer

and the output layer. In this research, by setting the rate of spread in the NN-RBF neural net-

work to 0.1–1 and 1–100, the model achieved the highest recognition rate, and the value of

spread when the recognition rate of the model was the highest was selected as the best

parameter.

Near-infrared hyperspectral imaging and geographical origins of Chinese wolfberries
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ELM [29] is an artificial neural network model proposed by Huang et al. The optimal solu-

tion is obtained by setting the number of neurons in the hidden layer and by comparing the

effects of the different numbers of neuron nodes. In this research, the number of neurons in

the hidden layer was optimized from 1 to 150 in steps of 1, and the number of neurons under

the minimum training error was the number of hidden layer neurons in the ELM model.

Results and discussion

Pixel-wise analysis and classification

To visualize the difference among Chinese wolfberries from the four geographical origins,

PCA was conducted of all-pixel spectral information of Chinese wolfberries from the four

different areas. In this research, the background and the insignificant pixels were eliminated,

and the spectral information of 20,196 pixels of Chinese wolfberries from four locations was

obtained, which was followed by PCA. The first five PCs were determined, and the scores of

the PCs were plotted on the basis of the scores of each pixel and the spatial distribution of the

pixels (Fig 3). In Fig 3, different colors represent different scores. The cumulative contribution

rate of the first five principal components was 99.78%, which explained most of the spectral

variables. As shown in Fig 3, in the score image for PC1, the types of color distribution are

clearly different for the top two locations and the two below. In the score image for PC2, the

top location was warmer in color than the remaining locations, which were cooler in color.

Although the rates of contribution of PC3, PC4 and PC5 accounted for only a very small part

of the total, they contained more internal information that could characterize different areas of

origin. From their scoring charts, the internal distributions of Chinese wolfberries from differ-

ent origins were different. In the score images for PC3 and PC4 (Fig 3), the color distribution

gradually changed from a cool to warm tone for the wolfberries of different origins from top to

bottom. For PC5, the color distribution gradually changed from a warm to cool tone for the

wolfberries of different origins from top to bottom in the score image (Fig 3). Because the ori-

gins were easier to distinguish in the score images for PC3, PC4 and PC5, the score distribu-

tion was plotted with the scores of those three principal components (Fig 4). The scores of

principal component analysis often show the intrinsic information of samples. Although the

score distribution map of Chinese wolfberries from different origins overlapped with one

another (Fig 4), samples from the same origin were more concentrated, forming different

regions. Thus, although the differences among the Chinese wolfberries from four origins could

be reflected intuitively, accurate classification was not easily achieved.

Fig 3. Score images for the first five principal components. The changes of color represent internal distributions in Chinese

wolfberries from four different origins.

https://doi.org/10.1371/journal.pone.0180534.g003
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Object-wise analysis and classification

Spectral features of Chinese wolfberries from different geographical origins. In the

object-wise approach, the depicted objects (in this case Chinese wolfberries) were used as data

points instead of the individual pixels. The spectral reflectance of all pixels of each Chinese

wolfberry was averaged as the spectral reflectance of a sample, and a total of 1200 spectral

curves were obtained. The noise from the front and back ends of the spectral curves was

removed, the spectra pretreated with moving average smoothing (MA) in the range of 972–

1609 nm were selected for analysis. The mean spectra of Chinese wolfberries from four differ-

ent geographical origins are shown in Fig 5. The wolfberries from different geographical ori-

gins had similar spectral patterns and all had absorption peaks at approximately 995, 1200 and

1465 nm. The absorption peak near 995 nm was attributed to the second vibration of N-H

bonds in proteins or amino acids [30–31]. The absorption peak near 1200 nm was attributed

to the secondary stretching vibration of C-H bonds in starch, proteins or lipids [32–33]. The

absorption peak near 1465 nm was the sensitive region for water absorption [34]. As shown in

Fig 5, the average spectra in the range of 972–1609 nm for the Chinese wolfberries from four

different geographical origins showed similar spectral curves and slightly different reflectance

values. The feature might be caused by differences in the internal components based on differ-

ent regions and climates.

Object-wise principal component analysis. The spectral data of 1200 samples from four

geographical origins were divided into a calibration set and a prediction set according to the

Kennard-Stone algorithm [35] at a ratio of 2:1, with 200 samples from each geographical origin

used as the calibration set and remaining 100 samples from each geographical origin used as

the prediction set. PCA was performed on the spectral data of the modeling set for qualitative

analysis of differentiating geographical origins of Chinese wolfberries. Fig 6 shows the 2D

scores scatter plot for PC3 and PC4. As shown in Fig 6, the samples from each geographical

origin were clustered together by their own characteristics, although some overlaps remained

in the score map. Further analysis and processing were required to identify the different ori-

gins of Chinese wolfberries.

Discriminant models based on full spectra

The discriminant analysis models of wolfberry origins were established by spectral data pre-

treated with MA. Support vector machine (SVM), neural network with radial basis function

Fig 4. Pixel-wise 2D PCA scores scatter plots of (a) PC3 and PC4 and (b) PC5 and PC4. Samples from the

same origin were more concentrated, forming four different regions.

https://doi.org/10.1371/journal.pone.0180534.g004
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(NN-RBF) and extreme learning machine (ELM) were used to establish the discriminant mod-

els. Table 1 shows the recognition results of the models.

