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INTRODUCTION

The definition of  congenital anomalies of  the kidney 
and urinary tract (CAKUT) refers to the disease of struc­
tural malformations in the kidney and/or urinary tract 
[1]. CAKUT covers renal agenesis, renal hypodysplasia, 
multicystic dysplastic kidney, hydronephrosis, ureteropelvic 
junction obstruction, megaureter, ureter duplex, posterior 
urethral valves and vesicoureteral reflux (VUR) [1]. It’s 
frequency and morbidity is relatively high because it 
can occur in about 1:500 live born children and account 
about 40%–50% of  children with chronic kidney disease 
[2,3]. Among the whole feature of CAKUT, VUR has been 
traditionally considered the most important phenotype for 
urinary tract infection (UTI) and kidney damage, with 
possibly serious long-term consequences, such as hypertension 
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and decreased renal function causing reflux nephropathy [4]. 
It is controversial, however, that the pathogenesis of reflux 
nephropathy is “congenital” or “acquired.” Some studies 
hypothesized that patients with VUR showed congenital 
renal scar before birth [5,6]. It could be caused by the 
progression to “congenital” reflux nephropathy and renal 
failure, although UTI and associated kidney inflammation 
is absent [5,6]. Others believe that the pathogenesis of 
“acquired” reflux nephropathy is the high pressure caused 
by the refluxing urinary stream and recurrent UTI which 
injure the kidney parenchyma [7,8]. Like VUR or reflux 
nephropathy, the pathogenesis of CAKUT remains unclear, 
and it is not well understood why only some patients 
progress to develop chronic kidney disease. The cause of 
most CAKUT cases is unknown, therefore, many studies 
searching for the genes are attempted. In this article, we will 
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review on genetic causes of VUR and CAKUT. 

CURRENT KNOWN CAKUT-CAUSING 
GENES RELATED TO KIDNEY DEVELOP-
MENT

Understanding the genetic architecture of  CAKUT 
is dif f icult due to the phenotypic heterogeneity and 
multifactorial genetic penetrance [9]. Until recently, more 
than 20 human single-gene causes for CAKUT have been 
identified [10-13]. Understanding the genetic basis of CAKUT 
can be helpful to know about the kidney development. 
Kidney development consists of the following developmental 
stages: ureteric budding, metanephric kidney, mesenchymal-
to-epithelial transition (MET), and nephron patterning 
and elongation (which include proximal and distal tubule 
morphogenesis and glomerulogenesis) [1,14-18]. These 
developmental stages are controlled by a large number of 
genes and signaling pathways and defects in these steps can 
lead to the clinical phenotypes of CAKUT (Table 1).

“BUD THEORY” RELATED GENES OF 
VUR AND CAKUT

VUR can be induced by multiple birth defects affecting 
the urinary tract development: ureteric budding, ureter 
differentiation and elongation, peristalsis, UVJ formation, 
and bladder and urethra development [19]. The ectopic 
ureteric orifice is related to “Bud theory” stage, which is 
abnormal development of the embryonic ureteric bud [20]. 
This theory hypothesizes that the site at which the ureteric 
bud grows out from the mesonephric duct is essential for 
development of normal kidney and urinary tract. Actually, 
many early development genes involved in the ureteric 
budding stage lead to VUR and CAKUT. This hypothesis 
is closely correlated to analysis of  duplex kidneys which 
showed that a more severe hypoplasia and dysplasia were 
closely associated with mal-displacement of  the ureteral 
orifice.

In fact, ureteric budding is related to signaling mecha­
nisms including transcription factors such as RET, PAX2, 
EYA1, SALL1, SIX1, SIX2, BMP4, and GATA3 [21-37]. They 
have been recognized to be mutated with CAKUT and 
present several extrarenal manifestations [21-37].

The RET proto-oncogene provides instructions for 
producing a protein that is involved in signaling within 
cells and mutations in the RET gene cause several diseases 
[38]. For example, translocations in the gene were correlated 
with papillary thyroid cancer [21] and multiple endocrine 

neoplasia (MEN) 2A and 2B syndromes [22]. RET mutation 
is also frequently showed in humans with renal diseases, 
because ureteric budding is promoted through receptor 
RET by Glial cell-derived neurotrophic factor (GDNF) 
signaling [23]. Therefore, RET mutations were subsequently 
reported to develop CAKUT in fetuses with bilateral renal 
hypodysplasia/agenesis [24].

