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TLR4 signaling in the development 
of colitis-associated cancer and its possible 
interplay with microRNA-155
Jie Guo1,2, Mengfan Liao1,2 and Jun Wang1,2*  

Abstract 

Ulcerative colitis (UC) has closely been associated with an increased risk of colorectal cancer. However, the exact 
mechanisms underlying colitis-associated cancer (CAC) development remain unclear. As a classic pattern-recognition 
receptor, Toll like receptor (TLR)4 is a canonical receptor for lipopolysaccharide of Gram-negative bacteria (including 
two CAC-associated pathogens Fusobacterium nucleatum and Salmonella), and functions as a key bridge molecule 
linking oncogenic infection to colonic inflammatory and malignant processes. Accumulating studies verified the over-
expression of TLR4 in colitis and CAC, and the over-expressed TLR4 might promote colitis-associated tumorigenesis 
via facilitating cell proliferation, protecting malignant cells against apoptosis, accelerating invasion and metastasis, as 
well as contributing to the creation of tumor-favouring cellular microenvironment. In recent years, considerable atten-
tion has been focused on the regulation of TLR4 signaling in the context of colitis-associated tumorigenesis. Micro-
RNA (miR)-155 and TLR4 exhibited a similar dynamic expression change during CAC development and shared similar 
CAC-promoting properties. The available data demonstrated an interplay between TLR4 and miR-155 in the context 
of different disorders or cell lines. miR-155 could augment TLR4 signaling through targeting negative regulators 
SOCS1 and SHIP1; and TLR4 activation would induce miR-155 expression via transcriptional and post-transcriptional 
mechanisms. This possible TLR4-miR-155 positive feedback loop might result in the synergistic accelerating effect of 
TLR4 and miR-155 on CAC development.
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Background
The vital roles of persistent infection and chronic inflam-
mation in driving the initiation and progression of mul-
tiple malignancies, including cervical cancer, prostate 
cancer, liver cancer, gastrointestinal cancer, etc. have 
been acquired [1–6]. Persistent stimulation of epithelial 
cells and infiltration of immune cells caused by oncogenic 
pathogen infection and uncontrollable inflammation may 

create a tumor-favouring cellular microenvironment [5, 
7]. Currently, colorectal cancer (CRC) is considered as 
the 3rd most common malignancy and the 4th leading 
cause of cancer-related deaths worldwide [8]. Despite that 
the exact etiology of CRC is still unknown, accumulative 
evidences have supported that patients with inflamma-
tory bowel diseases (IBD), a group of chronic gut inflam-
matory disorders including ulcerative colitis (UC) and 
Crohn’s disease (CD), are at a clearly increased risk for 
the CRC development [9–11]. IBD has been believed as 
an independent risk factor of CRC, the incidence of CRC 
in IBD patients has been reported to be up to 60% higher 
than that in the general population [12]. In particular, 
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population-based evaluations suggested that the risk of 
CRC in patients with UC was between two- and three-
fold that of the general population [11]. Approximately 
8% of UC patients developed CRC in 20 years and 18% in 
30 years of disease [13]. Moreover, the local alteration of 
intestinal microbiota composition and metabolic activity 
has been linked to chronic inflammation in IBD and can-
cer development in colitis-associated cancer (CAC) [11]. 
It has been demonstrated that some specific species such 
as Fusobacterium nucleatum (a Gram-negative anaerobic 
bacterium) and Salmonella (a Gram-negative facultative 
anaerobic bacterium) might be the potential pathogens 
that play key roles in the progression of CAC [4, 11, 14]. 
Nevertheless, the molecular mechanisms of CAC devel-
opment remain unclear.

As the most important pattern-recognition receptors 
(PPRs), Toll-like receptors (TLRs) could recognize the 
pathogen-associated molecular patterns (PAMPs) carried 
by diverse microorganisms and the danger-associated 
molecular patterns (DAMPs) derived from stressed or 
damaged cells, and are responsible for the activation and 
association of innate and adaptive immune responses [15, 
16]. TLRs have been identified as main components of 
infection diseases, innate immunity, inflammatory condi-
tions [15, 16], and importantly, inflammation-mediated 
tumorigenesis [15, 17, 18]. Up to date, different members 
of TLR family have been demonstrated to contribute to 
the involvement of inflammation in cancer progres-
sion [18–22]. For example, it has been reported that the 
expression of TLR2 gradually increased from normal 
mucosa, to Helicobacter pylori-gastritis, to metaplasia, 
to dysplasia [19]. Hong et al. [20] have demonstrated the 
role of TLR3/7-mediated signaling in the induction of 
CAC using a well-established murine model of azoxym-
ethane (AOM)/dextran sulfate sodium (DSS) treatment. 
The role of TLR7 and TLR8 expression and signaling in 
chronic pancreatitis-linked pancreatic carcinogenesis has 
also been determined [21, 22].

