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Abstract: This article presents a study on the influence of temperature and time of multi-variant
heat treatment on the structure and properties of materials produced in direct metal laser sintering
(DMLS) and casting technology. The materials were manufactured in the form of cuboidal elements
with a cross-section of 1.5 mm × 15 mm and a length of 60 mm. The samples prepared in this way
had a similar volume, but due to the production technology the metal crystallization took place
at different rates and directions. In the cast, the direction of heat transfer was toward the mold,
and the DMLS was directed locally layer by layer. The small thickness of the cast material allowed
reaching conditions similar to the DMLS cooling process. Both DMLS and cast samples show similar
mechanical properties (hardness) achieved after long ageing time, i.e., 16 h at 170 ◦C. The maximum
hardness was observed for 8 h. In the DMLS samples, in contrast to cast samples, no lamellar
precipitates of silicon were observed, which indicates their better resistance to cracking

Keywords: AlSi10Mg alloys; direct metal laser sintering; casting; heat treatment; microstructure;
mechanical properties; computer tomography; porosity

1. Introduction

Due to the favorable ratio of mechanical properties to density, easy machining and
high fatigue strength, aluminum alloys are used in the manufacturing of many structural
elements in the form of castings, or for forging or welding. Aluminum alloys are also
important materials in the automotive and aviation industries. Among the many grades
of Al alloys, a group of casting alloys with excellent castability, high strength, ductility
and good weldability can be distinguished (i.e., Al-Si, AlSi5Cu2 and AlSi10Mg) [1]. The
addition of Si lowers the melting point of the alloys and provides high castability, which
allows manufacturing elements with very complex shapes and thin walls and can reduce
defects such as cracking, shrinkage and porosity [2]. The addition of Mg increases the
strength and corrosion resistance of the alloys [2].

Cast aluminum alloys are used for the production of engine hulls and heads as well
as rotors of fans for the engine coolers. As is known, the casting method used for the
production of these products, despite its undeniable advantages, also has a number of
disadvantages related to the properties of the materials, their structure and production costs.
For this reason, in the last few years, a high increase in the interest of both scientists and the
industrial community in additive manufacturing technology (AM) has been noticed. The
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AM methods include metal powder bed fusion 3D printing (SLS, SLM, DMP, DMLS) [3],
directed energy deposition (DED) [4], metal filament extrusion (FFF, FDM) [5], material
jetting and binder jetting [6]. SLM is widely accepted by the industry for its possible
usage in the production of complex metal components in aviation, the automotive industry,
defense and biomedical applications [7].

Comparing the casting and SLM processes, it needs to be stated that there are fun-
damental differences between the microstructures of the materials obtained due to the
layered thermal cycle, focused input energy and rapid cooling during the production of
layers in the SLM process. According to the authors of [8], the maximum cooling rate
of the SLM process is 3–4 orders of magnitude higher than that achieved during conven-
tional casting processes. Differences in microstructure affect the properties of the material
and ultimately affect the properties of the final product. The mostly tested alloys pro-
duced by SLM are AlSi10Mg, AlSi12, A356 and A357. Recently, in many studies, the
effects of process parameter optimization [9–11], heat treatment [10,12–22], build orienta-
tion [12,17,20,23–31] and numerical studies [32,33] were investigated. The most frequently
tested material is AlSi10Mg alloy [34,35]. Among the studies carried out on samples of
this material obtained in the SLM process, the selected properties are presented, i.e., ten-
sile strength [10,12,13,19,22,23,28–31,36–38], microhardness [16,17,19,22,33,38], nanohard-
ness [13,15,23,31,39], compressive strain [11,13,23] fatigue strength [14,26,31,40], wear re-
sistance [16,41] and fracture or toughness [24,26,29,32,41].

