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Abstract

Unilateral injections of 6-hydroxydopamine into the medial forebrain bundle are used extensively as a model of Parkinson’s
disease. The present experiments sought to identify genes that were affected in the dopamine (DA)–denervated striatum
after 6-hydroxydopamine-induced destruction of the nigrostriatal dopaminergic pathway in the rat. We also examined
whether a single injection of methamphetamine (METH) (2.5 mg/kg) known to cause changes in gene expression in the
normally DA-innervated striatum could still influence striatal gene expression in the absence of DA. Unilateral injections of
6-hydroxydopamine into the medial forebrain bundle resulted in METH-induced rotational behaviors ipsilateral to the
lesioned side and total striatal DA depletion on the lesioned side. This injection also caused decrease in striatal serotonin (5-
HT) and 5-hydroxyindoleacetic acid (5-HIAA) levels. DA depletion was associated with increases in 5-HIAA/5-HT ratios that
were potentiated by the METH injection. Microarray analyses revealed changes (6 1.7-fold, p,0.025) in the expression of 67
genes on the lesioned side in comparison to the intact side of the saline-treated hemiparkinsonian animals. These include
follistatin, neuromedin U, and tachykinin 2 which were up-regulated. METH administration caused increases in the
expression of c-fos, Egr1, and Nor-1 on the intact side. On the DA-depleted side, METH administration also increased the
expression of 61 genes including Pdgf-d and Cox-2. There were METH-induced changes in 16 genes that were common in
the DA-innervated and DA-depleted sides. These include c-fos and Nor-1 which show greater changes on the normal DA
side. Thus, the present study documents, for the first time, that METH mediated DA-independent changes in the levels of
transcripts of several genes in the DA-denervated striatum. Our results also implicate 5-HT as a potential player in these
METH-induced alterations in gene expression because the METH injection also caused significant increases in 5-HIAA/5-HT
ratios on the DA-depleted side.
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Introduction

Dysfunctions of basal ganglionic structures are the substrates for

Huntington’s and Parkinson’s diseases [1,2]. Rats that received

unilateral injections of 6-hydroxydopamine (6-OHDA) in the

nigrostriatal dopaminergic system are used as a model for

Parkinson’s disease. These animals exhibit ipsilateral rotations

after administration of indirect dopamine (DA) agonists and

contralateral rotations after direct DA agonists [3–8]. These

behaviors are related to unilateral changes in the expression of

striatal dopaminergic markers [3–5,9–12]. In addition, striatal DA

depletion is associated with changes in the expression of mRNA

precursors for some neuropeptides including enkephalin, sub-

stance P, and dynorphin [13–15]. Moreover, injections of direct

DA receptor agonists that stimulate postsynaptic DA receptors

cause substantial changes in the expression of several genes in the

DA-depleted striatum [16–20]. However, it is not clear to what

extent indirect agonists, such as the amphetamines that release DA

and other neurotransmitters [21–25] might also influence gene

expression in the DA-depleted striatum.

Methamphetamine (METH) is an indirect agonist that induces

release of DA and serotonin (5-HT) in the brain [21,22,24–26].

Repeated injections of large METH doses also cause delayed

increases in glutamate release in the striatum [23,27,28]. In

addition, METH administration influences striatal gene expression

in animals with normal dopaminergic innervation [29–33]. The

METH-induced transcriptional changes depend on stimulation of

DA and glutamate receptors [29,31,33]. However, the extent to

which METH might also induce changes in gene expression in the

absence of DA innervation has not been clarified. Studies that

have examined the effects of indirect agonists on striatal gene

expression in hemiparkinsonian rodents have measured the

expression of only a few genes or proteins. For example, repeated

injections of amphetamine (5 mg/kg) to rats with unilateral nigral
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6-OHDA lesions caused increased striatal dynorphin-like immu-

noreactivity on the intact but not on the lesioned side [34]. Neither

did amphetamine administration induce any changes in met-

enkephalin expression on the lesioned side [34]. In contrast,

Chritin et al. [35] reported that amphetamine caused up-regulated

Fos protein expression on both sides of hemiparkinsonian rats,

with the increases being of smaller magnitude on the DA-

denervated side.

Given the importance of DA in the mediation of striatal

synaptic plasticity and striatum-dependent behaviors, we thought

it is likely that DA depletion might be associated with changes in

the expression of a larger number of genes than those described so

far in intrinsic striatal cells [13–15]. The possibility also existed

that indirect DA agonists including METH, which causes release

of other neurotransmitters such as 5-HT [22], might affect the

expression of some genes in a DA-independent fashion. Therefore,

the present study was undertaken to analyze global gene

expression in the DA-denervated striatum and to quantify striatal

METH-induced transcriptional responses after 6-OHDA-induced

lesions of the nigrostriatal dopaminergic pathway. Our results

show that there are other genes that are affected in the DA-

depleted striatum in addition to those previously reported [13–15].

We also found that METH administration does indeed cause

changes in the expression of several genes in the DA-depleted

striatum. Our observations further suggest that METH-induced

increased 5-HT turnover might, in part, be responsible for the

later changes.

Methods

Animals
Male Sprague-Dawley rats (Charles Rivers Laboratories,

Raleigh, NC), weighing 270–300 g at the beginning of the

experiments were used in the present study. Animals were housed

in a humidity- and temperature-controlled room and were given

free access to food and water. All animal procedures were

performed according to the National Institutes of Health Guide for

the Care and Use of Laboratory Animals and were approved by the

Animal Care and Use Committee of the National Institute on

Drug Abuse, Intramural Research Program. The research was

conducted under Animal Study Protocol #09-CNRB-25.

6-OHDA lesioning
Unilateral lesions were performed under anesthesia with chloral

hydrate (400 mg/kg, i.p.). After immobilization on a stereotaxic

frame (model 940; David Kopf Instruments), a hole was drilled in

the skull for injections of 6-OHDA in the medial forebrain bundle

(MFB). 6-OHDA (2 mg/ml 65 ml in 0.9% NaCl containing

0.2 mg/ml ascorbic acid) was unilaterally injected into the left

MFB (24.4 mm AP, 1.2 mm ML relative to bregma and 8.4 mm

below skull) over 4 minutes. At the end of each injection, the

micropipette was left in place for an additional 5 min and then

withdrawn slowly to prevent reflux of the solution.