In particular, more and more evidences [7, 23, 24] have 
shown that the TLR4-mediated signaling might act as a 
pivotal pathogen-activated tumor signal pathway and 
an important carcinogenic mechanism involved in the 
development of CAC. As a key member of TLR fam-
ily and a classic inflammatory mediator, TLR4 acts as a 
bridge molecule between innate and adaptive immunity, 
as well as between infection and inflammation [25]. Espe-
cially in the gut, a high density of luminal microbes and 
the abundant PAMPs coexist with the intestinal mucosa 
[26]. TLR4 has been well-accepted as the main PRR as 
well as the canonical receptor for lipopolysaccharide 
(LPS) of Gram-negative bacteria, a group of predominant 
gut pathogens [27, 28]. Moreover, the intestinal inva-
sion of CAC development-related pathogens such as F. 

nucleatum and Salmonella has been reported to target 
and activate TLR4 signaling [4, 11, 29]. As a type I trans-
membrane glycoprotein receptor containing 839 amino 
acids [30], TLR4 is widely expressed on various immune 
cells, epithelial/endothelial cells and tumor cells, etc. [31] 
Several auxiliary molecules including LPS binding pro-
tein (LBP), cluster of differentiation 14 (CD14), and mye-
loid differentiation factor 2 (MD-2) are required in the 
TLR4 receptor complex as co-receptors for TLR4 [31]. 
Once recognized, LPS can be transferred to cell surface 
CD14 by LBP, then bond with the TLR4/MD-2 receptor 
complex [31]. Subsequently, the LPS/MD-2/TLR4 com-
plex recruits two distinct intracellular adaptor proteins 
including myeloid differentiation primary response gene 
88 (MyD88)/MyD88 adaptor-like (Mal) and TIR-domain-
containing adapter-inducing interferon-β (TRIF)/
TRIF-related adaptor molecule (TRAM), then triggers 
activation of two parallel signaling pathways, MyD88-
dependent pathway and MyD88-independent pathway, 
resulting in transcription of inflammatory cytokines, 
such as tumor necrosis factor-α (TNF-α), interleukin-6 
(IL-6), IL-1, and secretion of type I interferons [32]. It 
has been reported that the TLR4/MD2 expression levels 
on intestinal epithelial cells are relatively low under nor-
mal conditions, but significantly upregulated during the 
development of IBD [33]. More importantly, disturbance 
of TLR4 pathway has been considered as one of the 
unique aspects of IBD-related colorectal tumorigenesis 
[34]. In this review, we summarized the current findings 
about the potential role of TLR4 during CAC progres-
sion, and its potential association with microRNA (miR)-
155, a CAC-related miRNA.

Up‑regulation of TLR4 in colitis and CAC 
In healthy adult mammals, TLR4 has been found to be 
lowly expressed in the intestinal epithelium, thereby lim-
iting excessive inflammatory responses directing towards 
the numerous microbial pathogens in the enteric cav-
ity [33, 35]. However, the expression of TLR4 has been 
frequently reported to be markedly upregulated in the 
inflamed intestinal mucosa [36–39]. The significantly 
enhanced expression of TLR4 transcripts and cell sur-
face protein was demonstrated in the crypt epithe-
lial cells isolated from mucosal samples of UC patients 
when compared to normal controls [37]. Tan et  al. [38] 
also reported that TLR4 was expressed on inflamma-
tory cells in the intestinal lamina propria and submucosa 
of patients with UC at active phase, but not detected in 
healthy controls. Moreover, TLR4 expression levels were 
positively correlated with disease activity indices, endos-
copy scores and histopathological scores [38]. In a study 
involving 41 patients with active or inactive IBD [39], 
TLR4 mRNA was shown to be significantly upregulated 
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in biopsy tissues, specifically from patients with signs of 
active UC, the expression of which was approximately 13 
times higher than healthy controls.

In addition, studies [40, 41] showed that the mRNA and 
protein of TLR4 were overexpressed in colonic mucosa of 
CRC patients compared with the controls. TLR4 expres-
sion in CRC was significantly correlated with tumor stage 
and cancer-related survival outcomes [42]. More impor-
tantly, Fukata et al. [23] have demonstrated that the epi-
thelial TLR4 expression was gradually increased from 
the lesions of active UC to those of low-grade dysplasia, 
high-grade dysplasia and CAC in human samples, thus 
suggested a critical contribution of epithelial TLR4 in the 
induction of inflammation-induced intestinal tumorigen-
esis. This clinical finding has been supported by animal 
experimental data [43]. The gene expression of TLR4 was 
revealed to be increased in classic mouse models of acute 
and chronic colitis induced by DSS, and the highest level 
of TLR4 expression was seen in colonic tumors induced 
by AOM/DSS [43]. These results collectively showed that 
TLR4 might at least act as a biomarker for the progres-
sion of CAC.

Role of TLR4 in CAC development and its possible 
mechanisms
Further gain- or loss-of-function experiments [23, 
43–45] demonstrated the gradually upregulated TLR4 
during CAC development might not only act as a bio-
marker, but also play an important role in promoting 
colitis-associated tumorigenesis. Fukata et al. [23] found 
that, after administration of AOM/DSS, the number of 
colonic tumors in villin-TLR4 mice, a transgenic mouse 
model carrying a constitutively active TLR4 in the intes-
tinal epithelium, was significantly higher than that in wild 
type (WT) mice. Using an antagonist TLR4 antibody, the 
study team [23] demonstrated that the inhibition of TLR4 
markedly suppressed the development of colonic tumors 
in the WT mice. Whereas, in the  TLR4−/− mice treated 
with AOM/DSS, the incidence of colorectal neoplasia 
as well as the size and severity of dysplasia were found 
to be significantly decreased compared to those in WT 
mice [43]. In addition, Makkar et al. [44] induced synge-
neic tumor isografts by injection of mouse colon cancer 
CT26 cells into BALB/c mice, and found that  TLR4−/− 
CT26 cell tumors grew more slowly than WT CT26 
tumors. Shi et  al. [45] reported that deficiency of TLR4 
significantly reduced the number of intestinal tumors in 
 ApcMin/+ mice, a mouse model of spontaneous intestinal 
tumorigenesis.

