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Identification of functionally connected regions while at rest has been at the forefront

of research focusing on understanding interactions between different brain regions.

Studies have utilized a variety of approaches including seed based as well as data-driven

approaches to identifying such networks. Most such techniques involve differentiating

groups based on group mean measures. There has been little work focused on

differences in spatial characteristics of resting fMRI data. We present a method to

identify between group differences in the variability in the cluster characteristics of

network regions within components estimated via independent vector analysis (IVA). IVA

is a blind source separation approach shown to perform well in capturing individual

subject variability within a group model. We evaluate performance of the approach

using simulations and then apply to a relatively large schizophrenia data set (82

schizophrenia patients and 89 healthy controls). We postulate, that group differences

in the intra-network distributional characteristics of resting state network voxel intensities

might indirectly capture important distinctions between the brain function of healthy

and clinical populations. Results demonstrate that specific areas of the brain, superior,

and middle temporal gyrus that are involved in language and recognition of emotions,

show greater component level variance in amplitude weights for schizophrenia patients

than healthy controls. Statistically significant correlation between component level

spatial variance and component volume was observed in 19 of the 27 non-artifactual

components implying an evident relationship between the two parameters. Additionally,

the greater spread in the distance of the cluster peak of a component from the

centroid in schizophrenia patients compared to healthy controls was observed for

seven components. These results indicate that there is hidden potential in exploring

variance and possibly higher-order measures in resting state networks to better

understand diseases such as schizophrenia. It furthers comprehension of how spatial

characteristics can highlight previously unexplored differences between populations such

as schizophrenia patients and healthy controls.
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INTRODUCTION

The human brain in a complex network of regions that are
interconnected structurally and functionally. Interaction between
the different regions of the brain and their functioning is known
to impact cognition (Casey et al., 2000; Phan et al., 2002;
Amodio and Frith, 2006). This has been the primary reason
for the focus on examination of the behavior of functionally
connected regions of the brain. Such studies have in turn lead
to a better understanding of the relationship between functional
activation of the brain and an individual’s cognitive abilities
and the expression of neuropsychiatric symptoms (Alivisatos
and Petrides, 1997; Hamilton et al., 2009). However, years of
cyto-architechtonic, genetic, and environmental studies show
that interaction between different brain regions is highly driven
by inter-individual differences at the structural, cellular as well
as functional levels. These differences are known to result
in cognitive differences manifesting as varied performance in
cognitive activities and possibly as varied symptom expression in
populations with neuropsychiatric disorders (Zilles and Amunts,
2010, 2013). Furthermore, such variability may go beyond a
systemic difference from the mean of the patient population
by manifesting as greater variability among the patients. This
may possibly present as a spread in anatomical or functional
variability in patients relating to the spread in cognitive abilities
or symptom expression (Fornito et al., 2008). Such inconsistency
in the population characterized by disorders like schizophrenia
makes looking at variability potentially meaningful.

Resting state fMRI (rs-fMRI) is used to evaluate regional
interactions and allows us to explore functional organization of
the brain in the absence of an explicit task or stimuli. Analyses of
functional interactions and the differences between populations
representing the intrinsic connectivity of the brain employ both
model-based as well as data-driven methods (Gold et al., 1998;
Calhoun, 2002; Zalesky et al., 2011). The dependence of the
observed rs-fMRI signal on non-neural or physiological factors
such as shape, size, folding patterns, and location of areas with
particular cell types are however a confounding factor since
it introduces variability in activation within the population.
Traditional methods focus on aligning individual brains to a
common space in order to determine similarity or dissimilarity
of activation patterns across subjects. Such techniques allow us
to compare groups and explore the cognitive architecture of
different groups in comparison to healthy individuals.