Rotation
Rotational behavior was evaluated using a multichannel

rotometer system (RotoMax, AccuScan Instruments, Inc). Contra-

versive or ipsiversive rotational behaviors were induced by

subcutaneous injection of apomorphine (APO) (0.05 mg/kg) on

day 24 or (6) METH HCl (2.5 mg/kg, s.c) on day 31,

respectively, after the 6-OHDA injection. Each animal was placed

in a cylindrical test chamber for 90 min. The highest consecutive

clockwise and counter-clockwise rotations over 60 min were used

for analysis.

METH treatment and tissue collection
One week after measuring METH-induced rotation, the

animals were divided into two groups based on rotational

behavior. The two matched groups of animals were injected with

either saline or METH (2.5 mg/kg, i.p.) and then euthanized

2 hours after the injection. Additional control animals that did not

get 6-OHDA injections were also used. Their brains were quickly

removed, tissues were dissected on ice, snap frozen on dry ice, and

stored at 280uC until used in HPLC, microarray, and quantitative

PCR (qPCR) experiments. The experimental groups were: saline-

treated controls (SC), METH-treated controls (MC), non-lesioned

side of saline-treated 6-OHDA-injected rats (SNL), lesioned side of

saline-treated 6-OHDA-injected rats (SL), non-lesioned side of

METH-treated 6-OHDA-injected animals (MNL), and lesioned

side of METH-treated 6-OHDA-injected animals (ML).

HPLC
For monoamine analysis, the brain regions were homogenized

in 0.01 M HClO4 and centrifuged at 14, 0006g for 15 min. DA,

3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid

(HVA), 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) levels

were analyzed in the brain tissue extracts using HPLC with

electrochemical detector [36,37].

RNA extraction, microarray hybridization, and data
analysis

Total RNA was isolated using RNeasy Midi kit (Qiagen,

Valencia, CA). RNA integrity was assessed using an Agilent 2100

Bioanalyzer (Agilent, Palo Alto, CA) and showed no degradation.

Microarray hybridization was carried out using RatRef-12

Expression BeadChips arrays (22, 523 probes) (Illumina Inc.,

San Diego, CA). In brief, a 600 ng aliquot of total RNA from each

striatal sample was amplified using Illumina RNA Amplification

kit (Ambion, Austin, TX). Single-stranded RNA (cRNA) was

generated and labeled by incorporating biotin-16-UTP (Roche

Diagnostics, Indianapolis, IN). 750 ng of each cRNA sample were

hybridized to Illumina arrays at 55uC overnight according to the

Whole-Genome Gene Expression Protocol for BeadStation

(Illumina Inc.). Hybridized biotinylated cRNA was detected with

Cyanine3-streptavidin (GE Healthcare, Piscataway, NJ) and

quantified using Illumina’s BeadStation 500GX Genetic Analysis

Systems scanner.

The microarray data reported in the manuscript are in

accordance with MIAME guidelines. The raw data for the

analyses have been deposited in the NCBI GEO database, series

record GSE24233 (http://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc = GSE24233). The Illumina BeadStudio software was used

to measure fluorescent hybridization signals. Data were extracted

by BeadStudio (Illumina) and analyzed using GeneSpring software

v. 7.3.1 (Silicon Genetics, Redwood City, CA). Raw data were

imported into GeneSpring and normalized using global normal-

ization. The normalized data were used to identify changes in gene

expression in the 4 group comparisons: SL vs SNL, ML vs SNL,

MNL vs SNL, and ML vs SL. A gene was identified as significantly

changed if it showed increased or decreased expression according

to an arbitrary cut-off of 1.7-fold changes at p,0.025, according

to GeneSpring statistical package (unpaired t-test). In previous

studies, genes identified by similar criteria were consistently

validated by qPCR [31,38,39].

qPCR
Total RNA extracted from the striatum was used to confirm the

expression of genes of interest by qRT-PCR. In brief, unpooled

METH and DA-Independent Gene Expression

PLoS ONE | www.plosone.org 2 December 2010 | Volume 5 | Issue 12 | e15643



total RNA obtained from 8–12 striata per group was reverse-

transcribed with oligo dT primers and RT for PCR kit (Clontech,

Palo Alto, CA). PCR experiments were done using the Chroma4

RT-PCR Detection System and iQ SYBR Green Supermix

(BioRad, Hercules, CA). Sequences for gene-specific primers

corresponding to PCR targets were obtained using LightCycler

Probe Design software (Roche). The primers were synthesized and

HPLC-purified at the Synthesis and Sequencing Facility of Johns

Hopkins University (Baltimore, MD). The primers are listed in

Table S1. qPCR values were normalized using light chain of

clathrin and quantified. The results are reported as relative

changes calculated as the ratios of normalized gene expression

data of each group compared to the control group injected with

saline (SC).

Statistical Analysis
Statistical analysis for the HPLC and PCR data was performed

using analysis of variance (ANOVA) followed by Fisher’s protected

least significant difference post-hoc comparison (StatView 4.02,

SAS Institute, Cary, NC). Values are shown as means 6 SEM.

The null hypothesis was rejected at p,0.05.

Results

Functional characterization of the unilateral 6-OHDA
nigrostriatal lesion

Rotation. We assessed the effectiveness of the 6-OHDA

lesions by both behavioral and biochemical means. Figure 1 shows

the effects of APO and METH on contraversive and ipsiversive

rotational behaviors, respectively. We found time-dependent

changes in APO-induced turns, which peaked within the first

6 min after injection of the drug (Figure 1A). APO-induced

contralateral turns were stable for the first 30 min and then rapidly

tapered to being nonexistent by 54 min after drug. METH-

induced ipsiversive turns became apparent within the first 12 min

after the drug injection and peaked at around 30 min. METH-

induced rotations remained prominent for about 1 hour and were

still measurable at 90 min after METH injection (Figure 1B).

Biochemistry. We found no differences in the levels of either

DA or its metabolites, DOPAC and HVA on the intact side of

hemiparkinsonian rats in comparison to control animals (Table 1).

Unilateral injections of 6-OHDA in the MFB caused complete loss

of DA, DOPAC, and HVA (Table 1). Injection of METH prior to

euthanizing the animals did not affect DA, DOPAC, and HVA

levels. METH did not cause any significant changes in DOPAC/

DA or HVA/DA ratios in any of the groups (data not shown).