The possible mechanisms underlying the potential car-
cinogenic role of TLR4 in CAC initiation and develop-
ment might be as follow.

Proliferation‑promoting effect of TLR4
In a DSS-induced acute experimental colitis model, 
TLR4 knockout mice were found to be deficient in the 
ability of epithelial repair in response to DSS-induced 
injury, suggesting that the proliferation-promoting 
effect of TLR4 signaling was required for basal resist-
ance against DSS-induced acute intestinal injury [46]. 
However, based on this proliferation-promoting activ-
ity, it could be speculated that long-term and excessive 
upregulation of TLR4 signaling might lead to the initia-
tion and development of CAC.

In villin-TLR4 mice, overexpression of TLR4 in intes-
tinal epithelium has been demonstrated to result in 
the increased epithelial proliferation, the expansion 
of crypt epithelial cells and the development of spon-
taneous duodenal dysplasia [23]. Furthermore, treat-
ing villin-TLR4 mice with AOM led to robust colonic 
tumorigenesis, accompanied by the dramatic prolif-
eration of cells in tumors and surrounding tissues [47]. 
In human colon cancer cell lines HT-29 and SW480, 
CCK8 assay showed that the cell proliferation was sup-
pressed by the inhibition of TLR4 using TLR4 siRNA 
[48]. Similarly, Kuo et  al. [49] challenged HT-29 cells 
with a nonapoptotic dose of LPS, and found that the 
increase of cell proportion in S and  G2-M phases fol-
lowing LPS challenge was eliminated by gene silencing 
of TLR4. In  ApcMin/+ mice treated with F. nucleatum, 
the expression of cell cycle regulatory gene Cyclin D1 
was found to be significantly decreased by inhibition 
of TLR4 using TAK-242 [50]. Makkar et  al. [44] used 
BrdU as a proliferative marker, and showed that the 
proliferation in  TLR4−/− CT26 cell tumor isografts 
was significantly impaired compared to that in CT26 
WT tumor isografts. Another study [45] also found 
that the number of Ki67-positive proliferative cells was 
much higher in tissues from the  ApcMin/+ WT mice 
than in tissues from the  ApcMin/+  TLR4−/− mice. Kuo 
et al. [49] reported that the tumor cell proliferation in 
AOM/DSS-induced CAC was significantly decreased 
by the administration of eritoran, a TLR4 inhibitor. 
Furthermore, the same study [49] explored the effect 
of TLR4 inhibition by eritoran or TLR4 siRNA in pri-
mary cultures of colonic tumor spheroids on tumor cell 
proliferation in  vitro, and found that TLR4 inhibition 
suppressed the increase of spheroid growth and the 
acceleration of cell-cycle progression induced by LPS. 
These above findings suggested that TLR4 could pro-
mote the proliferation of intestinal epithelial cells and 
malignant cells, thus might act as a potent proliferative 
driver during the development of CAC.
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Anti‑apoptotic effect of TLR4
Fukata et  al. [51] have found that the TLR4 knockout 
mice showed enhanced intestinal epithelial cell apop-
tosis following DSS-induced acute colitis. This anti-
apoptotic effect of TLR4 has been considered to be 
beneficial in reducing acute intestinal injury and pro-
moting mucosal repair [51, 52]. However, given its 
anti-apoptotic activity, overexpression of TLR4 during 
colonic inflammation could be speculated to protect 
malignant cells against apoptosis and further promote 
tumor cell growth.

In human colon cancer cell lines HT-29, SW480 and 
Lovo, flow cytometry analysis showed that a significantly 
high level of apoptosis induced by TNF-related apopto-
sis-inducing ligand (TRAIL) was attenuated by the typi-
cal TLR4 activator LPS [53]. Chung et  al. [54] induced 
apoptosis of human colon cancer HCT-116, HT-29 and 
HCT-8 cells by oxaliplatin and 5-fluorouracil (5-FU). 
After treatment with oxaliplatin and 5-FU, cells were 
incubated with or without LPS. The results showed that 
the LPS treatment for 8 h significantly inhibited the apop-
tosis of drug-treated colon cancer cells, as evidenced by 
the increased expression of anti-apoptosis-related B-cell 
lymphoma 2(Bcl-2) family proteins and the decreased 
activity of pro-apoptosis caspase-3/7 [54]. In CT26 
tumor isografts, the numbers of apoptotic cells and the 
activity of caspase-3, which were detected using TUNEL 
assay and immunofluorescence, respectively, were found 
significantly increased by TLR4 knockout [44]. In an in-
vivo study conducted by Kuo et al. [55], TLR4-mut mice 
(TLR4-deficient mice harboring a point mutation in the 
TLR4 at Pro712) and their WT counterparts were used 
for AOM/DSS administration. Then the higher numbers 
of apoptotic cells per area of tumor were found in TLR4-
mut mice than in WT mice. This study [55] also explored 
the effect of TLR4 deficiency on cell apoptosis in colonic 
tissues by an ex-vivo experiment. The colonic tissues of 
TLR4-mut or WT mice were stimulated with LPS from 
the mucosal side. Enhanced epithelial apoptosis was 
found in colonic tissues of TLR4-mut, but not WT mice. 
These data confirmed that TLR4 could protect colonic 
cancer cells from cell apoptosis in vitro and in vivo.