Among the models, the penalty parameter (c) of the SVM model was 256, the parameter of

kernel function (g) was 0.0118, the spread rate (s) of the NN-RBF model was 25, and the hid-

den node number (h) of the ELM model was 162. The recognition accuracies of wolfberries

from Inner Mongolia and Sinkiang were all less than the mean accuracies. ELM and NN-RBF

models achieved better discriminant effects, with the recognition accuracies of the calibration

set higher than 95% and those of the prediction set higher than 90%. The recognition effect of

the SVM model was the worst, with 91% recognition accuracy of the calibration set and

88.25% for that of the prediction set. Although the number of samples was large, the recogni-

tion accuracies of the calibration set and prediction set of all identification models exceeded

85%. Thus, it’s feasible to discriminate geographical origins of Chinese wolfberries using full

spectra.

Characteristic wavelengths selection. Although the models based on the full spectra had

good results, the spectral data of 190 bands increased the computational complexity, in addi-

tion, the redundant information and collinearity of the spectral data might affect the effective-

ness of the established models. Therefore, loadings of PCA and 2nd derivative spectra were

Fig 5. Mean reflectance spectra of wolfberries from different geographical origins in the range of 972–1609 nm. The noise from the front and

back ends of the spectral curves was removed, and the spectra were pretreated with moving average smoothing (MA).

https://doi.org/10.1371/journal.pone.0180534.g005
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used to select the characteristic wavelengths and extract the effective feature information in the

spectra to build the identification models of geographical origins [17].

When the characteristic wavelengths were selected by loadings of PCA, the loadings of the

first five PCs were selected according to the requirement of the cumulative contribution rate.

The wavelength-loading plot was drawn by the loadings of the first five PCs, and the peaks or

valleys were selected as the characteristic wavelengths. A total of 20 characteristic wavelengths

were selected, including 992, 1072, 1109, 1116, 1130, 1160, 1207, 1210, 1217, 1264, 1268, 1301,

1328, 1338, 1369, 1402, 1409, 1423, 1446, and 1450 nm (Fig 7(A)). The peaks or valleys based

on the wavelength-loading map were indicative of physical and chemical effects involving [22]

fat, carbohydrate, protein and water in the wolfberries. Before the characteristic wavelengths

were selected by 2nd derivative spectra, smoothing with SG minimized the noise of the raw

spectra. Then, the second derivative spectra were plotted, and the peaks or valleys were selected

as the characteristic wavelengths. From the second derivative spectra, a total of nine character-

istic wavelengths were selected, including 982, 992, 1139, 1197, 1271, 1332, 1362, 1392, and

1429 nm (Fig 7(B)). The detailed biophysical attributes of these 29 wavelengths were listed in

Table 2 [36–41].

Fig 6. Object-wise 2D PCA scores scatter plot of PC3 and PC4. Samples from each geographical origin

were clustered together by their own characteristics.

https://doi.org/10.1371/journal.pone.0180534.g006

Table 1. Classification results of discriminant models based on full spectra.

Model Parametera Accuracy/%

Calibration Prediction

1 2 3 4 Mean 1 2 3 4 Mean

SVM (c, g) (256, 0.0118) 96.00 88.00 86.00 94.00 91.00 99.00 83.00 76.00 95.00 88.25

NN-RBF s 25 100 92.50 96.00 99.50 97.00 98.00 87.00 79.00 97.00 90.25

ELM h 162 100 92.50 93.50 99.00 96.25 97.00 86.00 83.00 99.00 91.25

1: Ningxia; 2: Inner Mongolia; 3: Sinkiang; 4: Qinghai
ac: the penalty parameter of the SVM model; g: the parameter of kernel function; s: the spread rate of the NN-RBF model; h: the hidden node number of the

ELM model.

https://doi.org/10.1371/journal.pone.0180534.t001
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Discriminant models based on characteristic wavelengths. Models of SVM, NN-RBF

and ELM were established based on the characteristic wavelengths extracted by PCA loadings.

Table 3 shows the recognition effect of each model for the calibration set and the prediction

set. The penalty parameter (c) of the SVM model was 256, the parameter of kernel function (g)

was 16, the spread rate of the NN-RBF model (spread) was 3, and the number of nodes of the

hidden layer of the ELM model was 89. The SVM, ELM and NN-RBF models all achieved

good recognition results for the large sample size, and the recognition accuracies of the calibra-

tion set were above 90%, and the accuracies of the prediction set were above 85%. The SVM

model achieved the worst recognition effect, and the accuracy of the calibration set was

90.75% and that of the prediction set was 86.5%. The recognition accuracies of the NN-RBF

calibration set and prediction set were 94% and 90%, respectively, which were the best of the

models based on the characteristic wavelengths extracted by PCA loadings.