Table 1 also shows the effects of unilateral 6-OHDA lesions on 5-

HT and 5-HIAA levels as well as 5-HIAA/5-HT ratios in the

striatum. We found significant decreases in 5-HT concentrations

on the side of the 6-OHDA injections in the saline- (237%) and in

METH-treated (251%) rats. 5-HIAA levels were also affected on

the lesioned side of the saline- (226.5%) and METH-treated

(226.4%) animals. In addition, injections of METH caused

significant increases in 5-HIAA levels in the control group (+33%)

and on the intact side of the hemiparkinsonian rats (+24%). We

also found increases in 5-HIAA/5-HT ratios on the 6-OHDA-

lesioned side of the saline- (+24.4%) and METH-treated animals

(+54.7%). The increases in 5-HIAA/5-HT ratios on the DA-

depleted side of animals treated with METH were significantly

higher than the ratios in all other groups. These findings are

consistent with those of other investigators who have reported

increases in 5-HIAA/5-HT ratios in animals that had suffered

greater than 90% loss of striatal DA [40]. However, the

potentiating effects of METH on 5-HIAA/5-HT ratios in the

lesioned striatum have not been reported before.

Dopamine depletion and METH-induced changes in
mRNA levels in the striatum

Microarray analysis. In order to provide a panoramic view

of METH effects on gene expression in the DA-depleted striatum,

we used large scale microarray analysis with rat Illumina arrays

that contain about 23, 000 genes. Figure 2 shows a Venn diagram

of the comparisons between 4 groups of interest: SL vs SNL, ML

vs SNL, MNL vs SNL, and ML vs SL. The identity of the affected

genes is given in Tables 2, 3, 4, and 5 which list the full names of

the genes. The Venn diagram shows 67 genes that were affected in

the DA-denervated side in comparison to the intact side (SL vs

SNL). Of these, 45 were up-regulated whereas 22 were down-

regulated (Table 2). Up-regulated genes include Ldhc, Stab2, Nmu,

Fst, Nts, and Tac2 whereas down-regulated transcripts included

Tac1 (Table 2). METH injection caused changes in the expression

of 86 genes in the intact side (MNL) in comparison to the SNL side

(Table 3). Genes of interest that were up-regulated include

transcription factors c-fos, Junb, Egr2, and Nr4a3 (Nor-1). METH

administration caused alterations in mRNA levels for 98 genes on

the lesioned side in comparison to the SNL side (ML vs SNL)

(Table 4). These include 61 up-regulated and 37 down-regulated

genes, with only 16 of these genes being also affected in the MNL

vs SNL comparison (Tables 3 and 4). Of the 98 genes affected in

the ML vs SNL group, 28 were also found in the SL vs SNL

comparison, with their expression, for the most part, not being

further affected by the METH administration (Tables 2 and 4).

Genes of interest found only in the ML vs SNL comparison were

Syt10 and Cox-2, which were up-regulated by the METH injection.

One of the common genes between the two sets of comparisons

(MNL vs SNL and ML vs SNL) is Nr4a3 (Nor-1) which shows

higher expression in the MNL vs SNL group. When we evaluated

gene expression in the ML versus SL group, another set of 55

genes was identified, with 30 being up-regulated and 25 being

down-regulated (Table 5). As shown in the Venn diagram, only 5

of these transcripts were also found in the ML vs SNL group.

These include c-fos and Hcst (Tables 4 and 5). We also compared

gene expression between the MNL and ML groups and found that

several transcription factors including c-fos, Egr1, Egr2, and Junb

were significantly up-regulated in the MNL group (data not

shown, see Table 6 for qPCR validation).

qPCR. Figure 3 shows the results of the qPCR validation for

some of the genes affected on the lesioned side of the

hemiparkinsonian rats treated with saline (SL vs SNL

comparison). Consistent with the array data, DA depletion was

associated with significant decreases (268% of SC group) in Tac1

(also called tachykinin 1, preprotachykinin A, substance P)

expression on the DA depleted side (SL). The injection of

METH did not significantly influence Tac1 expression on the

lesioned side (250% of SC group). In contrast, the single METH

injection caused small increases in normal animals (1.4-fold) and

on the intact side (1.3-fold) of the 6-OHDA-treated rats

(Figure 3A). In contrast to the effects on Tac1, DA depletion

resulted in significant increases (2.2-fold) in the expression of Tac2

(neurokinin B) (Figure 3B). METH administration did not induce

any changes in Tac2 expression in the control animals nor in the

intact side of 6-OHDA lesioned animals. METH did not

potentiate the effects of 6-OHDA on Tac2 expression on the

lesioned side (compare SL to ML groups in Figure 3B). There were

also significant 6-OHDA-induced decreases in Pdyn expression in

the SL group (Figure 3C). These 6-OHDA-induced changes were

not affected by METH. In contrast, METH injection caused

METH and DA-Independent Gene Expression
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Figure 1. Apomorphine- and methamphetamine-induced rotations in 6-OHDA hemiparkinsonian rats. The animals were injected with
6-OHDA as described in the text. Rotation was measured after injection of apomorphine (APO) (0.05 mg/kg) (A) or methamphetamine (METH)
(2.5 mg/kg) (B).
doi:10.1371/journal.pone.0015643.g001
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increases in Pdyn mRNA levels in the control animals and in the

intact side of 6-OHDA-injected rats. Striatal DA depletion also

induced significant increases (2.86-fold) in Nts mRNA levels

(Figure 3D). The METH injection caused increases (2.21-fold) in

Nts mRNA in the control animals (MC group), confirming

previous results, which showed that METH induced a dramatic

increase in striatal Nts mRNA levels [41]. METH injection did not

cause further increases in Nts expression on the side of the lesion

when compared to the saline-treated 6-OHDA-injected animals

(compare SL to ML group). Nevertheless, the data for the ML

group were significantly higher than those measured for the MC

group (Figure 3D). There were also significant DA depletion-

induced increases (4.36-fold) in Nmu mRNA levels in the 6-

OHDA-treated animals (Figure 3E). METH injection did not

change Nmu expression in the control animals (MC group) nor on

the intact side of the lesioned animals. However, METH

treatment enhanced the increases (6.04-fold) in Nmu expression

on the DA- depleted side (compare SL to ML group). The qPCR

experiment also replicated the array data for Fst expression, which

showed significant increases (3.39-fold) on the DA-depleted side of

hemiparkinsonian rats (Figure 3F). The METH-treated animals

also showed increases (4.78-fold) in the lesioned side, with these

changes being significantly higher than those observed in the

saline-treated 6-OHDA-lesioned animals. The observations that

the small METH dose caused further increases in Fst mRNA levels

on the lesioned side of 6-OHDA-treated rats suggest that these

METH-induced alterations in Fst expression might be

independent of METH-induced DA release.

