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Abstract: Hepcidin is a liver-derived peptide hormone that is related to iron balance and immunity in
humans. However, its function in Siniperca chuatsi has not been well elucidated. In this study,
we analyzed the expression and function of the S. chuatsi hepcidin (Sc-hep) gene. Sc-hep was
specifically expressed in the liver and appeared to be one of the most highly expressed genes
in the liver. After spleen and kidney necrosis virus (ISKNV) infection and lipopolysaccharide (LPS)
and polyinosinic—polycytidylic acid (Poly I:C) stimulation, the expression of Sc-hep in the liver
increased by approximately 110, 6500, and 225 times, respectively. After ferrous sulfate (FS) injection,
the expression of Sc-hep in the liver increased approximately 520-fold. We found that miR-19c-5p
could inhibit Sc-hep expression. Five CpG dinucleotides distributed in the promoter region showed
no differential methylation between the liver and the stomach, both presenting high methylation
rates. After FS or LPS injection, the expression of three iron balance-related genes (FPN1, TFR1, and
FTN) and five immune-related cytokine genes (IL-1β, IL8, TNF-α, TLR22, and SOCS3) significantly
changed. These results indicate that Sc-hep participates in the regulation of iron balance and plays an
important role in the immune system. Sc-hep increased approximately 52-fold when mandarin fish
were domesticated with artificial diets. Sc-hep might be used as a real-time biomarker of mandarin fish
liver because its expression markedly varies under different physiological conditions.
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1. Introduction

Mandarin fish (Siniperca chuatsi) has economic importance in China; it is a carnivorous freshwater
fish that is fed exclusively live fish in aquaculture [1]. Artificial feed domestication of mandarin
fish in aquaculture is interesting and economically valuable. However, high-density farming causes
various diseases, such as infectious spleen and kidney necrosis virus (ISKNV) infection, which causes
sudden death of mandarin fish. It is one of the most serious pathogenic factors affecting mandarin fish
farming [2].

The liver is mainly involved in nutrition, metabolism, detoxification, and bile secretion for
digestion [3,4]. It is also responsible for immunological reactions; specifically, the mononuclear
phagocyte system of the liver contains many immunologically active cells, acting as a barrier for
antigens carried to the liver via the portal system [5,6]. Therefore, the liver is an organ with multiple
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functions. Hepcidin is mainly produced by the hepatocytes, is secreted into the serum, and is
involved in iron balance and immunity in humans [7]. This peptide was first discovered in 2000 as an
antimicrobial protein expressed by the human liver and was named LEAP-1 [8]. This cysteine-rich
peptide is also found in human urine and is derived from the liver; since it has antibacterial properties,
it was also named hepcidin [9]. Human hepcidin comprises a signal peptide (24 amino acids [aa]),
a prodomain (35 aa), and a mature peptide (25 aa). The mature hepcidin is a tightly folded polypeptide
with 32% β-sheet structure and four disulfide bonds composed of eight cysteine residues that stabilize
the hairpin structure [10]. In fish, hepcidin was first isolated and purified from hybrid striped bass in
2002 [11].

Iron loading can induce hepcidin expression in vivo in mice and humans [12]. Ferroportin 1
(FPN1) [13], transferrin receptor 1 (TFR1) [14], and ferritin (FTN) [15] are three important genes
regulating iron balance; hepcidin regulates iron balance by internalizing and degrading FPN1 on
the basolateral membrane (BLM) of cells to inhibit iron output, thereby controlling extracellular
iron concentration and systemic iron balance [16,17]. Hepcidin expression is also strongly induced
during infection and inflammation, and the regulatory role of hepcidin in the inflammatory response
is supported by many studies on the pathogenesis of infection [18–20]. In mammals, for example,
hepcidin contributes to the anti-inflammatory and pro-inflammatory effects of inflammatory cytokines,
such as suppressor of cytokine signaling 3 (SOCS3) and tumor necrosis factor alpha (TNF-α) [7].
In fish, such as Danio rerio [21], Ctenopharyngodon idellus [22], Sparus aurata [23], Pseudosciaena crocea [24],
Dicentrarchus labrax [25], Trachidermus fasciatus [26], Brachymystax lenok [27], and Salmo trutta [28], the
hepcidin gene has been cloned and proven to participate in the immune response. However, the
mechanism by which hepcidin influences the immune function and iron balance in mandarin fish
remains unclear.