Inter-subject variability in fMRI data has been shown to be
meaningful in previous studies (Frost and Goebel, 2012; Mueller
et al., 2013; Zilles and Amunts, 2013; Gopal et al., 2016) through
functional variability analyses as well as cytoarchitectonic studies.
Studies of variability in the location of functional loci (Sabuncu
et al., 2010) and neuroanatomical variability in human brains
(Li et al., 2013; Mueller et al., 2013) have provided traction
to the concept of including inter-subject variability analyses
while looking to differentiate groups. Many studies have also
shown that functional variability could be introduced due to
environmental influences such as learning or disease (Garavan
et al., 2000). A clear conclusion can thus be drawn that
incorporating this variability across subjects in a study can

provide us with additional information about how environment
and experience can affect the brain.

Another important consideration here is that there exists an
underlying relationship between the variability across subjects
and the spread of activation within a subject. Studies have
linked the presence of subject level differences in functional
activation patterns to the observance of voxel-level variability
in the functional activation patterns of a given subject (Davis
et al., 2014). Davis et al. (2014), show that univariate voxel-
wise methods are sensitive to variability in the parameters
relating within voxel activation to experimental variables between
subjects. These observations might stem from the variability in
the cortical folding patterns across people or even the variability
in the functional subdivisions on the cortical surface. Even if the
functional sources were spatially normalized across the subjects,
the inter-subject variability of cortical folding perhaps results in
inclusion of unique characteristics of the functional activation
sources for every subject to result in the acquired fMRI data.
These studies strengthen the motivation to study the relationship
between inter-subject variability and the variability within the
functional subdivisions of the brain. Further exploration of such
a relationship might shed new light on how individual differences
place a subject on a spectrum of the cognitive performance
abilities as well as whether the inter-subject variability is driven
by the extent of the sources or functional localization issues.

We can quantify variance in the context of whole-brain
multivariate analysis techniques at the level of the estimated
source components. Multivariate analysis techniques such as
independent vector analysis (IVA) have been established as
suitable for data-driven analyses of rs-fMRI data while capturing
individual features of each subjects’ statistically independent
component maps (Fornito et al., 2008; Zilles and Amunts,
2010). Recent studies (Anderson et al., 2012; Ma et al., 2013)
provide abundant evidence that IVA captures individual subject
variability in spatial patterns (Michael et al., 2014; Rashid
et al., 2014), show that functional connectivity networks can be
estimated similar to those from GICA, and others substantiate
this observation in simulations and in evaluating dynamic
functional network connectivity patterns (Adali et al., 2014,
2015; Ma et al., 2014; Laney et al., 2015). Results from our
previous study (Gopal et al., 2016) emphasized the presence of
subject-level variability in schizophrenia which can efficiently
be used as a tool to differentiate patients from healthy
controls. Schizophrenia is a complex disorder afflicting a diverse
population of patients presenting with a range of symptoms
(Ngan and Liddle, 2000; Perlstein et al., 2001; Ngan et al., 2002).
The etiology of the disorder is not well understood but appears to
involve many different structural as well as functional activation
based variations not consistent across the population. The
structural inconsistencies might in turn render the functional
and cognitive abilities of patients inconsistent stemming from the
relationship between structural differences and cognitive abilities
of patients (Yao et al., 2015). Schizophrenia is thus a disorder
that is particularly well-suited for studies involving analysis of
variability of features drawn from brain imaging data. While
many studies have focused on analyzing spatial inter-subject
variability in different populations (Gao et al., 2014; Gopal et al.,
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2016; Laney et al., 2015), no known study has utilized whole-
brain analysis to study component level variance and explore the
geometric source of variability across patients in IVA estimated
sources. There have been no studies that utilize higher-order
distributional statistics as parameters of component spatial maps
so as to explore features such as variance in terms of the size and
location of component sources.

This study is thus aimed at exploring whether component-
level variability in the extent and voxel amplitude distribution
of a component relates to subject-level variability and if this
brings to light any new evidence that helps in improving
our understanding of schizophrenia. We use simulations to
explore if translational variation in functional sources could
introduce sufficient population-level variability to be quantifiable
using IVA. Furthermore, we introduce measures of spatial
component level variability which through simulations allows us
to identify one possible origin of variance in IVA components
in resting fMRI data that differentiate schizophrenia patients
and healthy controls. We hypothesize based on previous studies
that schizophrenia patients will have greater variability in the
geometry of the estimated sources and expect that this study
will provide us renewed direction in terms of differentiating
schizophrenia patients from healthy controls.