Paired box gene 2 (PAX2) plays a key role in the deve­
lopment and proliferation of multiple cell lines and deve­
lopment of organs [39]. Therefore, PAX2 mutations in kidney 
can develop some disease spectrum of CAKUT, including 
VUR, renal hypodysplasia, renal cysts, and multicystic 
dysplastic kidneys [25].

Eyes absent homolog 1 (EYA1) encodes the eyes absent 
(EYA) family of proteins. The protein may play important 
roles in the development of eye, ear, branchial arches and 
kidney. EYA1 mutations have been related with branchio-
otic (BO) syndrome and congenital cataracts [26,27].

Sal-like 1 (SALL1) is one of the human orthologues of 
the spalt (sal) gene known in Drosophila [40]. SALL1 mu­
tations are a cause of  Townes-Brocks syndrome (TBS) 
and branchio-oto-renal (BOR) syndrome [28,29]. TBS is 
an autosomal dominant syndrome containing following 
features: renal abnormalities (multicystic kidneys, dysplastic 
kidney, hypoplastic kidneys), abnormalities of the external 
ears (dysplastic ears, sensorineural hearing loss or deafness), 
anorectal malformations (rectovaginal fistula, anal stenosis, 
imperforate anus/absence of  an anal opening), heart 
abnormalities (ventricular septum defects and Tetralogy 
of Fallot) and hand and foot abnormalities (hypoplastic or 
fingerlike thumbs, syndactyly, fusion of the wrist bones, 
overlapping foot and/or toe bones) [28,29].

SIX1 and SIX2 genes are similar genes each other known 
as the SIX gene family. Genes in this family encode proteins 
that bind to DNA and control the activity of other genes 
[30,31]. When the SIX1 is mutated, it impairs the normal 
development of  tissues at fetal stage and develops the 
major signs and symptoms of BOR/BO syndrome similar to 
phenotypes resulting from EYA1 or SALL1 mutations [30,31]. 

Bone morphogenetic protein 4 (BMP4) produces a mem­
ber of the transforming growth factor-β superfamily protein 
[32]. Some studies hypothesize about the role of BMP4 that 
it implicates in several aspects of embryonic development by 
regulating cell proliferation, differentiation, and apoptosis 
[32-34]. BMP4 is further continuously expressed beyond 
the stage of ureteric budding throughout the embryonic 
development of the kidney and urinary system [32-34].

Trans-acting T-cell-specific transcription factor GATA-
3 (GATA3) gene encodes a transcription factor of  the 



S6 www.icurology.org

Lee et al

https://doi.org/10.4111/icu.2017.58.S1.S4

Ta
bl

e 
1.

 H
um

an
 g

en
es

 im
pl

ic
at

ed
 in

 C
AK

UT

G
en

e 
Ki

dn
ey

 d
ev

el
op

m
en

ta
l 

st
ag

e 
Lo

ca
tio

n 
Si

gn
al

s 
G

en
e 

pr
od

uc
t 

D
is

ea
se

 
In

he
rit

an
ce

 
ty

pe
#G

en
e 

O
M

IM
 

Re
fe

re
nc

e 
nu

m
be

r 
Ur

et
er

ic
 b

ud
di

ng
   R

ET
Ur

et
er

ic
 b

ud
di

ng
10

p1
3

GD
NF

 si
gn

al
in

g
RT

K
Bi

la
te

ra
l r

en
al

 h
yp

od
ys

pl
as

ia
/a

ge
ne

sis
VU

R,
 u

re
te

ra
l o

bs
tru

ct
io

n,
 m

eg
au

re
te

r, 
du

pl
ex

 k
id

ne
y, 

re
na

l 
ab

no
rm

al
iti

es
, a

s w
el

l a
s H

irs
ch

sp
ru

ng
's 

di
se

as
e

AR
19

18
30

23
,8

2

   P
AX

2
Ur

et
er

ic
 b

ud
di

ng
10

q2
4.