Heat treatment is one of the basic processes to achieve the desired property, such
as the ductility of parts produced in SLM technology. Li et al. [21] examined AlSi10Mg
samples made by the SLM method and tested them at −70 ◦C for mechanical properties.
The fish-scale structure morphology along the building direction and oval structures on
the vertical side of the building direction were observed. Takata et al. [42] investigated
the microstructure and mechanical properties of AlSi10Mg samples produced by the SLM
method, heat treated at a temperature above 300 ◦C (annealed). They found that at elevated
temperatures fine Si particles would inhibit the migration of grain boundary. Moreover,
the fine Si particles enhance the strain-hardening in the α-Al matrix, resulting in crack
initiation. Moreover, they found that the tensile strength is isotropic, while the ductility
is anisotropic, with the anisotropic properties declining after heat treatment at 530 ◦C.
Girelli et al. [43] investigated the effect of temperature, solution treatment and ageing
on the microstructure, microhardness and density of AlSi10Mg samples prepared by the
SLM method. They also tested AlSi10Mg samples produced by gravity casting under the
same heat treatment conditions. It was found that the SLM samples had a fine-grained
microstructure and showed better mechanical properties than the gravity-cast samples due
to the refinement of Si grains and nanoparticles. Despite many studies on the influence of
heat treatment on the structure and properties of AlSi10Mg obtained by SLM, there are no
reports on the influence of the time of ageing on the mechanical properties and structure as
a result of prolonged exposure to elevated temperature.

This paper presents the influence of temperature and time of multi-variant heat
treatment on the structure and properties of materials produced in direct metal laser
sintering (DMLS) and casting technology. The materials were manufactured in the form of
cuboidal elements with a cross-section of 1.5 mm × 15 mm and a length of 60 mm. The
samples prepared in this way had a similar volume, but due to the production technology
the metal crystallization took place at different rates and directions. In the cast, the direction
of heat transfer was toward the mold and the DMLS was directed locally layer by layer. The
small thickness of the cast material allowed reaching the conditions similar to the DMLS
cooling process.

2. Materials and Methods

The casting process was carried out by melting and cooling in the steel mould. The
samples of AlSi10Mg alloys were obtained by casting technology at 720 ◦C using a resistance
furnace. In AM technology by DMLS method the EOS device M290 was used. For testing,
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EOS Aluminum AlSi10Mg, provided by the EOS GmbH Electro Optical Systems in the
form of a gas-atomized metal in homogeneous spherical shape powder, was used. The
(range) mean particle size of the powder was (20 µm–90 µm) 36 µm. The SEM images of
the powder are presented in Figure 1A. The scanning strategy is shown in Figure 1B. The
scanning angle was 90◦ in relation to the previous layer. The DMLS process parameters are
presented in Table 1.
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Table 1. DMLS process parameters.

Scan speed (mm/s) 1300

Yb-fiber laser power (W) 310

Layer thickness (µm) 30

Protective atmosphere Argon

Platform temperature (◦C) 200

The 3D model of the test samples is shown in Figure 2. Figure 3 shows an exemplary
sample made by casting (Figure 3A) and by the DMLS method (Figure 3B).
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Figure 3. Cast (A) and DMLS (B) AlSi10Mg alloy samples.

The samples were made in the form of flat bars (cuboidal) with the dimensions of
1.5 mm × 15 mm × 60 mm (Figures 2 and 3) and then electroerosively cut with the use
of a WEDM cutting machine and a BP05d electro-erosion machine (Zakład Automatyki
Przemysłowej B.P., Konskie, Poland) into smaller sections (5 mm × 5 mm × 1.5 mm). All
of the samples prepared in this way were subjected to supersaturation at the temperature
of 570 ◦C/2 h and ageing at the temperature of 170 ◦C. The ageing times were 2 h, 4 h, 6 h,
8 h and 16 h, respectively.