METHODS

IVA
IVA is a data-driven algorithm that is used to investigate
functional connectivity patterns in the whole brain by identifying
statistically independent sources with cross-subject dependencies
while retaining individual features of the subjects for further
analyses. Studies provide abundant evidence that IVA captures
individual subject variability in spatial patterns and others
substantiate this observation in simulations and in evaluating
dynamic functional network connectivity patterns as well as
in large datasets to differentiate schizophrenia patients from
healthy controls (Ma et al., 2013, 2014; Michael et al., 2013,
2014; Gopal et al., 2016; Laney et al., 2015). The algorithm
models the measured BOLD fMRI signal as a linear combination
of the independent activation sources that comprise the
measured signal. IVA starts with the same assumption as
in GICA that the individual sources of each subject’s data
are spatially independent but additionally considers statistical
dependence of the corresponding sources across other subjects.
The demixing of these sources are estimated by minimizing
mutual information among source component vectors across
subjects. These estimations can be characterized by the following
equations:

Xi = Ai × Si (1)

Ui = Wi × Xi (2)

where Xi is the observed BOLD signal, Ai is the mixing matrix,
and Si are the individual sources that comprise Xi. TheWi is the
unmixing matrix that represents the inverse of the Ai which is
that decomposes the BOLD signal into the component sources

Ui. The sources Ui are the component sources that are estimated
in a manner such that these are matched across the subjects
despite the independence. IVA-GL is an adaptation of the IVA
algorithm that allows estimation of independent sources using a
Gaussian as well as Laplacian density models (Anderson et al.,
2012). This model incorporates second as well as higher order
dependence among multiple data sets (subjects) into account
and thus assumes super-Gaussian distribution for the sources
providing a good match for fMRI spatial components. IVA-GL
has been incorporated into the GIFT toolbox (http://mialab.
mrn.org/software/gift) and this version of IVA was used in this
study.

Simulation
Previous studies show that inter-subject variability due to
different shapes and sizes of the brain that manifest as features
such as translation of functional activation sources i.e., variability
in location and size of these sources, can be captured through
IVA. We hypothesize that this variability can be quantified in
the IVA estimated sources of resting fMRI data and attempt to
establish the same via simulations. For this, two resting fMRI-like
datasets were simulated with three functional activation sources
(C = 3) representing spatial components in different brain
regions with one or two clusters as described in Erhardt et al.
(2011, 2012). The data was simulated such that the two datasets
had different variance in the translation along the × direction
so as to introduce different variability in the spatial maps across
the subjects in the given set. Eighty realizations of subject data
were simulated in each set by adding subject-specific Gaussian
noise. The distinction between the two datasets was that one set
had high variance in the translation of sources in x-direction
(represented by a normal distribution with 0mean and a standard
deviation of 2) and the other set had a low variance (represented
by a normal distribution with 0 mean and a standard deviation
of 0.5). The two datasets were treated as two groups for further
analyses. The simulated data was then smoothed using a 10mm
Gaussian kernel and then subjected to IVA-GL to estimate four
components which were subsequently z-scored and masked as
explained in the Supplementary Materials. IVA-GL was modeled
with four blind sources so as to allow for noise to be estimated as
a separate component in addition to the simulated sources. From
the estimated four components, the components encompassing
the simulated sources were retained and further analysis was
done only on these components.