31
(-)

PA
X 

(p
ai

re
d 

bo
x 

do
-

m
ai

n)
Pa

pi
llo

re
na

l s
yn

dr
om

e 
th

at
 c

om
pr

ise
s 

re
na

l d
ef

ec
ts

 (o
lig

o-
m

eg
an

ep
hr

on
ia

, h
yp

od
ys

pl
as

ia
, V

UR
, a

nd
 cy

st
s)

 a
nd

 o
cu

la
r 

de
fe

ct
s a

ffe
ct

in
g 

th
e 

op
tic

 n
er

ve
 a

nd
/o

r t
he

 re
tin

a 

AD
12

03
30

39
,8

3

   E
YA

1
Ur

et
er

ic
 b

ud
di

ng
8q

13
.3

RT
K 

sig
na

lin
g 

pa
th

w
ay

Ey
es

 ab
se

nt
 h

om
ol

og
 

1
BO

 sy
nd

ro
m

e 
AD

60
25

88
26

,2
7

   S
AL

L1
Ur

et
er

ic
 b

ud
di

ng
16

q1
2.

1
(-)

Sa
l-l

ike
 p

ro
te

in
 1

 (a
lso

 
kn

ow
n 

as
 sp

al
t-l

ik
e 

tra
ns

cr
ip

tio
n 

fa
ct

or
 

1)

To
w

ne
s-

Br
oc

ks
 sy

nd
ro

m
e,

 a
s w

el
l a

s B
O

R 
sy

nd
ro

m
e

AD
10

74
80

28
,2

9

   S
IX

1
Ur

et
er

ic
 b

ud
di

ng
14

q2
3.

1
(-)

SI
X 

ho
m

eo
bo

x 
1,

 2
 

an
d 

5
BO

R 
sy

nd
ro

m
e,

 B
O

 sy
nd

ro
m

e
AD

60
83

89
30

   S
IX

2
Ur

et
er

ic
 b

ud
di

ng
2p

21
W

NT
-p

at
hw

ay
SI

X 
ho

m
eo

bo
x 2

Re
na

l h
yp

od
ys

pl
as

ia
NA

60
49

94
31

   B
M

P4
Ur

et
er

ic
 b

ud
di

ng
14

q2
2.

2
BM

P-
BM

PR
 si

gn
al

-
in

g 
sy

st
em

Bo
ne

 m
or

ph
og

en
et

ic 
pr

ot
ei

n 
4

Sy
nd

ro
m

ic
 m

ic
ro

ph
th

al
m

ia
, o

ro
fa

ci
al

 cl
ef

t 
AD

11
22

62
31

   G
AT

A3
Ur

et
er

ic
 b

ud
di

ng
10

p1
4

(-)
(-)