However, a conflicting study conducted by Li et  al. 
[56] showed that the constitutive activation of TLR4 in 
intestinal epithelium resulted in an elevation of intesti-
nal tumor cell apoptosis levels and a reduction of intes-
tinal tumor burden in the  ApcMin/+ mice, indicating that 
persistent epithelial activation of TLR4 might play a 
role in inhibiting intestine tumorigenesis by enhancing 
apoptotic signals. This finding appeared to be in contra-
diction with the study conducted by Kuo et al. [55] sug-
gesting deficiency of TLR4 increased epithelial apoptosis 
in AOM/DSS mouse model. This contradiction might be 

due to the different animal models used in these studies. 
Li et al. [56] introduced the CD4-TLR4 transgene linked 
to an intestinal epithelial cell-specific promoter into 
 APCMin/+ mice. The authors attributed  the pro-apop-
totic effect of epithelial TLR4 activation on intestinal 
tumor cells to the downregulation of cyclooxygenase 2 
(Cox-2), a major mediator of tumor survival and growth 
which can impart resistance to apoptosis, in CD4-TLR4-
expressing intestinal tumors [56]. However, Kuo et  al. 
[55] observed the potential anti-apoptotic effect of TLR4 
using TLR4-mutant mice harboring a spontaneous 
spontaneous point mutation of the TLR4 gene at Pro-
712His (C.C3-Tlr4LPS−d/J strain). The expression change 
of Cox-2 was not included in this study [55]. Neverthe-
less, Fukata et  al. [51] reported that, using an AOM/
DSS-induced CAC mouse model, Cox-2 expression was 
significantly decreased in the mucosa of TLR4-deficient 
mice compared to that of WT mice. The enhanced Cox-2 
levels were also observed in the villin-TLR4 transgenic 
mice generated using plasmids containing the mouse vil-
lin promoter (pBS-Villin) and the mCD4-hTLR4 fusion 
gene [23], in which CD4-TLR4 construct was expressed 
under a different epithelial promoter than the study con-
ducted by Li et al. [56] Therefore, further researches on 
the regulatory mechanisms of TLR4 on Cox-2 under dif-
ferent contexts (e.g. the presence or absence of inflamma-
tory stimulation) or under different genetic backgrounds 
might be required to identify the role of TLR4 in regulat-
ing apoptosis of intestinal tumor cells.

Role of TLR4 in invasion and metastasis
High expression of TLR4-mediated signaling was found 
to be significantly associated with a high risk of liver 
metastasis and poor prognosis in CRC patients [57]. 
Ying et  al. [58] explored the role of TLR4 signaling in 
the metastasis potential of mouse C26 and human colon 
cancer HCT-116 cells, and found that silencing of TLR4 
expression significantly suppressed the LPS-induced 
migration and invasion of C26 and HCT116 cells, which 
were detected using wound healing assay and transwell 
assay, respectively. Subsequently, the study team [58] 
found that stimulation of TLR4 by LPS induced down-
regulation of epithelial marker E-cadherin and up-reg-
ulation of mesenchymal marker Vimentin, suggesting 
that activation of TLR4 signaling induced the epithelial-
mesenchymal transition (EMT) phenotype in colon can-
cer cells. EMT-like attributes have been well-accepted 
to greatly contribute to invasive phenotype and meta-
static capacity of the migratory subpopulation in CRC 
[59]. In addition, Killeen et  al. [60] showed that inhibi-
tion of TLR4 in human colon cancer SW480 and SW620 
cells ameliorated tumor cell invasion and adhesion to 
the extracellular matrix, the latter of which has been 
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considered as a key step in the process of tumor metasta-
sis [61]. In an in-vivo study conducted by Hsu et al. [62], 
LPS-treated or untreated HT-29 cells were injected into 
athymic nude mice. After 5 weeks of incubation, the mice 
injected with LPS-treated HT29 cells were found to have 
a significantly higher number of liver surface metastatic 
nodules compared with those injected with untreated 
HT29 cells, and this effect exerted by LPS could be 
attenuated by TLR4 antagonist. Similarly, using a mouse 
model of colon cancer cell metastasis to lungs, another 
study [63] showed that MD2 blockage suppressed the 
metastatic capacity of colon cancer cells in vivo through 
inhibiting TLR4/MD2 signaling. These findings collec-
tively suggested the potential role of TLR4 in enhancing 
the aggressiveness and metastatic ability of CRC cells.

Involvement of TLR4 in tumor‑favouring cellular 
microenvironment
It has been well-accepted that the interaction between 
tumor cells and cells of the surrounding microenviron-
ment could promote the progression of tumor [64]. TLR4 
expression in the colonic tumor microenvironment has 
been found to be positively correlated with the disease 
progression of CRC [65]. During DSS-induced acute coli-
tis, the production of chemokines, including C–C motif 
chemokine ligand 2 (CCL2), CCL20 and Chemokine 
C-X3-C-Motif Ligand 1 (CX3CL1), as well as the infil-
tration of macrophages and dendritic cells (DCs) were 
found to be decreased in anti-TLR4 antibody-treated 
mice [66]. Using bone marrow (BM) chimeric mice to 
construct AOM/DSS-induced CAC model, Fukata et  al. 
[24] reported that the infiltration of neutrophils and mac-
rophages as well as the expression of chemokines CCL2 
and keratinocyte-derived chemokine were higher in WT 
mice engrafted with  TLR4−/− BM than in  TLR4−/− mice 
engrafted with WT BM, indicating that TLR4 signal-
ing on colonic epithelial cells rather than the myeloid 
compartment could promote the recruitment of inflam-
matory cells in the tumor microenvironment of CAC. 
Furthermore, macrophages recruited in the tumor micro-
environment could differentiate into tumor-promoting 
 M2-phenotype or tumor-suppressing  M1-phenotype [67]. 
Chen et al. [68] reported that inhibition of TLR4 by TAK-
242 significantly suppressed the in-vitro  M2 polarization 
of macrophage Raw264.7 cells induced by F. nucleatum. 
The in-vivo study in F. nucleatum-treated  ApcMin/+ mice 
also showed that pre-treatment of TAK-242 significantly 
reduced the  M2 polarization of macrophages within the 
tumor microenvironment [68]. These data indicated that 
TLR4 signaling upregulated in colitis might contribute 
to the creation of tumour-favouring microenvironment 
during the development of CAC.