Table 6 shows the qPCR validation of the microarray data

which identified multiple transcription factors affected on the

intact side of the 6-OHDA-treated rats after METH injection (see

Table 3). The effects of METH on the expression of immediate-

early genes in the normally DA innervated striatum have been the

subjects of several reports ([31] and references therein). However,

because these studies were conducted in animals with normal

neurotransmitter contents, conclusions drawn from these investi-

gations might not help to fully characterize the role of DA and

other neurotransmitters in these transcriptional responses. There-

fore, for the purpose of thoroughness, we performed qPCR on

other genes that fall within similar classes of transcription factors

and that had been identified as affected by injections of higher

METH doses [30,31]. Except for Fra1, c-jun, and Nr4a2 (Nurr1),

METH injection caused significant increases in the expression of

the other members of these classes of transcription factors. We

found that METH caused increases in c-fos mRNA levels on both

the intact (2.7-fold) and on the DA-denervated (1.7-fold) side

(Table 6). Another gene of interest is Jund. METH injection caused

similar increases in Jund expression on both the intact (2.2-fold)

and lesioned (1.9-fold) striata of the hemiparkinsonian rats

(Table 6). We found significant increases in the expression of

Nr4a1 (Nur77) in the denervated striatum in comparison to the

intact side (SL vs SNL) of hemiparkinsonian rats. These data are

different from the findings of microarray analysis that did not

identify Nr4a1 as being changed in the SL group. These might be

related to the somewhat stringent criteria used in the array analysis

and/or to the greater sensitivity of qPCR. The values in the SL

group were also comparable to those measured on the lesioned

side after METH (ML group) administration, implying that

METH did not influence Nr4a1 expression in the absence of DA.

Figure 2. Differential profiles of transcript levels in saline- and
METH-treated 6-OHDA-induced hemiparkinsonian rats. The
Venn diagram shows the distinctiveness and the overlap of genes
identified by the four separate comparisons shown in the figure. The
rats were treated and euthanized as described in the text. RNA was
extracted from striatal tissues obtained from both sides of the brains of
saline- and METH-injected hemiparkinsonian rats. Microarray analyses
were performed as described in the text. Genes were identified as
differently expressed if they showed greater than 61.7-fold changes at
p,0.025.
doi:10.1371/journal.pone.0015643.g002

Table 1. Effects of 6-OHDA and METH on striatal monoamine levels.

Monoamine Control rats Hemiparkinsonian rats

Saline METH Saline METH

SC MC SNL (Contra) SL (Ipsi) MNL (Conta) ML (Ipsi)

DA 100.067.9 95.5613.6 114.9612.4b 0.060.0a 110.0612.8b 0.060.0a

DOPAC 100.0613.6 84.8612.2 116.0610.3b 0.360.3a 91.1613.8b 0.060.0a

HVA 100.068.8 113.4614.9 111.7610.7b 0.060.0a 113.2611.5b 0.060.0a

5-HT 100.068.0 123.6613.9 95.366.0b 62.6611.5a 115.2612.4b 49.167.4a

5-HIAA 100.064.0 133.369.2a 108.463.0b 73.468.0a 124.069.3a,b 73.667.7a

5-HIAA/5-HT 100.065.9 109.566.9c 111.865.6c 124.4610.3a,c 107.065.4b 154.7611.5a

The values represent means 6 SEM (percentage changes with respect to the SC group) of 8–10 measurements per group. The groups are as described in the text.
Statistical analyses were done by ANOVA followed by PLSD. Key to statistics:
ap,0.05 in comparison to the SC group;
bp,0.05, in comparison to the ipsilateral (Ipsi) side of similarly treated groups;
cp,0.05 in comparison to the 5-HIAA/5-HT ratio in the ML group.
doi:10.1371/journal.pone.0015643.t001
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Other transcription factors of interest are the EGRs [42]. Egr2

expression was substantially more induced by METH injection in

the intact side (6.1-fold) of the hemiparkinsonian rats in

comparison to control animals (3.8-fold) (Table 6). Similar

differential responses were observed for Egr3 expression after

METH administration to the control and 6-OHDA-injected

animals. This is in contrast to the effects of METH on Egr1

which were almost identical in the control and lesioned rats.

Figure 4 illustrates the expression of some genes that showed

METH-induced changes in the DA-depleted striatum. METH

injection caused increases in Inhba in the intact (2.35-fold) (MNL)

and denervated (2.21-fold) (ML) sides of the striatum in

hemiparkinsonian rats (Figure 4A). METH injection also induced

increases in Inhba in the control animals but these changes were of

smaller magnitude than the increases in the lesioned animals

(compare the MC to the MNL and ML groups). Figure 4B shows

the effects of METH on the activin receptor, Acvr1 [43]. Although

not found on the array, we wanted to know if there were changes

in this receptor in view of METH-induced changes in Inhba. We

found that METH caused significant increases in Acvr1 mRNA

Table 2. Partial list of genes showing changes in the DA-depleted striatum of hemiparkinsonian rats.

(SL/SNL)

Fold Changes Gene Symbol Description

22.47 Gucy1b2 guanylate cyclase 1, soluble, beta 2

21.85 Igsf7 immunoglobulin superfamily, member 7

16.31 Tyms thymidylate synthase

13.28 Ldhc lactate dehydrogenase C

8.63 Stab2 stabilin 2

8.44 Nav2 neuron navigator 2

8.42 Mcpt4 mast cell protease 4

8.13 Bcl9l_predicted B-cell CLL/lymphoma 9-like

6.41 Nmu neuromedin U

5.62 Msln mesothelin

3.86 Pcsk1 proprotein convertase subtilisin/kexin type 1

3.49 Fst follistatin

3.08 Upb1 ureidopropionase, beta

2.99 Nts_predicted neurotensin

2.84 Tac2 tachykinin 2

2.71 Plek2_predicted pleckstrin 2

2.59 Pctp phosphatidylcholine transfer protein

2.50 Slc26a2 solute carrier family 26 (sulfate transporter), member 2

2.48 Pkp2 plakophilin 2

2.40 Olr35 olfactory receptor 35

2.19 E2f1 E2F transcription factor 1

1.96 Il3ra interleukin 3 receptor, alpha chain

1.89 Inhba inhibin beta-A

1.85 Lama5 laminin, alpha 5

1.83 Kif22 kinesin family member 22

1.80 Amhr2 anti-Mullerian hormone type 2 receptor

1.74 Sox11 SRY-box containing gene 11

1.72 Cflar CASP8 and FADD-like apoptosis regulator

1.71 Fxyd5 FXYD domain-containing ion transport regulator 5

21.91 Tac1 tachykinin 1

22.07 Plekhg2_predicted pleckstrin homology domain containing, family G member 2

22.89 Cd44 CD44 antigen

23.08 P2ry1 purinergic receptor P2Y, G-protein coupled 1

25.06 Il1r2 interleukin 1 receptor, type II

26.47 Sox5 SRY-box containing gene 5

27.60 Kcnmb3_predicted potassium large conductance calcium-activated channel, M beta 3

212.77 Hoxa1 homeo box A1

This partial list of genes was generated from the SL vs SNL comparison. To be included the genes had to meet the inclusion criteria: 61.7-fold at p,0.025. The genes are
listed in descending order according to fold changes.
doi:10.1371/journal.pone.0015643.t002
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levels in the controls (MC, 1.79-fold), as well as on the intact