Hy
po

pa
ra

th
yr

oi
di

sm
, s

en
so

rin
eu

ra
l d

ea
fn

es
s, 

re
na

l d
ys

pl
as

ia
AD

14
62

55
84

D
ev

el
op

m
en

t o
f t

he
 m

et
an

ep
hr

ic
 k

id
ne

y
   R

OB
O2

D
ev

el
op

m
en

t o
f t

he
 

m
et

an
ep

hr
ic

 k
id

ne
y

3p
12

.3
SL

IT
2-

RO
BO

2 
si

g-
na

lin
g 

pa
th

w
ay

Re
ce

pt
or

 fo
r t

he
 S

lit
2 

lig
an

d
VU

R
NA

61
08

78
41

   S
LI

T2
D

ev
el

op
m

en
t o

f t
he

 
m

et
an

ep
hr

ic
 k

id
ne

y
4p

15
.3

1
SL

IT
2-

RO
BO

2 
si

g-
na

lin
g 

pa
th

w
ay

Sl
it 

pr
ot

ei
n

Cy
st

ic
 d

ys
pl

as
tic

 k
id

ne
ys

, u
ni

la
te

ra
l r

en
al

 a
ge

ne
sis

, a
nd

 d
u-

pl
ic

at
ed

 co
lle

ct
in

g 
sy

st
em

NA
60

37
46

41
,4

4

   S
RG

AP
1

D
ev

el
op

m
en

t o
f t

he
 

m
et

an
ep

hr
ic

 k
id

ne
y

12
q1

4.
2

SL
IT

2-
RO

BO
2 

si
g-

na
lin

g 
pa

th
w

ay
SR

GA
P1

(sm
all

 G
TP

as
e 

ac
tiv

at
in

g 
pr

ot
ei

n)
Cy

st
ic

 d
ys

pl
as

tic
 k

id
ne

ys
, u

ni
la

te
ra

l r
en

al
 a

ge
ne

sis
, d

up
li-

ca
te

d 
co

lle
ct

in
g 

sy
st

em
NA

60
65

23
44

M
ET

   W
NT

4
M

ET
1p

36
.1

2
W

NT
-p

at
hw

ay
Pr

ot
ei

n 
W

nt
‑4

M
ül

le
ria

n 
ap

la
sia

, h
yp

er
an

dr
og

en
ism

AD
15

83
30

47
   F

GF
20

M
ET

8p
22

(-)
Fi

br
ob

la
st

 g
ro

w
th

 
fa

ct
or

 2
0

Re
na

l h
yp

od
ys

pl
as

ia
/a

pl
as

ia
 

AR
60

55
58

50

RA
S

   A
GT

RA
S

1q
42

.2
RA

S 
pa

th
w

ay
An

gi
ot

en
sin

og
en

Re
na

l t
ub

ul
ar

 d
ys

ge
ne

sis
AR

10
61

50
53

   R
EN

RA
S

1q
32

.1
RA

S 
pa

th
w

ay
Re

ni
n

Re
na

l t
ub

ul
ar

 d
ys

ge
ne

sis
AR

17
98

20
53

   A
CE

RA
S

17
q2

3.
3

RA
S 

pa
th

w
ay

A
ng

io
te

ns
in

-c
on

-
ve

rt
in

g 
en

zy
m

e
Re

na
l t

ub
ul

ar
 d

ys
ge

ne
sis

AR
10

61
80

53

   A
GT

R1
RA

S
3q

24
RA

S 
pa

th
w

ay
An

gi
ot

en
sin

 II
 re

ce
p-

to
r t

yp
e 

1
Re

na
l t

ub
ul

ar
 d

ys
ge

ne
sis

AR
10

61
65

52



S7Investig Clin Urol 2017;58 Suppl 1:S4-13. www.icurology.org

Genetics of CAKUT

Ta
bl

e 
1.

 C
on

tin
ue

d

G
en

e 
Ki

dn
ey

 d
ev

el
op

m
en

ta
l 

st
ag

e 
Lo

ca
tio

n 
Si

gn
al

s 
G

en
e 

pr
od

uc
t 

D
is

ea
se

 
In

he
rit

an
ce

 
ty

pe
#G

en
e 

O
M

IM
 

Re
fe

re
nc

e 
nu

m
be

r 
Ne

ph
ro

n 
pa

tt
er

ni
ng

 a
nd

 e
lo

ng
at

io
n

   U
ro

m
od

ul
in

 
(U

M
OD

)
Ne

ph
ro

n 
pa

tt
er

ni
ng

 a
nd

 
el

on
ga

tio
n

16
p1

2.
3

(-)
Ta

m
m

-H
or

sf
al

l p
ro

-
te

in
 (u

ro
m

od
ul

in
)

M
ed

ul
la

ry
 c

ys
tic

 k
id

ne
y 

di
se

as
e 

ty
pe

 2
, f

am
ili

al
 ju

ve
ni

le
 

hy
pe

ru
ric

em
ic

 n
ep

hr
op

at
hy

, a
nd

 g
lo

m
er

ul
oc

ys
tic

 k
id

ne
y 

di
se

as
e

NA
19

18
45

54
,5

5

Un
kn

ow
n 

   T
RA

P1
 

U
nk

no
w

n 
(p

os
si

bl
y 

an


tia
po

pt
ot

ic
 a

nd
 e

nd
o

p
la

sm
ic

 r
et

ic
u

lu
m

-
st

re
ss

 s
ig

n
al

in
g

 i
n 

pr
ox

im
al

 tu
bu

le
s a

nd
 in

 
th

ic
k 

m
ed

ul
la

ry
 a

sc
en

d-
in

g 
lim

bs
 o

f 
H

en
le

’s 
lo

op
.) 