Potential role of miR‑155, a CAC‑related miRNA, 
in regulating TLR4 signaling
In recent years, based on the above potential roles of 
TLR4 in CAC development and progression, much atten-
tion has been focused on the regulation of TLR4 signal-
ing in the context of colitis-associated tumorigenesis. 
Many TLR4-related signaling molecules, such as NF-κB, 
PI3K/Akt, Wnt/β-catenin, EGFR, GSK3β, Erk1/2, JNK 
and Nox1 [30, 38, 49, 68, 69], have been reported to be 
implicated in the mechanisms underlying the role of 
TLR4 in CAC.

In particular, as a high-profile mechanism to silence 
gene expression, miRNA-mediated post-transcriptional 
regulation has been found to contribute to the control 
of TLR4 signaling pathway [70, 71]. miRNAs are a group 
of small endogenous non-coding RNAs of ~ 22 nucleo-
tides that regulate gene expression by binding to the 
3’-untranslated regions (UTRs) of target mRNAs, leading 
to mRNA degradation or translation breakdown [72, 73]. 
Among the multiple miRNA molecules regulating TLR4 
pathway, miR-155 captures our attention because of its 
highly similar role to TLR4 in the pathogenesis of CAC.

It has been frequently demonstrated that the miR-155 
expression is markedly increased in inflamed colonic 
mucosa of UC patients [74–77]. The fold changes of 
miR-155 expression levels in inflamed human UC sam-
ples compared to the controls were reported to range 
from 1.22 to 2.33 [75, 76]. In DSS-induced acute colitis 
animal model, miR-155 antagomir dramatically distrib-
uted in colon epithelial and submucosal cells was signifi-
cantly upregulated by DSS challenge, with fold change of 
4.74 compared to the normal controls [78]. Importantly, 
El-Daly et  al. [79] had applied the stepwise CAC model 
induced by AOM/DSS to detect the aberrant expression 
of miR-155 during the different stages of CAC develop-
ment. The results showed that the expression of miR-
155 was gradually increased as the mouse colonic tissue 
transformed from normal to actively inflamed to malig-
nant state, suggesting that miR-155 might play a role 
in the progression of CAC. Coincidently, this dynamic 
change of miR-155 expression in a stepwise pattern was 
consistent with that of TLR4 during stages of CAC devel-
opment observed by Fukata et al. [43]

As a multi-functional microRNA, miR-155 has been 
found to markedly promote cell proliferation and pro-
inflammatory secretions, regulate the immune balance 
in colonic mucosa of IBD, thus contribute to the patho-
genesis of experimental colitis [80, 81]. Importantly, the 
function of miR-155 in CAC promotion has been demon-
strated in miR-155 deficient mice exposed to AOM/DSS 
challenge [82]. Compared to syngeneic WT mice, host 
miR-155 deficiency significantly decreased the tumor 
incidence and the multiplicity of colonic neoplasms. This 
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study [82] also showed a similar inhibitory effect posed 
by miR-155 deficiency on the in-vivo growth of trans-
plantable mouse colon cancer MC38 tumors in mice. 
In human colon cancer cell lines SW480 and HCT116, 
hypoxanthine phosphoribosyltransferase assay showed 
that the mutation rate was increased along with the 
upregulation of miR-155 expression levels during doxycy-
cline treatment [83]. This finding established a direct link 
between the mutation rate and the miR-155 expression 
level in colon cancer cells, suggesting that miR-155 might 
promote colonic tumorigenesis based on its mutant phe-
notypes. Transfection of HCT-116 cells with miR-155 
mimics significantly inhibited the cell apoptosis, and pro-
moted the proliferation, cell cycle progression and inva-
sive abilities [84]. Whereas, the cell growth, motility and 
invasion of human colon cancer cell lines SW480, DLD-1, 
LS174T have been found to be inhibited by knockdown 
of miR-155 [85]. These findings collectively suggest that 
miR-155 might act as an oncogenic miRNA during the 
development of CAC, which is also similar to the above-
mentioned CAC-promoting effect of TLR4.

However, Velázquez et  al. [86] presented a contrary 
evidence, and showed that administration of AOM/
DSS to miR-155−/− mice caused an increased number of 
polyp/adenoma and a higher grade of epithelial dyspla-
sia than the administration to WT controls, indicating 
that miR-155 might protect against the development of 
CAC. This finding was in contradiction with the report 
of Chen et al. [82]. As both studies used a similar AOM-
DSS administration protocol, this contradiction might be 
due to the difference in the experimental environment or 
the genetic background of experimental mice. Therefore, 
further research and replication should be conducted to 
verify the oncogenic property of miR-155 in CAC.