There are many features of functional activation data that
can vary across individuals, and IVA is known to hold onto
more of this inter-subject variability than other blind source
separation techniques (Ma et al., 2013; Michael et al., 2013).
One way that activation differs between individuals is explicitly
spatial, specifically in the radial extent of the high-amplitude
voxel clusters. There are also less explicitly geometric features
such as the raw distribution of voxel amplitudes in a given source
component. To quantify such variance, the following measures
were calculated for each of the estimated source components
from IVA-GL and differences between groups (as simulated based
on translational variability in the source) was estimated in these
measures.
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Component Level Spatial Variance (CLSV)

The fluctuation of weights in network voxels of a given subject
about the mean will furnish us with higher-order statistical
information about the connectivity between voxels within a
subject’s networks. We calculated the variance of the weights of
the three IVA component maps that correspond to the simulated
sources for each subject. A two sample t-test to test for differences
in the group mean of the CLSV was done for each component
separately. We believed that this analysis would give us an insight
into how amplitude variance relates to translational variance in
the sources across subjects.

Component Volume (CV)

Each component with simulated sources for each subject was
separately z-scored and a z-threshold of 2 was applied to
individual subject SMs as mentioned earlier. The number of
voxels surviving this threshold was counted representing the
volume of the component above a z = 2 threshold. Difference in
the mean component volume between the two simulated groups
was calculated using a two sample t-test. This test would allow
us to estimate if a difference in the extent of the high-amplitude
clusters had any implication to the variability across subjects.

Spatial Variability Analysis in Schizophrenia
Anonymized data was collected from 171 individuals (89 healthy
controls age: 38.07 ± 14.03 and 82 schizophrenia patients age:
37.51 ± 11.47), including rs-fMRI acquisition, as part of a center
of biomedical research excellence (COBRE http://cobre.mrn.org)
project. Informed consent was obtained beforehand according
to University of New Mexico Human Research Protections
Office protocol. Diagnosis of schizophrenia or schizoaffective
disorder (18–65 years) was used as a basis for patient selection
using Structured Clinical Interview for DSM-IV axis I disorders.
Serial clinical assessments were made and a negative toxicology
screen was a prerequisite for scanning schizophrenia patients.
Exclusion criteria included a history of mental retardation,
neurological disorders including head trauma, or of active
substance dependence or abuse within the past year. Healthy
controls were recruited from the same geographical location after
ruling out Axis I disorders using structured clinical interview
for DSM-IV axis I disorders–non-patient edition. One hundred
and fifty one volumes of T∗

2 weighted functional images scans
were collected on a 3-Tesla Siemens Trio scanner with a 12-
channel radio frequency coil for each participant while resting
with eyes open. Images were acquired using a gradient-echo EPI
sequence with TR/TE= 2000/29 (ms) with additional parameters
as described in Gopal et al. (2014).

The imaging data was preprocessed using an SPM-based
preprocessing pipeline within a neuro- informatics system
developed at The Mind Research Network—the collaborative
imaging and neuroinformatics suite (COINS) data exchange
portal (Scott et al., 2011) [http://coins.mrn.org]. Images were
realigned using INRIalign and slice-time correction was applied
using the middle slice as the reference frame. Data were then
spatially normalized to standard MNI space and resampled
to 3 × 3 × 3mm voxels using the non-linear registration
implemented in the SPM toolbox. Finally, data were smoothed

using 10mm FWHMGaussian kernel. The GIFT toolbox (http://
mialab.mrn.org/software/gift/) was used to perform IVA-GL on
the preprocessed fMRI data that is of the form [T (time) ×

V (voxels)]. A relatively high model order [C (define C) =

75] was used for analysis. Component selection and masking
was done as explained in the Supplementary Materials (Gopal
et al., 2016). Further statistical analyses were done on IVA spatial
maps which were normalized via z-scoring (z-threshold = 2)
for each subject for only non-artifactual components. Multiple
measures of spatial variability as ascertained to be meaningful
in simulations above were computed and differences between
schizophrenia patients and healthy controls were estimated based
on these measures. Statistical tests were used to quantify these
differences and these measures and tests performed are described
below. Additional measures were also calculated to further
explore the variability in the spatial features of component
activation clusters as described below.

CLSV

As described above, CLSV (voxel amplitude variance in a
component map) for each subject was computed for each of the
non-artifactual components identified. A two sample t-test to test
for differences in the group mean of the CLSV was done for each
component separately. This test was expected to help in verifying
the hypothesis that the variance across the amplitude weights has
a bearing to the variability across subjects manifesting as between
group differences. Bonferroni’s correction was done to correct
for multiple comparisons. The correlation between the absolute
frame displacement characterizing subject motion estimated
from the realignment step and CLSV were also computed to
quantify the relationship between spatial variance at head motion
of the patients.