16
p1

3.
3

(-)
TR

A
P1

 h
ea

t 
sh

oc
k 

pr
ot

ei
n 

75
 (

al
so

 
kn

ow
n 

as
 T

N
F 

re
-

ce
pt

or
 a

ss
oc

ia
te

d 
pr

ot
ei

n 
1-

m
it

o
-

ch
on

dr
ia

l H
SP

90
 

pr
ot

ei
n)

CA
KU

T 
or

 C
AK

UT
 in

 V
AC

TE
RL

NA
 

60
62

19
61

   H
NF

1B
Un

kn
ow

n 
(p

os
sib

ly
 w

ol
ff-

ia
n 

du
ct

 f
ro

m
 a

 v
er

y 
ea

rl
y 

de
ve

lo
pm

en
ta

l 
st

ag
e 

of
 th

e 
ki

dn
ey

)

17
q1

2
(-)

HN
F1

B 
pr

ot
ei

n
Re

na
l c

ys
ts

 a
nd

 d
ia

be
te

s 
sy

nd
ro

m
e 

al
so

 r
ef

er
re

d 
to

 a
s 

M
O

DY
5,

 re
na

l h
yp

od
ys

pl
as

ia
, m

ul
tic

ys
tic

 d
ys

pl
as

tic
 k

id
ne

y, 
cy

st
ic

 k
id

ne
y 

di
se

as
e,

 si
ng

le
 k

id
ne

y, 
ol

ig
om

eg
an

ep
hr

on
ia

 

AD
18

99
07

83

   P
KH

D1
(-)

6p
12

.3
-

p1
2.

2
(-)

Pr
ot

ei
n 

fib
ro

cy
st

in
Au

to
so

m
al

 re
ce

ss
iv

e 
po

ly
cy

st
ic

 k
id

ne
y 

di
se

as
e,

 p
ol

yc
ys

tic
 

ki
dn

ey
 a

nd
 h

ep
at

ic
 d

ise
as

e
AR

60
67

02
59

   K
AL

1
(-)

Xp
22

.3
1

FG
F 

sig
na

lin
g,

 th
at

 
th

er
e 

is 
an

 in
te

r-
ac

tio
n 

be
tw

ee
n 

an
os

m
in

-1
 a

nd
 

FG
FR

1

An
os

m
in

 1
VU

R,
 h

yp
og

on
ad

ot
ro

pi
c 

hy
po

go
na

di
sm

 1
 w

ith
 o

r w
ith

ou
t 

an
os

m
ia

 (K
al

lm
an

n 
sy

nd
ro

m
e)

XL
30

08
36

64
,6

5

   H
OX

A1
3

(-)
7p

15
.2

(-)
Ho

m
eo

bo
x 

pr
ot

ei
n

V
U

R
, 

h
an

d
-f

o
o

t-
g

en
it

al
 s

yn
d

ro
m

e,
 G

u
tt

m
ac

h
er

 
sy

nd
ro

m
e(

pr
ea

xi
al

 d
ef

ic
ie

nc
y, 

po
st

ax
ia

l p
ol

yd
ac

ty
ly

, a
nd

 
hy

po
sp

ad
ia

s)
 

AD
14

29
59

67

   N
IP

BL
(-)

5p
13

.2
(-)

D
el

an
gi

n
VU

R,
 C

or
ne

lia
 d

e 
La

ng
e 

sy
nd

ro
m

e
AD

60
86

67
68

CA
KU

T, 
co

ng
en

ita
l a

no
m

al
ie

s 
of

 th
e 

ki
dn

ey
 a

nd
 u

rin
ar

y 
tr

ac
t; 