In order to reveal the accuracy of the sample production process and the mapping of
the geometric model, they were subjected to 3D scanning with the use of a GOM ATOS
Core 3D scanner. Due to the typical porosity of casting alloys, the samples were tested
using computed tomography (CT) with the use of a Phoenix v|tomex m300 (GE dynamic
41|100 detector 410 mm × 410 mm (16” × 16”), 100µm pixel size, 4048 × 4048 pixels
(16 MP) for doubled CT resolution). The porosity of samples was carried out with the use
of myVGL 3.5 software (Volume Graphics GmBH, Heidelberg, Germany). The process
of determining the volume of air voids was carried out on a reconstructed 3D solid. The
VGDefX algorithm in voids mode was used. The analysis reveals air voids in the entire
body or in its fragment indicated by use. The assessment is performed visually and on
the basis of tables and graphs. Depending on the size of the void, the pores are shown
with different colors on the cross-sections and in the 3D view. Additionally, it is decisive
to present the pore distribution as a function of the appropriate coordinate. Based on the
analysis of the radiographic image, a 3D model of the cast sample and DMLS was made
with the distribution of porosity in the sample volume.

After the heat treatment processes, the metallographic sections were prepared. Sam-
ples were polished—first with 600–2000 grit abrasive papers and then in 0.04 mm gradation
OPS slurry. Figure 4 shows the research schedule. In order to reveal the structure, micro-
scopic examinations were carried out using light microscopy (LM) and scanning electron
microscopy (SEM). For light microscopy examination, the Leica LM/DM (Leica, Wetzlar,
Germany) light microscope was used and for SEM examination the Phenom XL (Thermo
Fisher Scientific, Waltham, MA, USA) and Hitachi SU-70 (Hitachi Ltd., Tokyo, Japan)
microscopes were used.

In order to reveal the distribution of elements and identify the basic phases, maps of
the distribution of alloying elements were made. The tests were performed using the SEM
microscope Hitachi SU-70 (Hitachi Ltd., Tokyo, Japan) and the EDAX detector.
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3. Results

The results of the 3D laser scanning tests of samples made of AlSi10Mg-cast (Figure 5)
and DMLS (Figure 6). The geometric measurements of the samples show that they show
high dimensional accuracy both in the condition after casting and when made by the DMLS
method. The dimensions change due to shrinkage during the cooling of samples, where
the maximum deviation of <0.1 mm for cast samples was achieved, and for DLMS it was
<0.5 mm in the central part and less than 0.1 mm at the edges. The performed measurements
indicate a very high dimensional accuracy of the samples made using the DMLS method.
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The analysis of the porosity distribution model shows that the cast material is char-
acterized by significant porosity. The voids are evenly distributed throughout the sample
volume (Figure 7). The analysis of the volume distribution of individual voids shows
that voids with a diameter below 0.5 mm and with a volume below 0.025 mm3 dominate
(Figure 7C. Larger diameter voids represent only a small proportion of all those observed.
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The total proportion of porosity in the samples does not exceed 2.38%. For samples made
with the DLMS method, the share of gas voids is significantly lower (Figure 8). Single voids
of very small sizes (diameter < 0.25 mm, volume < 0.002 mm3) are observed (Figure 8C).
The total porosity fraction obtained is less than 0.03%.
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The microscopic tests performed show the dendritic structure of the samples after
the casting process, typical for the crystallization of the castings. In the interdendritic
regions, lamellar and globular precipitations were observed, indicating segregation of the
alloying elements during crystallization and their pushing into the interdendritic regions
(Figures 9 and 10). Regardless of the thermal treatment performed, the dendrite cores
remained free from precipitation, and the morphology of the precipitates did not change.
Chemical composition analysis (EDS) shows that these precipitates, depending on the
morphology, are rich in silicon, iron and magnesium (Figure 11).
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(B,C) after supersaturation, (D–F) after supersaturation and ageing—2 h, (G–I) after supersaturation
and ageing—4 h, (J–L) after supersaturation and ageing—6 h, (M–O) after supersaturation and
ageing—8 h and (P–R) after supersaturation and ageing—16 h.
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In the DMLS samples, the structure is a fine-crystalline structure with outlined areas of
melted and crystallized powder. As a result of the process, the Si particles were significantly
fragmented compared with the microstructure after casting. The diameter of the silicon-rich
particles is about 1 um, additionally the morphology of these particles has changed, the
particles have become globular, which compared with sharp Si edges in the cast material
may have a costly impact on mechanical properties. The separations in the post-print state
are evenly distributed. The process of supersaturation, as well as supersaturation and
ageing, regardless of the process time, caused a slight increase in the size of the precipitates
in relation to the stand after printing, and with a long ageing time (16 h) the grains were
scratched (Figures 12 and 13). The maps of the distribution of alloying elements for the
samples in the state after supersaturation and ageing did not show any significant changes
in the alloy (Figures 14 and 15).
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Figure 12. Microstructure of DMLS samples before and after heat treatment (LM): (A) after DMLS,
(B) after supersaturation, (C) after supersaturation and ageing—2 h, (D) after supersaturation and
ageing—4 h, (E) after supersaturation and ageing—6 h, (F) after supersaturation and ageing—8 h
and (G) after supersaturation and ageing—16 h; Observation of the cross-section in the middle of
thickness for each sample.
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Figure 13. Microstructure of cast samples before and after heat treatment (SEM): (A) after DMLS,
(B) after supersaturation, (C) after supersaturation and ageing—2 h, (D) after supersaturation and
ageing—4 h, (E) after supersaturation and ageing—6 h, (F) after supersaturation and ageing—8 h
and (G) after supersaturation and ageing—16 h.
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Figure 14. Map of the distribution of elements for the sample after supersaturation (EDS).