(MNL, 1.93-fold) and lesioned (ML, 1.79-fold) sides of hemi-

parkinsonian rats. There were also significant increases (1.57-fold)

in Acvr1 expression in the intact side of saline-injected 6-OHDA-

treated rats. The changes in the lesioned side of these animals did

not reach statistical significance (1.49-fold, p = 0.06).

We also found significant METH-induced increases in Pdgf-d

mRNA levels on both the intact (1.39-fold) and denervated (1.39-

fold) striatum in comparison to the SC group and the intact (SNL)

side of 6-OHDA-treated rats (Figure 4C). There were no

significant changes in METH-treated control group (MC) and in

6-OHDA-treated animals injected with saline (SL). There were no

significant effects of the 6-OHDA lesion on striatal Cox-2

expression (Figure 4D). However, METH injection caused

increases (MC, 1.83-fold) in the control group, as well as in the

intact (MNL, 1.66-fold) and lesioned (ML, 3.19-fold) sides of the

Table 3. Partial list of METH-induced changes in the levels of gene transcripts on the intact striatum of hemiparkinsonian rats.

(MNL/SNL)

Fold Changes Gene Symbol Description

29.82 Gucy1b2 guanylate cyclase 1, soluble, beta 2

16.61 Kcnf1 potassium voltage-gated channel, subfamily F, member 1

15.06 Stxbp5l_predicted syntaxin binding protein 5-like

14.05 Gtpbp1_predicted GTP binding protein 1

11.12 Lrrc21 leucine rich repeat containing 21

8.11 Stab2 stabilin 2

5.99 Ntf3 neurotrophin 3

5.16 c-fos FBJ murine osteosarcoma viral oncogene homolog

4.68 Egr4 early growth response 4

4.54 Egr2 early growth response 2

4.53 Nr4a3 nuclear receptor subfamily 4, group A, member 3

3.36 Pcsk1 proprotein convertase subtilisin/kexin type 1

2.66 Junb Jun-B oncogene

2.58 Klf10 Kruppel-like factor 10

2.44 Phlda1 pleckstrin homology-like domain, family A, member 1

2.42 Rasl11a RAS-like family 11 member A

2.37 Fcgr3 Fc receptor, IgG, low affinity III

2.23 Egr1 early growth response 1

2.06 Ppap2a phosphatidic acid phosphatase 2a

2.05 Mrgpre MAS-related GPR, member E

1.95 Vgf VGF nerve growth factor inducible

1.93 Rasa2 RAS p21 protein activator 2

1.90 Dusp1 dual specificity phosphatase 1

1.83 Dnajb5_predicted DnaJ (Hsp40) homolog, subfamily B, member 5

1.81 Nts_predicted neurotensin

1.80 Pgap1 GPI deacylase

1.77 Rem2 rad and gem related GTP binding protein 2

1.73 Rgs2 regulator of G-protein signaling 2

1.71 Snf1lk SNF1-like kinase

21.85 Nox4 NADPH oxidase 4

22.21 V1rk1 vomeronasal 1 receptor, k1

22.49 Nxt2_predicted nuclear transport factor 2-like export factor 2

23.14 Sulf1 sulfatase 1

27.84 Chrm5 cholinergic receptor, muscarinic 5

210.88 Syt2 synaptotagmin II

211.72 Rnf43_predicted ring finger protein 43

217.88 Ocil osteoclast inhibitory lectin

218.31 Pak4_predicted p21 (CDKN1A)-activated kinase 4

219.25 Krt10 keratin 10

The data were generated from the MNL vs SNL comparison. The genes are listed in descending order according to fold changes in comparison to the SNL group.
doi:10.1371/journal.pone.0015643.t003
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hemiparkinsonian rats. The METH-induced increases on the

lesioned side (ML) were significantly higher than those observed in

the MNL and MC groups (Figure 4D).

We found no significant changes in Syt10 expression on the side

of the lesion in animals treated with saline (Figure 4E). In addition,

injection of METH caused no changes in striatum of controls

animals (MC group). In contrast, the drug caused significant

increases in Syt10 expression in both the intact (1.68-fold) and DA-

denervated (2.13-fold) sides of 6-OHDA-treated rats in compar-

ison to the SC group and to the SNL side of hemiparkinsonian

rats. Figure 4F shows that 6-OHDA did not cause any significant

changes in the expression of Synj2bp in the saline-treated animals

(SL). However, METH induced small but significant increases

(1.35-fold) in Synj2bp in the DA depleted side (ML), but not on the

Table 4. Partial list of genes showing METH-induced changes in the DA-depleted striatum.

(ML/SNL)