O
M

IM
, O

nl
in

e-
M

en
de

lia
n 

in
he

rit
an

ce
 in

 m
an

; G
D

N
F, 

Gl
ia

l c
el

l l
in

e-
de

riv
ed

 n
eu

ro
tr

op
hi

c 
fa

ct
or

; R
TK

, r
ec

ep
to

r t
yr

os
in

e 
ki

na
se

; B
O,

 b
ra

n-
ch

io
-o

tic
; B

O
R,

 b
ra

nc
hi

o-
ot

o-
re

na
l; W

N
T, 

w
in

gl
es

s a
nd

 in
te

gr
at

io
n 

sit
e 

gr
ow

th
 fa

ct
or

; V
UR

, v
es

ic
ou

re
te

ra
l r

ef
lu

x;
 A

R,
 a

ut
os

om
al

 re
ce

ss
iv

e;
 A

D,
 a

ut
os

om
al

 d
om

in
an

t; 
N

A,
 n

ot
 a

pp
lic

ab
le

; M
ET

, m
es

en
ch

y-
m

al
-t

o-
ep

ith
el

ia
l t

ra
ns

iti
on

; R
AS

, r
en

in
-a

ng
io

te
ns

in
 s

ys
te

m
; V

AC
TE

RL
, c

om
bi

na
tio

n 
of

 a
t l

ea
st

 th
re

e 
of

 th
e 

fo
llo

w
in

g 
co

ng
en

ita
l a

no
m

al
ie

s: 
ve

rt
eb

ra
l d

ef
ec

ts
 (V

), 
an

or
ec

ta
l m

al
fo

rm
at

io
ns

 (A
), 

ca
rd

ia
c 

de
fe

ct
s (

C)
, t

ra
ch

eo
es

op
ha

ge
al

 fi
st

ul
a 

w
ith

 o
r w

ith
ou

t e
so

ph
ag

ea
l a

tr
es

ia
 (T

E)
, r

en
al

 m
al

fo
rm

at
io

ns
 (R

), 
an

d 
lim

b 
de

fe
ct

s (
L)

; T
N

F, 
tu

m
or

 n
ec

ro
sis

 fa
ct

or
; H

SP
, h

ea
t s

ho
ck

 p
ro

te
in

; F
GF

, f
ib

ro
bl

as
t g

ro
w

th
 

fa
ct

or
; F

GF
R1

, F
GF

 re
ce

pt
or

 1
; M

O
DY

, m
at

ur
ity

 o
ns

et
 d

ia
be

te
s o

f t
he

 y
ou

ng
; (

-):
 u

nk
no

w
n.



S8 www.icurology.org

Lee et al

https://doi.org/10.4111/icu.2017.58.S1.S4

Gata protein family that is expressed in the ureteric buds. 
It is regulated by the PAX2 gene and involved in the 
Wolffian duct morphogenesis [35]. GATA3 mutation can 
cause hydroureter, ectopic ureteric budding, vas deferens 
hyperplasia, duplex kidney, uterine agenesis as well as 
Hypoparathyroidism, sensorineural Deafness, and Renal 
disease syndrome (including renal dysplasia, unilateral 
kidney agenesis, and VUR) [36,37].

THE METANEPHRIC KIDNEY RELATED 
GENES

The metanephric kidney is formed after interaction 
between the ureteric bud and the metanephric mesenchyme. 
It starts at 4 weeks of  gestation in humans, and it is 
regulated by Slit homolog 2 (SLIT2) and Roundabout 
homolog 2 (ROBO2) when the genes are expressed as a 
ligand and transmembrane receptor [41]. SLIT2-ROBO2 
signaling has been shown to play a role after initiating 
ureteric budding [41].

ROBO2 encodes a protein as an “immunoglobulin recep­
tor” for the Slit protein and functions in axon guidance and 
cell migration. ROBO2 mutations are related with VUR [41].

SLIT2 encodes Slit protein which is a member of 
secreted glycoproteins. This protein acts as “ligands” for 
the Robo family. SLIT2 may associated with guiding 
commissural axons in the forebrain by acting as a repulsive 
signal preventing inappropriate midline crossing of axons 
projecting from the olfactory bulb [42]. Therefore, SLIT2 
can affect the formation and maintenance in the nervous 
system [43]. In the uretero-renal system, SLIT2 mutations 
also can cause duplicated collecting system, unilateral renal 
agenesis, and cystic dysplastic kidneys [41,44].

SLIT-ROBO Rho GTPase-activating protein 1 (SRGAP1), 
as the gene name shows, is a small GTPase activating 
protein associated with the pathway mediating the 
repulsive signaling of  Robo and Slit proteins in the cell 
migration process [45]. In 2015, Hwang et al. [44] identified 2 
heterozygous mutations in SRGAP1 in 2 unrelated families 
and described it as a novel monogenic candidate gene as 
causes of CAKUT in humans.

GENES INVOLVED IN OTHER DEVELOP-
MENTAL STAGES

After metanephric kidney stage, there are 3 steps left 
to complete the whole kidney development. Several genes 
involved in CAKUT have been described for the following 
process: (1) WNT4 and FGF20 for MET, (2) AGT, REN, ACE, 

and AGTR1 for renin-angiotensin system, and (3) Uromodulin 
(UMOD) for nephron patterning and elongation.