Of note is the potential regulatory activity of miR-
155 for TLR4 signaling (Table  1). Currently, miR-155 
has been considered as a critical regulator of innate/
adaptive immune response and TLRs signaling [87, 88]. 
Marques-Rocha et  al. [89] found an evidence showing 
that miR-155 might exert a direct inhibitory control over 
TLR4 expression. In this study, overexpression of miR-
155 by transfection of miR-155-3p mimic significantly 
downregulated the expression of TLR4 in human acute 
monocytic leukemia THP-1 cells and THP-1-derived 
macrophages [89]. However, another study [90] showed 
that transfection with miR-155 mimic resulted in the sig-
nificantly increased expression of TLR4 in human HaCaT 
keratinocytes. In an experimental autoimmune prostati-
tis model, Fu et al. [91] found that the expression of TLR4 
in prostatic tissues of miR-155−/− mice was lower than 
that of WT mice. Using miR-155−/− mice and WT mice 
to establish permanent middle cerebral artery occlusion 
model, Wen et  al. [92] showed that TLR4 expression 

was significantly decreased in the ischemic cerebral tis-
sues of miR-155−/− mice compared with that in WT 
mice, whereas overexpression of miR-155 induced by 
pAd-miR-155 transfection markedly increased the TLR4 
expression in ischemic cerebral tissues. Therefore, fur-
ther studies in more cell lines and more animal models 
should be conducted to verify the exact regulatory role of 
miR-155 for TLR4 signaling.

As for the possible regulatory mechanisms, several 
studies [70, 92–94] have demonstrated that miR-155 
could augment TLR4 signaling through targeting sup-
pressor of cytokine signaling 1 (SOCS1), a key negative 
regulator of TLR4 signaling [93]. Wang et al. [94] revealed 
that transfection of mouse primary macrophages with 
miR-155 mimics enhanced TLR4 responsiveness, which 
was manifested as enhanced production of LPS-induced 
TNF-α and nitric  oxide (NO); importantly, luciferase 
assay showed that miR-155 directly targeted 3’ UTR of 
SOCS1. Similarly, Chen et  al. [93] showed that overex-
pression of miR-155 in  VDR−/− bone marrow derived 
macrophages (BMDMs) treated with LPS resulted in 
the markedly reduced expression of SOCS1, as well as 
a much more robust and prolonged production of pro-
inflammatory cytokines TNF-α, IL-6 and IL-1β, suggest-
ing miR-155 could enhance and prolong TLR4-mediated 
inflammatory responses through excessive inhibition of 
SOCS1. In oxygen–glucose deprivation-treated micro-
glia BV2 cells, overexpression or knockdown of miR-155 
could respectively promote or inhibit TLR4 expression, 
which was also accompanied by the reduced or increased 
expression of SOCS1, respectively [92]. These data highly 
suggested that miR-155 might act as a direct inhibitor of 
SOCS1, thus play an indirect upregluatory role for TLR4 
signaling.

Interestingly, it has been reported that the expres-
sion of SOCS1 protein was significantly suppressed in 
peripheral blood mononuclear cells (PBMCs) of pri-
mary sclerosing cholangitis (PSC) patients compared 
with controls, importantly, which was accompanied by a 
significant enhancement of miR-155 expression indicat-
ing miRNA155-modulated SOCS1 expression [95]. In 
fact, PSC frequently co-occurs in patient with IBD, the 
presence of concomitant PSC with IBD represents a dis-
tinct disease phenotype that carries a higher risk of CRC 
[96, 97]. UC patients with concomitant PSC has been 
reported to bear a tenfold increased risk of CRC, com-
pared to patients with UC alone [97]. Moreover, upregu-
lation of TLR4 signal has also been found in PSC patients 
[98, 99]. Therefore, it is necessary to further explore the 
relationships among miR-155, SOCS1 and TLR4, espe-
cially in UC patients with concomitant PSC.

In addition, miR-155 has been reported to enhance 
TLR4 signaling by inhibiting Src homology 2 
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domain-containing inositol-5′-phosphatase 1 (SHIP1) 
[100, 101], the latter of which has been demonstrated 
to negatively regulate LPS/TLR4-mediated inflamma-
tory response via suppression of LPS-induced combi-
nation between TLR4 and MyD88 [102]. MiR-155 has 
been demonstrated to directly bind to the 3′-UTR of 
SHIP1 mRNA, and induce a significant reduction in 
SHIP1 expression in primary BMDMs and Raw264.7 
cells [80]. Accordingly, the in-vivo study showed a signifi-
cantly increased SHIP1 expression, along with decreased 
inflammatory responses, in the antagomiR-155-treated 
mice [80]. In LPS or alcohol-pretreated liver kupffer 
cells (KCs), Bala et al. [100] reported that overexpression 
and inhibition of miR-155 could increase and decrease 
the SHIP1 expression, respectively. Another study [101] 
showed that transfection of primary microglia with 
miR155-5p mimics significantly repressed the lucif-
erase activity in SHIP1 3′ UTR, and downregulation of 
miR155-5p significantly attenuated TLR4-mediated acti-
vation of NF-κB and release of TNF-α and IL-1β.