Models of SVM, NN-RBF and ELM were also established based on the characteristic wave-

lengths extracted by the second derivative spectra. Table 3 shows the recognition effect of each

model for the calibration set and the prediction set. The penalty parameter (c) of the SVM

model was 256, the parameter of kernel function (g) was 1, the spread rate of the NN-RBF

model (spread) was 6, and the number of nodes of the hidden layer of the ELM model was

172. Of the models, the NN-RBF and ELM models achieved better discriminant effects, and

the recognition accuracies of the calibration set were higher than 90%, and the accuracies of

the prediction set were higher than 85%. The SVM model achieved the worst recognition

effect, with the recognition accuracy of the calibration set 89.375% and the recognition accu-

racy of the prediction set 82.75%. The ELM model obtained the best recognition effect, with

the accuracy of the calibration set and the prediction set 93.75% and 86%, respectively.

Comparison of three models based on different datasets. The discriminant analysis

models based on characteristic wavelengths extracted by PCA loadings and 2nd derivative

Fig 7. Selected optimal wavelengths by loadings of principal component analysis (a) and 2nd derivative

spectra (b). All characteristic wavelengths were marked.

https://doi.org/10.1371/journal.pone.0180534.g007

Table 2. Attributes of selected characteristic wavelengths.

Characteristic wavelengths (nm) Biophysical attributes

982, 1160, 1268, 1271, 1369, 1369, 1402, 1409, 1446 O-H stretch of water

992 O-H stretch of fat

1130, 1139, 1207, 1338, 1392 C-H stretch of fat

1197, 1300 C-H stretch of the carbohydrate

1210, 1217, 1328, 1332, 1362 C-H stretch of fat, carbohydrate, protein

1072, 1109, 1116, 1264, 1423, 1429, 1450 N-H stretch of protein

https://doi.org/10.1371/journal.pone.0180534.t002
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spectra were compared with those based on full spectra. All the recognition accuracies of the cali-

bration sets and the prediction sets of models exceeded 85%, except for the SVM model based

on characteristic wavelengths extracted from 2nd derivative spectra. Although the selection of

characteristic bands simplified the models, the discriminant models based on the characteristic

bands were slightly inferior to the discriminant model based on the full spectra, and the discrimi-

nant analysis model based on the characteristic wavelengths extracted by PCA loadings was bet-

ter than the discriminant analysis model based on the characteristic wavelengths extracted by the

second derivative spectra overall. For the predictive effects of the models, the accuracies of the

ELM prediction sets were higher than those of the other two models, and the models established

by ELM algorithm achieved the best discriminant effects under the three processing conditions.

In this research, the number of samples was 1200, which was large enough, and the recognition

accuracies of the calibration sets and the prediction sets all exceeded 80%, which demonstrated

the feasibility of discriminating different geographical origins of Chinese wolfberries using the

HSI technique combined with a discriminant analysis model.

Conclusions

The origins of Chinese wolfberries were traced using an NIR-HSI system combined with

extracted characteristic bands and different discriminant analysis models. From the perspec-

tive of the pixel spectra of the Chinese wolfberries combined with the spatial distribution of

the Chinese wolfberries, a principal component pseudo-color map was drawn, and the differ-

ences of wolfberries from four origins were displayed intuitively. From the perspective of wolf-

berry samples, different discriminant analysis models were built on the full spectra and the

characteristic wavelengths extracted by PCA loadings and 2nd derivative spectra. Following

analysis and comparison, the discriminant models based on the full spectra were better than

those based on the characteristic wavelengths. Among the discriminant analysis modeling

methods, ELM algorithm obtained the best discriminant effects. ELM model based on the

characteristic wavelengths extracted by PCA loadings not only provided high recognition

accuracy but also simplified the model, which facilitated rapid on-line detection. In future

research, as many origins as possible of Chinese wolfberries should be studied to establish a

more robust and wider range of identifications in models of the origins of Chinese wolfberries,

and the feasibility should be studied of applying HSI technique to detect quality in Chinese

wolfberry and determine whether Chinese wolfberry has been artificially smoked.

Supporting information

S1 Dataset. Calibration_ data. The original data of calibration set for object-wise analysis.

(XLSX)

Table 3. Classification results of discriminant models based on characteristic wavelengths.

Model PCA loadings 2nd derivative spectra

Parametera Mean Accuracy/% Parameter Mean Accuracy/%

Calibration Prediction Calibration Prediction

SVM (c, g) (256, 16) 90.75 86.50 (c, g) (256, 1) 89.38 82.75

NN-RBF s 3 94.00 90.00 s 6 94.38 85.50

ELM h 89 93.25 90.00 h 172 93.75 86.00

ac: the penalty parameter of the SVM model; g: the parameter of kernel function; s: the spread rate of the NN-RBF model; h: the hidden node number of the

ELM model.

https://doi.org/10.1371/journal.pone.0180534.t003
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S2 Dataset. Pixelwise_ data. The hyperspectral data for pixel-wise analysis.

(XLSX)

S1 Fig. Spectral reflectance curves. Mean reflectance spectra of wolfberries from different

geographical origins in the range of 972–1609 nm with standard error bars.

(TIFF)
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