1. WNT4 and FGF20 for MET
WNT oncogene analog 4 (WNT4) is on chromosome 1 and 

structurally related to secreted signaling proteins. WNT4 
regulates kidney tubule induction and the MET within the 
WNT signaling pathway [14,15,46]. Because it influences 
both the cortical and medullary stroma during development, 
mutations of WNT4 can cause kidney malformation related 
to Müllerian aplasia and hyperandrogenism [47]. WNT4 is 
activated by BMP4, a known smooth muscle differentiation 
factor, therefore, the absence of WNT4 can result in reduced 
smooth muscle [48].

Fibroblast growth factor (FGF) family possesses broad 
mitogenic and cell survival activities, and is associated with 
embryonic development, cell growth, morphogenesis, and 
tissue repair [49]. Especially FGF20 is an important key 
player in MET and can cause renal hypodysplasia or aplasia 
[50].

2. AGT, REN, ACE, and AGTR1 for renin-angioten-
sin system
Renal tubular dysgenesis, one of important phenotypes 

of  CAKUT, is manifested by anuria, hypotension, and 
oligohydramnios, which eventually lead to Potter syndrome 
[51]. Several gene mutations of  the renin-angiotensin 
system have been related to the distinct severe phenotype 
of CAKUT of renal tubular dysgenesis: Angiotensinogen 
(AGT), renin (REN), angiotensin-converting enzyme (ACE), 
and angiotensin II receptor type 1 (AGTR1) [52]. Gribouval 
et al. [53] analyzed 48 cases of renal tubular dysgenesis, and 
mutations in ACE accounted for 64.4%. Mutations in REN, 
AGT, and AGTR1 were seen in 20.8%, 8.3%, and 6.3% of cases, 
respectively. 

3. Uromodulin (UMOD) for nephron patterning 
and elongation
The Uromodulin (UMOD) gene encodes the Tamm-

Horsfall protein, which is the most abundant urinary 
protein in humans, and is related to the nephron patterning 
and elongation. Its mutation causes glomerulocystic kidney 
disease, familial juvenile hyperuricemic nephropathy, 
medullary cystic kidney disease type 2 [54,55].

Hepatocyte nuclear factor 1B (HNF1B) is a homeodomain-
containing transcription factor for embryogenesis of  the 
liver, pancreas, and very early developmental stage of 
kidney which is expressed in the Wolffian duct [56]. HNF1B 
mutations have been reported as the cause of the Renal 
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Cysts and Diabetes Syndrome and reported as CAKUT 
spectrum malformations, such as single kidney, multicystic 
dysplastic kidney, renal hypodysplasia, cystic kidney disease, 
and autosomal recessive polycystic kidney disease (ARPKD) 
[57-59].

OTHER CAKUT ASSOCIATED GENES 
WITH UNKNOWN RELATIONSHIP OF 
KIDNEY DEVELOPMENT

Not only genes described above, following genes are 
also known as a leading cause of  CAKUT in several 
studies: TRAP1, PKHD1, KAL1, HOXA13, and NIPBL. Their 
pathogenesis of CAKUT especially associated with kidney 
development process, however, are not clearly revealed. 

Tumor Necrosis Factor Receptor-associated Protein 1 
(TRAP1) encodes a mitochondrial chaperone protein that is 
member of the heat shock protein 90 family. The protein 
has ATPase activity and may function in regulating cellular 
stress responses [60]. Mutations of TRAP1 can develop many 
kinds of  CAKUT phenotypes or CAKUT in VACTERL 
syndrome (combination of at least three of the following 
congenital anomalies: vertebral defects (V), anorectal 
malformations (A), cardiac defects (C), tracheoesophageal 
f istula with or without esophageal atresia (TE), renal 
malformations (R), and limb defects (L) [61].

Polycystic kidney and hepatic disease 1 (PKHD1) 
provides instructions for making a protein called fibrocystin. 
Fibrocystin exists on the cell membrane of kidney cells as a 
receptor and interacts with molecules and signals outside of 
the cell [62]. More than 270 mutations in the PKHD1 gene 
have been identified in human with autosomal recessive 
polycystic kidney disease (ARPKD) [59].