Fold Changes Gene Symbol Description

14.20 Ung_predicted uracil-DNA glycosylase

13.08 Kcnf1 potassium voltage-gated channel, subfamily F, member 1

10.21 Mrgprb5 MAS-related G protein-coupled receptor, member B5

8.82 Stab2 stabilin 2

8.11 Stxbp5l_predicted syntaxin binding protein 5-like

6.70 Nmu neuromedin U

6.09 Eln elastin

4.85 Pcsk1 proprotein convertase subtilisin/kexin type 1

3.90 Nts_predicted neurotensin

3.24 Upb1 ureidopropionase, beta

3.12 Fst follistatin

3.03 c-fos FBJ murine osteosarcoma viral oncogene homolog

2.99 Plk1 polo-like kinase 1 (Drosophila)

2.87 Inhba inhibin beta-A

2.84 Tac2 tachykinin 2

2.79 Ptgs2 prostaglandin-endoperoxide synthase 2

2.29 Phex phosphate regulating gene homologus to endopeptidases on X chrom

2.23 Nr4a3 nuclear receptor subfamily 4, group A, member 3

2.19 Apbb1ip amyloid beta precursor protein-binding, B1 interacting protein

2.18 Cflar CASP8 and FADD-like apoptosis regulator

2.11 Syt10 synaptotagmin X

1.96 Klf10 Kruppel-like factor 10

1.93 Kif22 kinesin family member 22

1.90 Syk spleen tyrosine kinase

1.87 Egr4 early growth response 4

1.83 Mmp9 matrix metallopeptidase 9

1.73 Penk1 proenkephalin 1

1.72 E2f1 E2F transcription factor 1

21.71 Tac1 tachykinin 1

21.73 Top1 topoisomerase (DNA) I

21.80 Il1r2 interleukin 1 receptor, type II

21.97 Opn4 opsin 4 (melanopsin)

22.20 V1rk1 vomeronasal 1 receptor, k1

22.39 Art5 ADP-ribosyltransferase 5

22.44 Aox1 aldehyde oxidase 1

22.63 Dfna5h deafness, autosomal dominant 5 homolog (human)

210.37 Prm1 protamine 1

212.17 Krt10 keratin 10; type I keratin KA10

216.05 Hcst hematopoietic cell signal transducer

The partial list was generated from the ML vs SNL comparison. Inclusion criteria are as described in Table 2. The genes are listed in descending order according to fold
changes in comparison to expression in the SNL group.
doi:10.1371/journal.pone.0015643.t004
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intact side (MNL), of hemiparkinsonian rats. Unexpectedly,

METH injection also caused small increases (1.35-fold) in Synj2bp

in the control animals (MC group).

Discussion

Injections of 6-OHDA in the MFB caused complete loss of DA

and significant decreases in 5-HT content on the lesioned side of

the striatum. The 6-OHDA lesion was also associated with

METH-induced increases in 5-HIAA/5-HT ratios. 6-OHDA-

induced striatal DA depletion resulted in substantial changes in

transcript levels on the lesioned side. We also found that METH

dose that caused changes in mRNA levels on the intact side

elicited alterations in the expression of, mostly, different transcripts

on the DA-depleted side. METH injection also failed to impact the

expression of several genes whose mRNA levels were modulated

by DA depletion in the saline-treated hemiparkinsonian rats.

Effects of unilateral 6-OHDA-induced MFB lesions on
striatal gene expression

We found significant increases in the expression of Nts, Nmu, and

Tac2 and decreases in Tac1 expression in the DA-depleted striata

of rats treated with saline. These results are consistent with

previous reports of lesion-induced increases in Nmu [44], Nts

[45,46] and Tac2 [47] as well as decreases in Tac1 [18,48].

Interestingly, although METH injection did not further influence

the changes observed in Tac1 and Tac2 mRNA levels on the DA-

depleted side, the drug did cause further increases in Nmu

expression on the lesioned side, suggesting that Nmu expression

is regulated by additional neurotransmitters in the absence of DA

innervation. The observations that the small dose of METH

caused significant increases in Nts mRNA levels in the control

animals (MC) that were of lesser magnitude than those induced by

the drug on the lesioned striatum suggest that METH might

enhance Nts gene expression in association with or via increased 5-

Table 5. METH-induced changes in levels of gene transcripts on the lesioned side of hemiparkinsonian rats.

(ML/SL)

Fold Changes Gene Symbol Description

17.49 Olr784 olfactory receptor 784

14.27 Olr597 olfactory receptor 597

13.75 Papd4 PAP associated domain containing 4

11.86 Kirrel2 kin of IRRE like 2 (Drosophila)

11.69 Pdgfd platelet-derived growth factor, D polypeptide

11.08 Espn espin

10.37 V1rc1 vomeronasal V1r-type receptor V1rc1

9.72 Cd34 CD34 antigen

8.64 Olr1616 olfactory receptor 1616

7.14 Olr1332 olfactory receptor 1332

6.80 Psd2 pleckstrin and Sec7 domain containing 2

3.96 Fut9 fucosyltransferase 9

3.46 Wnt9b wingless related MMTV integration site 9B

2.17 Cd44 CD44 antigen

2.02 Ptpns1l3 protein tyrosine phosphatase, non-receptor type substrate 1-like 3

1.97 Mmachc methylmalonic aciduria cblC type, with homocystinuria

1.87 Synj2bp synaptojanin 2 binding protein

1.82 c-fos FBJ murine osteosarcoma viral oncogene homolog

21.88 Daam2 dishevelled associated activator of morphogenesis 2

22.07 Igfbp6 insulin-like growth factor binding protein 6

22.14 Abcg2 ATP-binding cassette, sub-family G (WHITE), member 2

27.70 Olr630 olfactory receptor 630

29.16 Zfp697 zinc finger protein 697

210.50 Msh5 mutS homolog 5 (E. coli)

211.62 Cubn cubilin (intrinsic factor-cobalamin receptor)

212.03 Taar7e trace-amine-associated receptor 7e

212.80 V1rc6 vomeronasal V1r-type receptor V1rc6

214.24 Arl12 ADP-ribosylation factor-like 12

229.82 Hcst hematopoietic cell signal transducer

The data were generated from the ML vs SL comparison. The genes are listed in descending order according to fold changes in comparison to expression in the SL
group.
doi:10.1371/journal.pone.0015643.t005
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HT release, given that METH caused increased 5-HIAA/5-HT

ratios on the 6-OHDA lesioned side. When taken together, our

results suggest that the expression of Tac2, Nmu, and Nts might be

under tonic inhibitory control by DA. The findings that this dose

of METH did not cause any significant increases in Tac2 and Nmu

transcripts in the intact striatum suggest a potential DA-mediated

floor effect under these conditions. The situation appears more

complex for Nts mRNA which showed METH-mediated increases

in both the presence and absence of DA. Increases in Nts mRNA

after METH have been reported previously and are thought to be

related to stimulation of DA D1 receptors [49]. However, the fact

that METH caused greater increases in Nts transcript levels on the

lesioned side suggests that both DA and 5-HT might be involved

in regulating Nts transcript levels after injection of METH since

methylenedioxymethamphetamine (MDMA) which causes 5-HT

release can also increase Nts mRNA levels [50]. Other potential

regulators of gene expression after 6-OHDA lesions might include

changes in glutamatergic functions because hemiparkinsonian rats

exhibit increases in extracellular glutamate [51–54] and changes in

glutamate synapses [52] within the lesioned striatum. It is also

possible to suggest the DA depletion-mediated changes in

transcript levels might be related to alterations in the levels of

Nur77 (Nr4a1) [55], the only transcription factor that showed 2-

fold increases on the DA-denervated side (see Table 6). Therefore,

there might exist a certain correspondence between DA depletion,

Nur77 expression, and up-regulated transcripts of some of the

identified genes in the hemiparkinsonian brain.