MATRICS

The National Institute of Mental Health (NIMH) Initiative,
Measurement, and Treatment Research to Improve Cognition
in Schizophrenia (MATRICS) scores were used to characterize
cognitive abilities of all participants. These tests provided us with
seven measures of cognitive performance for each individual
that included—speed of processing, attention/vigilance, working
memory, verbal learning, visual learning, reasoning, and problem
solving, social cognition. Correlation between the MATRICS
scores and the CLSV were computed to find relationship between
variance and trait of schizophrenia patients’ performance.
Additionally, to quantify the heterogeneity within the cognitive
abilities or performance of schizophrenia patients with respect
to healthy controls, difference of variance F-tests were computed
for each of the seven MATRICS scores (healthy controls—
schizophrenia patients).

CV

As was done for the simulations, the number of voxels that
survived a z-threshold of 2 were counted which accounted for
the component volume for each subject. Differences in the
group mean (healthy controls—schizophrenia patients) for this
volume were calculated using a two sample t-test for each
component which were corrected for multiple comparison using
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Bonferroni’s method. The correlation between the CLSV and CV
was calculated across subjects to explore if the extent of clusters
of a particular IVA source is related to the amplitude variance in
that source.

Distance of Component Peak from Centroid (DPC)

Variance in the location of peak (i.e., maximum
weight/amplitude in the network maps across subjects) are
expected to further shed light on geometrical differences in
IVA estimated sources possibly reflecting a translation in the
cluster itself and can reveal group differences in stability of
component peak locations. The location of maximum amplitude
(weight) was computed within the masked component map
for each subject in [x, y, z] co-ordinates for each of the 27
components. The centroid for these three-dimensional locations
was obtained for each component following which the distance
of each subjects’ peak location from the centroid location was
calculated. Differences in the group mean in the distance of
the peak from the centroid were calculated using two sample
t-tests for each component. Additionally, to assess whether the
schizophrenia patients were more widely spread in the location
of the peak around the centroid than the healthy controls,
a difference of variance F-test was done. The p-values were
Bonferroni corrected for the number of components (Perlstein
et al., 2001).

RESULTS

Simulations
Similar to previous results from simulations to test IVA-GL, we
were able to estimate the source components effectively in our
simulation. Three out of the four components represented the
sources simulated and were used for further tests. We observed
that the two simulated groups showed significant differences in
CLSV favoring the group with lower variance in all the three
components (p < 0.05). We also observed that differences in
component volume that survived a z-threshold of 2 exist in all the
three components again favoring the group with lower variance
(p < 0.05).

Spatial Variability Analysis in Schizophrenia
Of the 75 components, 27 were found to be non-artifactual
components representing networks that have been previously
implicated in schizophrenia studies. These were categorized into
relevant networks based on visual inspection of the location of
clusters and are displayed in the figure in the Supplementary
Materials. Measures of spatial variance were computed on these
27 non-artifactual components as capsulated in the methods
section above. The results of these tests are described as
follows.

CLSV

It was found that one of the 27 components with p = 0.0009
survived multiple comparison correction using Bonferroni’s
correction at p < 0.0019. This component had greater group
mean of CLSV for schizophrenia patients than healthy controls
and represents areas in the superior andmiddle temporal gyrus of

the auditory network C12 and as shown in Figure 1. These areas
are involved in language processing, mathematical operations,
recognition of faces, perception of emotion in facial stimuli and
word meaning association. Additionally, it was observed through
visual inspection that in subjects with lower within subject spatial
variance, the histogram of voxel amplitudes (z > 2) was flatter
i.e., fewer voxels occupied higher amplitudes or weights in the
IVA component maps. These components were also observed to
have a greater extent of the clusters i.e., a larger number of voxels
survived the z-threshold. This was true for both healthy controls
and schizophrenia patients. Figure 2 presents the histogram
of four subjects—two healthy controls and two schizophrenia
patients each with one subject each with high CLSV and one with
low CLSV to further elucidate this observation. It was also found
that four of the 27 components (C 15—Frontal, C 19—Cingulate,
C 20—Visual, and C 23—Frontal) showed statistically significant
correlation between the absolute frame displacement and CLSV
implying that motion is one of the causes for variance to be
introduced into the data. It could be supposed that other sources
exist that introduce spatial variance in the data since only some
of the components show relationship with frame displacement.