It was observed that Fe-reach precipitates are both needle-shaped and very fine.
Different time of ageing did not influence the needle-shaped precipitation, but for fine,
globular precipitations small differences were observed. For 4 h ageing, the globular
precipitations increased.

The hardness measurements performed for the cast samples showed an increase in
hardness for the ageing times of 2, 4, 6 and 8 h, while for 16 h, the hardness was similar to
8 h of ageing (to 96 HV0.2). In the as-cast condition, the hardness was 65 HV0.2 and after
supersaturation it was 75 HV0.2. The highest value was recorded for the ageing time of 8 h
and it amounts to 100 HV0.2 (Figure 16).
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Figure 16. Hardness distribution for cast and DMLS samples depending on the ageing time (temper-
ature 170 ◦C).

The DMLS samples after supersaturation had a hardness of 80 HV0.2, which increased
after ageing for 8 h to 113 HV0.2. After 16 h of ageing, a decrease in hardness to 98 HV0.2
was observed (Figure 16), which indicates the beginning of the overageing process. Further
extending heat treatment time results in further hardness decrease.

The tests of annealing the samples at higher ageing temperature showed that from
200 ◦C the hardness dropped to approx. 52 HV0.2 (Figure 17).
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Figure 17. Hardness distribution for cast and printed samples depending on the ageing time
and temperature.

The tests performed revealed that DMLS elements have a slightly higher hardness
than castings. This is due to the strong fragmentation of precipitates and phases rich in
silicon or magnesium. During the heat treatment, the changes in mechanical properties are
similar to those for a cast alloy, which indicates that it is not necessary to use different heat
treatment conditions due to the manufacturing method. With long ageing times, both for
castings and DLMS elements, the mechanical properties should be the same, providing the
product with low porosity and fine structure.

4. Conclusions

The metallographic tests performed showed:

1. A favorable alloy structure after DMLS process with evenly distributed precipitates
against the background of a solid aluminum solution. In the cast, the secretions were
located mainly in the interdendritic areas, which caused the occurrence of areas prone
to cracks.

2. In DMLS samples, in contrast to cast samples, no lamellar precipitates of silicon were
observed, which indicates their better resistance to cracking.

3. The total proportion of porosity did not exceed 2.38% in the cast samples and was less
than 0.03% in the DMLS samples.

4. Both printed and cast samples showed similar mechanical properties (hardness)
achieved after long ageing time, i.e., 16 h at 170 ◦C. The maximum hardness was
observed for the time of 8 h. In order to shorten the ageing time, the temperature can
be slightly increased to approx. 180 ◦C.

5. At temperatures of 200 ◦C and higher ageing occured, which caused a significant
reduction in hardness.
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