It is also of interest to discuss the substantial increases in Nmu

mRNA observed after DA depletion reported in the present study

and in a previous microarray paper [44] because NMU is a

neuropeptide which is found ubiquitously in the body, with very

high levels reported in the gastrointestinal tract and the pituitary

gland [56]. NMU was first isolated from porcine spinal cord [57].

Subsequently, NMU was located in the rodent brain and in other

tissues [58–60]. Using radioimmunoassay, Domin et al. [59]

reported high concentrations of NMU in the nucleus accumbens,

septum, and hypothalamus but moderate levels in the substantia

nigra and the globus pallidus and much lower levels in the

striatum. Fujii et al. [61] used RT-PCR and reported that Nmu

mRNA levels were very high in the pituitary. Other structures

such as the medulla oblongata, hypothalamus and striatum

showed moderate Nmu mRNA levels whereas the cerebral cortex,

hippocampus, and the cerebellum had very low levels. NMU has

also been reported to participate in several physiological functions

including release of corticotrophin releasing hormone, excitation

of nociceptive neurons, and regulation of body weight [62,63].

NMU exerts its physiological effects by stimulation of the NMUR1

[61,64] and NMUR2 [65] receptors. In the brain, the effects of

this peptide might occur through NMUR2 because qPCR analysis

failed to detect much Nmur1 in the brain whereas moderate-to-

high levels of Nmur2 were found in the substantia nigra, the

nucleus accumbens, and the striatum [66]. Because Nmu mRNA is

expressed in the striatum and because its level is substantially

regulated after DA depletion [44] and by METH administration

(present study), it is possible to suggest that this neuropeptide

might play important roles in striatal functions. This idea is

supported by the report that intra-cerebroventricular NMU

injections cause increased motor activity in rats [66].

The DA depletion-induced increases in Fst mRNA levels are

consistent with those reported in a recent microarray study [44].

FST, a monomeric glycoprotein which is co-expressed with the

activins, irreversibly binds with activins and prevents their

interactions with their receptors [67–69]. Interestingly, we also

found increases in Inhba transcript which encodes a subunit of

inhibins and activins; both of which are members of a family of

polypetides that also include transforming growth factor-beta

Table 6. Effects of METH on striatal expression of transcription factors in hemiparkinsonian rats.

Transcription factor Control rats Hemiparkinsonian rats

Saline METH Saline METH

SC MC SNL SL MNL ML

c-fos 1.0060.11 3.2660.35a,b 0.8060.19c 1.0960.17c 2.7460.34a,b 1.7560.24a,d

fos-b 1.0060.13 2.9660.43a,b 0.6660.07c 0.8660.12c 3.5960.59a,b 1.5960.26d

Fra1 1.0060.12 0.9560.05 1.2060.17 0.9760.17 0.8360.07 0.9860.11

Fra2 1.0060.13 4.5661.09a,b 0.7560.09c 0.8460.10c 4.1960.73a,b 1.6860.25

c-jun 1.0060.12 1.3260.14 1.3360.25 1.2960.16 1.2460.17 1.4560.21

Junb 1.0060.19 1.7060.17a,b 0.6560.12c 0.5960.07 1.5860.19a,b 1.0360.15

Jund 1.0060.12 1.0460.13b,c 1.3760.16c 1.4360.16c 2.2460.20a 1.8860.34a

Egr1 1.0060.17 2.0960.25a,b 0.7860.08c 0.7760.11c 2.0860.23a,b 0.8460.12

Egr2 1.0060.18 3.8260.60a,b,c 0.6160.08c 0.6060.09c 6.0561.14a,b 1.0860.20

Egr3 1.0060.14 1.6160.22a,c 0.8860.08c 0.7260.09c 2.1860.32a,b 1.1860.18

Nr4a1 1.0060.20 4.6060.58a,b 0.6860.09c 2.0960.30c,d 5.0160.81a,b 2.2660.31d

Nr4a2 1.0060.27 1.6060.51 1.3260.24 1.5960.32 1.2460.36 1.2860.50

Nr4a3 1.0060.16 5.3060.71a,b 1.1060.19c 1.2660.08c 6.2860.72a,b 2.9660.87a,d

The values represent means 6 SEM (fold changes with respect to the SC group) of 8–10 measurements per group. The groups are as described in the text. Statistical
analyses were done by ANOVA followed by PLSD. Key to statistics:
ap,0.05, in comparison to the SC group;
bp,0.05, in comparison to the ML group;
cp,0.05, in comparison to the MNL group;
dp,0.05 in comparison to the SNL group.
doi:10.1371/journal.pone.0015643.t006
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and bone morphogenic proteins [70,71]. Activins are disulfide-

linked homodimers of INHBA (activin A) and of INHBB (activin

B) and can form the heterodimer, activin AB [72]. Activin A is

up-regulated in the brain consequent to kainate- [73] and

ischemia- [74] induced insults. Because activins are also thought

to have neurotrophic properties [75], the METH-induced

increases in Inhba expression, and by extension of activins (or

inhibins), suggest the possibility that this family of proteins might

Figure 3. Effects of DA depletion and METH on striatal expression of Tac1, Tac2, Pdyn, Nts, Nmu and Fst. The values represent means 6
SEM (fold changes in comparison to the SC group) of 6–10 measurements. Statistical analyses were done by ANOVA followed by PLSD. Key to
statistics: Key to statistics: *p,0.05, in comparison to the SC group; #p,0.05, in comparison to the SNL group; !p,0.05, in comparison to the MC
group; ^p,0.05, in comparison to the SL group; $p,0.05, in comparison to the MNL group.
doi:10.1371/journal.pone.0015643.g003
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Figure 4. Effects of METH on the expression of Inhba, Acvr1, Pdgf-d, Cox-2, Syt and Synj2bp in DA-depleted striatum. The values
represent means 6 SEM (fold changes in comparison to the SC group) of 6–10 measurements. Statistical analyses were done by ANOVA followed by
PLSD. Key to statistics: *p,0.05,in comparison to the SC group; #p,0.05, in comparison to the SNL group; !p,0.05, in comparison to the MC group;
^p,0.05, in comparison to the SL group; $p,0.05, in comparison to the MNL group.
doi:10.1371/journal.pone.0015643.g004
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participate in METH-induced neuroplastic changes in the brain

[37].