FIGURE 1 | Component 12 z-scored t-map with a z-threshold of 2

representing middle and superior temporal gyrus.
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FIGURE 2 | Histogram of vowel weights or amplitudes of components 4 for two HC’s (A) and two SZ’s (B) one with high and one with low CLSV.

MATRICS

It was found, that CLSV of component 7 representing parts of
the attention network showed statistically significant negative
correlation with the attention/vigilance score. This primarily
implies that a greater spatial variance was associated with a lower
attention score supporting our hypothesis that schizophrenia
patients (with lower attention score) have higher CLSV compared
to healthy controls (with higher attention score). No other
correlations were found. Moreover, variance differences between
healthy controls and schizophrenia patients were found in three
of the sevenMATRICSmeasures of cognitive abilities (processing
speed, attention/vigilance and reasoning and problem solving) to
be significantly different (p < 0.05) and the healthy controls had
higher scores than schizophrenia patients in all of them. These
results are summarized in Table 1.

CV

Three of these eight components representing the sensorimotor
network, the visual area components, and the posterior cingulate
region of the default mode network, showed significant
differences in the mean CV between groups which did not
survive multiple comparison correction. They were all unimodal
components, i.e., presented one contiguous high-amplitude voxel
cluster in each component.

Of the 27 components, 19 were found to have statistically
significant correlation between CLSV and CV (p < 0.0019
with Bonferroni’s correction). Of these 16 components showed

TABLE 1 | Difference of variance F-test results to quantify heterogeneity in

cognitive performance of schizophrenia patients and healthy controls.

MATRICS category Difference of variance F-test

h p fstat

Processing speed 1 0.00179 0.49088

Attention vigilance 1 0.00058 0.44759

Working memory 0 0.06736 0.66069

Verbal learning 0 0.34006 0.80607

Visual learning 0 0.17322 0.73482

Resoning and problem solving 1 0.04825 0.63533

Social cognition 0 0.09946 0.68862

Overall composite score 1 5.80E–05 0.38388

a negative correlation, while three components showed positive
correlation between CLSV and CV. Table 2 presents the
correlation and p-values for these 19 components.

DPC

Of the 27 components, two components showed significant
differences in the group mean of DPC at p < 0.05 but did not
survive Bonferroni correction. Thirteen of the 27 components
showed differences in the group variance of DPC (p = 0.05;
schizophrenia patients > healthy controls), of which seven
survived Bonferroni correction at p < 0.0019. Three of these
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TABLE 2 | Correlation r and p-values (FDR corrected).

Component Functional area r p

1 Visual −0.5054 0.0000

2 Auditory −0.5139 0.0000

3 Auditory

4 SMN

5 SMN −0.2411 0.0015

6 Visual −0.7486 0.0000

7 Attentional

8 DMN–anterior cingulate −0.5707 0.0000

9 Attentional −0.2614 0.0006

10 Attentional

11 Attentional −0.3386 0.0000

12 Auditory

13 Basal Ganglia −0.3341 0.0000

14 DMN−posterior cingulate /

precuneus

0.4035 0.0000

15 Frontal

16 Attentional −0.3558 0.0000

17 Visual −0.6685 0.0000

18 SMN −0.6646 0.0000

19 Cingualte−posterior

cingulate/precuneus/cuneus

−0.7288 0.0000

20 Visual −0.7675 0.0000

21 Attentional

22 Visual −0.5370 0.0000

23 Frontal −0.2386 0.0017

24 Frontal

25 Cingualte −0.6687 0.0000

26 DMN—Anterior cingulate 0.6202 0.0000

27 Fontal 0.6013 0.0000

seven components favored healthy controls (C5—SMN, C11—
attentional network, and C25—Cingulate), while the other four
favored schizophrenia patients (C1—Visual, C4—SMN, C8—
Attention, C21—Attentional, and C23—Frontal). Figure 3 shows
the scatter plot of the distance of each subject’s peak from the
centroid and the histogram of distances of individual subject
peaks from the centroid for each group for one representative
component C4.