Inductive effect of TLR4 activation on miR‑155
On the other hand, miRNAs are also modifiable molec-
ular targets. Accumulative evidences [91, 93, 100, 
103–131] have indicated the role of miR-155 as one of 
TLR4-responsive miRNAs. It has long been recognized 
that miR-155 was processed from B-cell integration clus-
ter (BIC) transcripts (or pri-155) and was highly induced 
in immune cells in response to various TLR ligands [103, 
104]. In particular, the inductive effect of specific TLR4 
ligand LPS on miR-155 has been verified in various in-
vitro experiments using primary cells and immortalized 
cell lines (Table  1). In mouse Raw264.7 macrophages, 
BMDMs and human PBMCs, the in-vitro stimula-
tion with LPS caused significant increases in the tran-
script expression levels of miR-155, which was on the 
top of the list of LPS-induced microRNAs identified by 
miRNA microarrays [93]. These increases were further 
validated by Northern blot and qPCR analyses [93, 105, 
106]. In addition, utilizing the same analysis methods, 
the increased expression of miR-155 was also observed 
in human/murine primary DCs activated with LPS [107, 
108]. Using a semi-quantitative RT-PCR method, Lu et al. 
[109] showed that the expression levels of both mature 
and precursor forms of miR-155 were robustly induced 
in LPS-treated primary human monocytes. In Raw264.7 
cells, luciferase assay showed that LPS could drive the 
induction of pri-155 promoter in a dose-dependent 
manner, indicating that miR-155 might be regulated 
by LPS at the transcriptional level [110]. Treatment of 
mouse microglia N9 cells with increasing concentra-
tions of LPS resulted in a significant and dose-depend-
ent increase of miR-155 expression, which reached a 

25-fold increase at the highest LPS concentration tested 
[111]. Similarly, a significant increase of miR-155 expres-
sion was also found in LPS-stimulated mouse primary 
microglia or immortalized BV2 cells [112, 113]. In the 
KCs isolated from alcohol-fed and pair-fed mice, Bala 
et  al. [100] found that the alcohol-induced expression 
of miR-155 was significantly amplified by in-vitro LPS 
stimulation when compared with pair-fed mice. Besides, 
LPS-induced upregulation of miR-155 has also been 
demonstrated in non-immune cells. Treatment of human 
proximal tubule epithelial HK-2 cells with LPS for 24  h 
resulted in a significantly elevated expression of miR-
155 [114, 115]. LPS increased expression levels of miR-
155 in rat primary synovial fibroblasts, an in-vitro model 
for rheumatoid arthritis [116]. Treating human primary 
umbilical vein endothelial cells with LPS (0.05–1  μg/L) 
for 24 h enhanced the expression of miR-155 in a dose-
dependent manner [117]. In mouse primary osteoblasts 
and osteoclasts, miR-155 expression was found to be 
upregulated in a time-dependent manner upon LPS stim-
ulation [118, 119]. The similar upregulation of miR-155 
upon LPS stimulation was also found in several tumor 
cell lines, including human breast cancer MCF-7 cells, 
B-lymphoma BJAB cells and mouse insulinoma MIN6 
cells [120–122]. In order to clarify whether LPS-induced 
miR-155 expression is TLR4-dependent, De Santis et al. 
[123] treated BMDMs derived from WT-and  TLR4−/− 
mice with LPS for 2 h, and showed that the expression of 
miR-155 was upregulated in WT-BMDMs by 40-fold, but 
was decreased to less than twofold in  TLR4−/−-BMDMs. 
Liu et al. [124] treated human bronchial epithelial 16HBE 
cells with TLR4 inhibitor prior to exposure to LPS, and 
found that LPS-induced upregulation of miR-155 was 
significantly attenuated by TLR4 inhibition.

In addition, the inductive effect of LPS on miR-155 has 
also been frequently verified in vivo (Table 1). Using the 
LPS-induced sepsis model, several studies [113, 125–
127] have observed the significant increases of miR-155 
expression in the brain, myocardium, liver and kidney tis-
sues of mice challenged with LPS. Fu et al. [91] reported 
that LPS further enhanced the upregulation of miR-155 
in the prostatic tissues of mice with experimental auto-
immune prostatitis. In a LPS-induced acute lung injury 
animal model, miR-155 expression was found to be sig-
nificantly upregulated in the lungs of mice and rats, and 
reached a peak at 6 h of LPS stimulation [128, 129]. Bala 
et  al. [130] also observed an increase of miR-155 levels 
in the livers of WT mice following LPS or alcohol treat-
ment, which was significantly eliminated by knockout of 
TLR4.

Despite the fact that there are lack of experiments 
on the human intestinal cells, e.g. Caco-2, which is 
originally derived from a colon carcinoma, the above 
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evidences on the link between miR-155 and TLR4 
from studies on human epithelial cell lines, includ-
ing human proximal tubule epithelial HK-2 cells [114, 
115], human breast cancer MCF-7 cells [120] and 
human bronchial epithelial 16HBE cells [124], laid the 
foundation for the possible existence of this interac-
tion in the  intestinal mucosa. Notably, Pathak et  al. 
[131] reported that LPS increased miR-155 levels in 
intestinal fibroblasts and myofibroblasts isolated from 
health colonic mucosa, and this increase was further 
enhanced in those from UC patients, which suggested 
that the above link between miR-155 and TLR4 existed 
in the context of colitis and might play a role in colitis 
development.