Kallman syndrome 1 (KAL1) gene encodes a protein 
called anosmin-1. Anosmin-1 is expressed in the fetal certain 
regions of  the brain, respiratory tract, digestive system 
and kidneys [63]. But the precise function of anosmin-1 in 
kidney is not well known. It is also unclear how KAL1 gene 
mutations lead to signs of Kallmann syndrome, including 
unilateral renal agenesis [64,65].

Homeobox protein Hox-A13 (HOXA13) is a part of 
homeobox gene family, which appears to play a key role for 
the formation and development of the limbs (particularly 
the hands and feet), urinary tract, and reproductive system. 
At least 14 HOXA13 gene mutations have been found in 
hand-foot-genital syndrome, which can have features of 
VUR [66,67].

Nipped-B-like protein (NIPBL) makes a protein named 
delangin, which helps the activity of chromosomes during 

cell division and controls human development [68]. NIPBL 
gene mutations have been identif ied in people with 
Cornelia de Lange syndrome which is a developmental 
disorder affecting many parts of the body. In this syndrome, 
sometimes VUR is also found [69,70].

EFFORTS TO FIND OUT ADDITIONAL 
CAKUT RELATED GENES

Nowadays, there are many attempts and technological 
developments to find out additional CAKUT related genes: 
linkage studies, targeted next-generation sequencing (NGS), 
copy number variation (CNV) analysis, whole genome 
sequencing (WGS) and genome-wide association studies 
(GWAS).

Linkage analyses have been successful for mapping 
genetic markers by analyzing a disease in a family-based 
approach in insulin-dependent diabetes mellitus, Alzheimer 
disease, breast cancer [71-73]. The majority of  published 
linkage studies on CAKUT have been about familial VUR, 
which occurs in ~1% of  children [74]. However, linkage 
analysis is not sufficient tool to detect small effect sized loci 
[9].

Analysis of  multiple genes using NGS in patients 
with CAKUT has demonstrated that <10% patients with 
CAKUT carry variants in previously implicated genes, such 
as HNF1B, PAX2, EYA1, SIX5, and RET. Therefore, the 
causative genes are not yet identified in most of CAKUT 
cases even though NGS technique was applied [75-77].

Another aspect of  CAKUT is CNVs [78]. It can be 
identified by high-resolution microarrays, such as the array 
comparative genomic hybridization (array-CGH) and single 
nucleotide polymorphism (SNP) microarrays [79].

Currently, genetic studies in unexplained diseases are 
shifting from whole exome sequencing or CNV analysis to 
WGS [9]. Also, GWAS, which is known as a high-throughput 
genotyping technologies, makes the rapid genotyping of >1 
million SNPs throughout the whole genome. GWAS can 
also identify associated loci that confer risk of CAKUT with 
large sample size [80,81].

CONCLUSIONS

Because morbidity of CAKUT may not manifest until 
later in life, early detection of these patients is important. 
CAKUT is a genetically heterogeneous group of disorders 
that are caused by mutations in genes related to the kidney 
development process. The malformation phenotypes due to 
gene mutations diverse from normally structured kidneys 
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with intact kidney function to severe hypodysplasia and end 
stage renal failure. Although primary VUR is one of the 
most common phenotype of CAKUT, its prevalence can be 
underestimated until it shows symptoms such as fever. 

However, some studies have pointed that CAKUT 
always has to be considered when the patient develops small 
phenotypes of anomalies related to urinary tract and kidney 
[9-13]. The advancement in sequencing and bioinformatics 
technologies will show us the additional CAKUT-related 
genes and more relevant etiologies of disease entities than 
can be identified by imaging study tools or histopathology 
alone. Newly advancing bioinformatics technologies will 
show us the additional CAKUT-related genes and more 
relevant etiologies of  disease entities. Moreover, these 
genetic findings will provide an opportunity to develop an 
ideal diagnostic CAKUT genetic test in clinical practice to 
facilitate early diagnosis, better management of the disease, 
and familial genetic counselling [9]. When the price of 
GWAS gets lower than that of these days and it becomes 
more popular, we will be able to apply genetic tests to 
suspected patients. Using these new tools, we could identify 
the patients with high risks of having the deformities in 
kidneys before it is too late. Understanding of  CAKUT 
and VUR genetic bases will help the management of this 
condition in children.
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