DISCUSSION

Functional activation patterns during resting state fMRI are
known to exhibit individual differences that have an underlying
relationship to the cognitive abilities of the individual (Hao
et al., 2013; Reineberg et al., 2015). Moreover, each person’s
brain is unique structurally in the shape, size, and the relative
position of sulci and gyri. Analysis of functional imaging
data entails averaging functional brain data across subjects.
Such analyses assume that pre-processing techniques such as
spatial normalization bring homologous areas to approximately
a common sub-space. However, there exists a functional
localization issue in addition, vis-a-vis variable location of

functional sources on the cortical surface of the brain across
subjects. Such variability when combined with the anatomical
variability may reflect on important functional properties of the
brain in terms of cognitive abilities and functional organization
of the brain. Characterizing such variability could provide us
with valuable insight into what constitutes normal variation,
and thereby allow us to explore what constitutes the inherent
variability in diseases such as schizophrenia.

Schizophrenia is a cluster of disorders that has been modeled
as a disruption in cognitive circuitry manifesting as varied
symptoms (Andreasen et al., 1998). This disruption in the
cognitive circuitry has been well-studied and is known to be
associated with disorganized thinking, disturbed perception,
and inappropriate emotions and actions (Freedman, 2007).
However, the existence of subtypes in schizophrenia suggests
that such cognitive disruption does not present uniformly across
the patients. Additionally, previous research into schizophrenia
has revealed neuro-anatomical variations within the population
such as fluctuations in ventricular and cortical volumes. Such
anatomical differences, especially those associated with cortical
features and/or localization of functional loci in the brain,
might contribute to additional variability in functional activity
patterns (Crespo-Facorro et al., 2000, 2009). A structure-function
correspondence in spatial variability recognized by studies
(Sugiura et al., 2007; Frost and Goebel, 2012; Chechlacz et al.,
2015) allows us to perhaps extend variability in functional
activation loci to behavior and cognition. When combined
with the variability in rs-fMRI activity (which is activity in
different regions of the brain relating to activity or thought
during rest) we can imagine that resting state networks of
functional activation would exhibit a significant amount of
variability within the schizophrenia patient population. This
study shows that component level variability analyses using IVA,
when applied to schizophrenia, elucidate differences between
schizophrenia patients and healthy controls that have been
previously unexplored. The measures and reported differences
in resting-state functional spatial variability within the patient
population suggest an important role for higher-order statistical
summaries of functional space extending our understanding of
this complex disorder.

Schizophrenia patients present lower component-level
amplitude variance across subjects in the component
representing the middle and superior temporal gyrus, which
could be attributed to the fact that they have impaired higher
cognitive abilities associated with structural abnormalities in
the middle and superior temporal gyrus (Pearlson, 1997; Gaser
et al., 2004). However, there are other components representing
clusters in the sensorimotor network, the visual network and
the anterior and posterior cingulate regions in which healthy
controls have greater component level amplitude variance. Even
though the differences are not statistically significant, further
exploration might result in identifying differences between them
that signify different spatial characteristics in healthy controls
and schizophrenia patients. This component level amplitude
variance is also seen to be related to the component volume.
Correlations across subjects indicate a negative relationship
between the CLSV and CV for each of eight sub-components.
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FIGURE 3 | Scatter plot and group histograms of DPC. The group mean DPC is represented as red and blue lines for SZ and HC, respectively.