Based on the above findings on the inductive effect of 
TLR4 activation on miR-155 expression, several studies 
[132–136] have been conducted to explore the possible 
underlying molecular mechanisms. Nuclear factor-κB 
(NF-κB) and activator protein 1 (AP-1) have been iden-
tified as important transcription factors downstream 
of TLR4 [32]. Arboleda et  al. [132] showed that inhi-
bition of NF-κB by SC-514, an inhibitor of IKK-β (a 
subunit of the NF-κB activation complex), diminished 
LPS-induced increase of miR-155-5p levels in human 
monocyte-derived macrophages. Using different NF-κB 
inhibitors, this finding was validated in LPS-treated 
Raw264.7 cells and mouse KCs [133, 134]. Dai et  al. 
[134] demonstrated that NF-κB p65 and AP-1 fam-
ily members JunB, FosB directly bound to the BIC/
miR-155 promoter and promoted the transcription of 
miR-155, which were detected using DNA precipita-
tion assay and luciferase assay, respectively, in human 
trophoblast cell HTR-8/SVneo after LPS treatment. In 
Raw264.7 cells, McCoy et al. [135] found that the tran-
scription factor AP-1 might be required for BIC gene 
induction in response to LPS stimulation, thus play 
a role in the LPS induction of miR-155. In addition, 
Quinn et  al. [110] reported that miR-155 promoter 
was controlled by Ets family of transcription factors, 
in which Ets2 was strongly induced by LPS. This study 
team also found that LPS-induced pri-miR-155 expres-
sion was significantly reduced in macrophages isolated 
from the  Ets2−/− mice, verifying the importance of 
Ets2 in LPS-mediated induction of miR-155. Moreo-
ver, knockdown of KH-type splicing regulatory pro-
tein (KSRP, a single‐strand RNA‐binding protein that 
bound to the terminal loop of miRNA precursors and 
promoted their maturation) could cause a decrease of 
mature miR-155 expression in LPS-treated BMDMs 
and Raw264.7 macrophages, whereas the expression 
of pri-miR-155 was not affected, suggesting that post-
transcriptional mechanisms might also be involved in 
LPS-induced miR-155 expression [136].

A possible TLR4‑miR‑155 feedback loop in CAC 
Collectively, in the context of different disorders or 
cell lines, miR-155 has been extensively found to act as 
a potential TLR4 signaling upregulation mechanism. 
While TLR4 activation would instead enhance the miR-
155 expression to constitute a TLR4-miR-155 positive 
feedback loop (Fig.  1). Once this feedback loop could 
be verified in the context of CAC, based on the similar 
dynamic expression changes of miR-155 and TLR4 dur-
ing CAC development, as well as their similar functions 
in CAC promotion, it could be speculated that this TLR4-
miR-155 positive feedback loop would lead to the main-
tenance and amplification of oncogenic effects of TLR4 
signaling, ultimately resulting in the synergistic acceler-
ating effect of TLR4 and miR-155 on CAC development.

Limitations and further directions
About 20 miRNAs have identified to be involved in the 
regulation of TLR signaling pathways [137]. Among 
them, miR-155, miR-21 and miR-146a are the three miR-
NAs that received extensive attention due to their sensi-
tive expression changes following TLRs activation and 
their regulatory roles in TLRs signaling [88]. Especially, 
miR-155 and miR-21 are also considered as the most 
prominent miRNAs playing central roles in molecular 
dysfunctions linking inflammation with cancer [138]. 
Based on the more  abundant evidences on potential 
link between TLR4 and miR-155, as well as their similar 
dynamic expression changes during CAC development 
and their similar CAC-promoting effects, this review 
focused only on miR-155, in an attempt to present a rea-
sonable hypothesis for the potential association between 
TLR4 and miR-155 in the context of CAC. Nevertheless, 
other TLR4-related miRNAs and their potential roles in 
CAC should be further summarized. For example, the 
negative regulation of TLR4 via targeting of the proin-
flammatory tumor suppressor PDCD4 by the miR-21 
in CRC has been reported [138]. However, other stud-
ies [139, 140] reported that miR-21 acted as one of the 
positive factors that trigger the inflammatory feedback 
loop, thus induced and maintained the transformed state. 
Accordingly, miR-21 has been believed to be involved in 
both positive and negative feedback loops that control 
inflammation and CRC [138].

Conclusions
In summary, both clinical and experimental evidences 
showed a gradual increase of TLR4 expression during 
different stages of CAC development. As a classic PRR, 
TLR4 might act as a key bridge molecule between the 
infection of oncogenic pathogens (such as F. nucleatum 
and Salmonella) and the colonic inflammatory process. 
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More importantly, the upregulated TLR4 in colitis 
could play an important role on inflammation-induced 
intestinal tumorigenesis by promoting cell prolifera-
tion, protecting malignant cells against apoptosis, facil-
itating invasion and metastasis, as well as contributing 
to the creation of tumor-favouring cellular microenvi-
ronment. In particular, this review highlights the inter-
play  between TLR4 and miR-155, a CAC-related 

miRNA. These two molecules shared highly similar 
dynamic changes during stages of CAC development 
as well as highly similar CAC-promoting effects. In 
the context of different disorders or cell lines, miR-155 
has been found to augment TLR4 signaling through 
targeting  negative  regulators SOCS1 and SHIP1; and 
TLR4 activation could induce miR-155 expression via 
transcriptional and post-transcriptional mechanisms, 

Fig. 1 Model of possible TLR4-miR-155 positive feedback loop. LPS-activated TLR4 signaling might promote the transcription of pri-miR-155 by 
triggering transcription factors such as NF-kB, AP-1, Ets2, and might enhance the maturation of miR-155 through a post-transcriptional mechanism 
depending on the induction of KSRP. These events might result in the overexpression of miR-155. The high level of expressed miR-155 might 
target SOCS1 and SHIP1, two key negative regulators of TLR4 signaling, thereby promoting the expression of TLR4, and ultimately constituted a 
TLR4-miR-155 positive feedback loop
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which might constitute a TLR4-miR-155 positive feed-
back loop. The further studies on this TLR4/miR-155 
interplay in the context of CAC would facilitate the 
development of novel strategies for CAC prevention 
and control [67].
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