Effects of METH injections on the expression of
transcription factors in the rat striatum

Previous studies have also shown that the expression of several

transcription factors is affected by injections of larger doses of METH

in normal animals [29–31,76]. These genes are similar to those

reported by Berke et al. [16] who had used the DA D1 agonist,

SKF38393, to report changes in gene expression mainly on the side of

the 6-OHDA-induced DA depletion. In the present study, we used

the indirect agonist, METH, which is dependent on DA release to

exert its actions on DA receptors [21,22,24–26]. Interestingly, we

found that the METH injection caused increases in c-fos mRNA levels

on both sides of the hemiparkinsonian rats, with more prominent

increases on the intact side (2.7-fold) than on the lesioned (1.75-fold)

side (Table 6). The observations of increased c-fos mRNA levels on the

lesioned side are consistent with previous reports that METH caused

increase in c-Fos protein levels in the DA-depleted striatum [77].

Together, these observations suggest that METH-induced changes in

c-fos mRNA levels might dependent on both DA and non-DA,

presumably 5-HT, systems in the rodent striatum [78,79]. The role of

glutamate in these responses needs to be also considered since

amphetamine-induced changes in striatal responses involves stimu-

lation of NMDA receptors [80].

As reported above, we found that Egr2 and Egr3 transcripts were

more induced by the METH injection on the intact side of the

lesioned rats than in the control animals, whereas those in Egr1

mRNA levels were similar in these two METH-treated groups.

These results suggest that Egr2 and Egr3 transcription might be co-

regulated in the rodent striatum in a manner comparable to

observations in T cells [81]. The differential responses between the

control animals and the hemiparkinsonian rats might be due, in

part, to higher levels of baseline DA released in dialysates collected

on the intact side of unilaterally 6-OHDA-lesioned rats in

comparison to DA levels measured in control animals [24,82].

Thus, the steady-state increases in DA released in the synaptic cleft

of the 6-OHDA-treated animals might cause potentiated tran-

scriptional sensitivity to METH-mediated DA-induced changes in

Egr2 and Egr3 expression in the intact striatum.

Differential effects of METH on gene expression between
the DA-innervated and -depleted striatum of
hemiparkinsonian rats

METH administration also caused substantial changes in the

expression of several genes on the DA- depleted side of

hemiparkinsonian rats (Figure 4). The Pdgf-d transcript is of interest

because the PDGF-D protein belongs to a family of trophic factors

that are involved in the growth and survival of mesenchymal cells

[83,84]. These factors include PDGF-A, PDGF-B, PDGF-C, and

PDGF-D [85]. Although the effects of the PDGF-A and PDGF-B

have been studied on diverse cell types of the nervous system

[86,87], little is known about the functions of PDGF-D in the brain.

A previous study had found early and prolonged increases in

neuronal Pdgf-a and Pdgf-b mRNA levels on the side ipsilateral to a

unilateral 6-OHDA injection in the rat median forebrain bundle

[88]. There were also more gradual increases in these transcripts on

the contralateral side of the lesion [88]. Those findings differ from

our present data because we found increases in Pdgf-d mRNA on

both sides of the METH-treated hemiparkinsonian rats. Our

observations that METH can cause increases in Pdgf-d mRNA levels

on the lesioned side of hemiparkinsonian rats suggest that the

PDGF-D protein might play a role in 5-HT-mediated changes after

striatal DA depletion because of METH-induced increases in 5-HT

turnover on the lesioned side. Because PDGF proteins act as

proliferative factors for glial cells [89,90], it will be of interest to

examine to what extent PDGF-D might participate in METH-

induced reactive astrocytosis or microgliosis [91]. Of related

interest, we found that METH caused increases in the Cox-2

transcript on both sides of the brains in hemiparkinsonian rats.

These data are consistent with reports by other authors who have

previously tabulated METH-induced changes in COX-2 protein

expression [92,93]. These METH-induced increases in COX-2

might be related, in part, to the increases in PDGF-D because Cox-2

mRNA is induced during activation of microglial cells [94] and

because PDGFs are proliferative factors for glial cells [89,90].

Although we have focused the discussion on the known

biochemical effects of METH on neurotransmitter release, it

could also be argued that some of the changes in gene expression

might be secondary to rotational behaviors, independent of drug

effects. This is an important issue because immobilization of

animals after apomorphine injection prevented priming responses

to the direct DA D1 agonist, SKF38393, thus suggesting

movement-mediated induction of these behavioral changes [95].

However, the fact that the pattern of changes in gene expression is

similar in the striatum of the METH-treated control rats and the

nonlesioned striatal side of the METH-treated hemiparkinsonian

rats suggests that the changes in mRNA levels are secondary to

drug effects not to intense turning behaviors since control rats

exhibited no METH-induced rotation. The latter argument is

consistent with the report that DA D1-induced behavioral

responses are dissociated from changes in c-Fos protein expression

[96]. This contention is also supported by the fact that

administration of the indirect DA agonist, amphetamine, whose

actions like those of METH [21–25] are also dependent on DA

release from nerve terminals, did not cause priming to DA D1

receptor stimulation [96]. Nevertheless, the veracity of this claim

will have to await results of time-dependent experiments in which

animals are euthanized during the time of peak METH-induced

rotation which occurred at around 30–45 min after the METH

injection (see Figure 1B). The results of the proposed studies will be

need to be contrasted to the present findings which were obtained

in animals euthanized at 2 hours after the METH injection at a

time when METH-induced rotation had subsided.

Conclusion
In summary, we have reported that a single injection of a

relatively low METH dose that caused substantial changes in gene

expression in the intact striatum also triggered alterations in the

expression of a different set of genes in the striatum that was

completely lacking of DA. Because the 6-OHDA-induced lesion

completely depleted dopamine in the striatum, these METH-

induced changes on the lesioned are probably not related to

disuse-induced supersensitivity of striatal DA receptors because

METH is an indirect agonist that depends on intact DA terminals

for its action on DA receptors. Thus, these observations implicate

DA-independent phenomena in the METH-mediated regulation

of these transcripts and point to the possibility that the absence of

DA might cause plastic changes that render the striatum

differentially responsive to the effects of METH on transcript

levels in intrinsic striatal cells. This idea is consistent with the

results of some studies that have documented differential

physiological responses in the striatum of hemiparkinsonian rats

[97-99]. It remains to be determined to what extent these changes

might serve as substrates for synaptic plasticity observed in the

lesioned striatum. Finally, our observations of METH-mediated

DA-independent alterations in transcript levels suggest that other
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molecular pathways should be taken into consideration when

discussing therapeutic approaches to METH abusers who show

pathological changes, including DA depletion, in their brains.
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