This, in turn, tells us that the extent of individual clusters might
play an important role on the variance of the data and thereby
the variability of the dataset. Moreover, the inverse relationship
between CLSV for attention network component and the
MATRICS score for attention/vigilance further bolsters the
concept that schizophrenia patients have higher spatial variance
associated with lower attention abilities.

The differences in the mean DPC, i.e., in the distribution
of the component peaks, further reinforces this result since
no component showed statistically significant differences in the
mean distance of the subject’s peak from the group centroid
between healthy controls and schizophrenia patients. However,
seven components showed statistically significant difference
in the group variance in this measure. This may imply that
the spread in the location of the peak about the centroid is
characterized by the spatial location of the network in question
in conjunction with the effect of disorders such as schizophrenia
on those networks. The histogram of the distances for each
group has also been plotted in Figure 3. The histogram for
schizophrenia patients is right tailed which might indicate that a
greater subset of schizophrenia patients tend to have component
peaks farther away from the centroid than healthy controls
thereby driving up the group mean. This also suggests that
the spatial localization of the sensorimotor network is more
varied in schizophrenia patients. Simulations to present a similar
variability in the extent of clusters replicated results showing that
inter-subject variability could be driven by variance in the extent
of source components.

Simulations presenting translation in the x-direction show
that the variance exists in the periphery of the component. We
can thus infer that even slight translation in the clusters would
induce significant variance in the data and this could present
a reasonable justification to further explore the relationship
between spatial variability and other factors such as diagnosis or
cognitive abilities, etc. To further bolster this inference, a visual
examination of the relationship between CLSV and CV for the
components from both simulations as well as real data shows

that the variability exists primarily in the extent of the clusters.
These observations were also well founded in that evidence of
CLSV having statistically significant correlation with absolute
frame displacement that characterizes subject motion during the
scan was found. It is however interesting to note that these were
primarily restricted to visual areas and frontal areas of the brain
and possibly imply the presence of other sources of variance in
the data in the other spatial areas of the brain. Visual evidence of
lateralization was also observed that warrant further inspection
to evidence this effect as it might entail additional variability
specifically in the DPC measure and reducing the strength of the
differences observed.

The results from analyzing differences in component
level spatial variability in activation patterns bring to light
previously unidentified differences in complex networks
affecting schizophrenia patients and healthy controls. The
different direction of difference in variance of the DPC i.e.,
schizophrenia patients > healthy controls or healthy controls
> schizophrenia patients, as well as the division of networks
with positive or negative correlation between CLSV and CV
show that these spatial features of blind source separated
spatial components are characterized by the network these
components belong to. This relationship is further explained by
Figure 2 wherein we can see that subjects with a higher CLSV
have a lesser number of voxels occupying higher amplitudes.
These results from simulations and functional imaging data
provide us with one possible cause for inter-subject variability
in functional activation patterns, namely that they result from
spatial translation of functional regions on the cortical surface. A
detailed look at the components that have positive vs. negative
correlations strengthens the motivation to use blind source
separation techniques to segregate components that can help
illustrate spatial differences between schizophrenia patients and
healthy controls.

Based on these results, we can see that spatial variance
measures present us with previously unidentified differences
between schizophrenia patients and healthy controls. They
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also present us with ways of identifying differences previously
uncharacterized by other analyses techniques in previous studies
of schizophrenia. The areas implicated have all been previously
associated with imaging as well as non-imaging studies of
schizophrenia (Woodruff et al., 1997). The identification of
variability in language areas and areas of the brain involved
in higher activities is supported by other studies such as those
by Mueller et al. (2013) and Gao et al. (2014) as a network
that is affected developmentally even in normal individuals.
This might imply that areas that mature late developmentally
will exhibit greater variability across subjects. Also consistent
with results in these studies is the presence of moderate to
low variability in default mode network components. These
results present a fresh new approach with multiple measures to
differentiate schizophrenia patients from healthy controls and
further broaden our understanding of this disorder. We have
nevertheless, only begun to explore this avenue and believe that
there is much more to be learned about clinical conditions by
studying higher order statistical features of network spatial maps.
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