In this study, we analyzed the molecular characteristics and expression pattern of S. chuatsi
hepcidin (Sc-hep) and explored its transcription regulation mechanism. Our results provide valuable
information about the function of hepcidin in fish.

2. Results

2.1. Sequence Analysis of Sc-Hep

Sc-hep mRNA was found to be 707 bp in length and to encode a peptide of 86 aa residues. The 5′-
and 3’-UTR sequences aooeared to be 87 and 359 bp in length, respectively. The poly A signal AATAAA
was found in the 3’-UTR. Sc-hep sequence was submitted to the GenBank database (accession number:
MK111643, Figure 1A).
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Figure 1. Sequence analysis of Sc-hep. (A): cDNA and deduced amino acid sequences of the Sc-hep 
gene. The black underline and the asterisks represent the start and stop codons, respectively. The 
blue, yellow, and green underlines indicate signal peptide, propeptide, and mature peptide, 
respectively. The red squares denote the PolyA signal. (B): Analysis of Sc-hep gene structure. (C): 
Comparison of vertebrate hepcidin gene structure. The boxes, lines, red regions, and purple regions 
represent exons, introns, 5’-UTR, and 3’-UTR, respectively. The blue, yellow, and green regions 
represent signal peptides, propeptides, and mature peptides, respectively. 

The first 24 aa form the signal peptide. Comparison with other vertebrate hepcidin aa sequences 
showed a typical RX(K/R)R motif (R61Q62K63R64) in the propeptide that can be recognized by 
propeptide convertase. The mature peptide comprises amino acids 65 to 86, whose theoretical pI and 
molecular weight are 8.23 and 2.35 kDa, respectively. Eight conserved cysteine residues were found 
in the mature peptide, consistent with the reslts in other vertebrates. The aa sequence of Sc-hep 
appeared to be highly identical with that of Micropterus salmoides (90%), Micropterus dolomieu (90%), 
L. japonicus (88%), and Acanthopagrus schlegelii (84%) (Figure 2). 

Figure 1. Sequence analysis of Sc-hep. (A): cDNA and deduced amino acid sequences of the Sc-hep
gene. The black underline and the asterisks represent the start and stop codons, respectively. The blue,
yellow, and green underlines indicate signal peptide, propeptide, and mature peptide, respectively.
The red squares denote the PolyA signal. (B): Analysis of Sc-hep gene structure. (C): Comparison of
vertebrate hepcidin gene structure. The boxes, lines, red regions, and purple regions represent exons,
introns, 5’-UTR, and 3’-UTR, respectively. The blue, yellow, and green regions represent signal peptides,
propeptides, and mature peptides, respectively.

The Sc-hep gene appeared to be composed of three exons and two introns, dimilar to those of
Lateolabrax japonicus, Morone chrysops, D. rerio, and Homo sapiens. However, the introns of H. sapiens and
D. rerio genes are longer than those of S. chuatsi, L. japonicus, and M. chrysops genes (Figure 1B,C).

The first 24 aa form the signal peptide. Comparison with other vertebrate hepcidin aa sequences
showed a typical RX(K/R)R motif (R61Q62K63R64) in the propeptide that can be recognized by propeptide
convertase. The mature peptide comprises amino acids 65 to 86, whose theoretical pI and molecular
weight are 8.23 and 2.35 kDa, respectively. Eight conserved cysteine residues were found in the mature
peptide, consistent with the reslts in other vertebrates. The aa sequence of Sc-hep appeared to be
highly identical with that of Micropterus salmoides (90%), Micropterus dolomieu (90%), L. japonicus (88%),
and Acanthopagrus schlegelii (84%) (Figure 2).
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Figure 2. Multiple-sequence alignment of the hepcidin protein. The dark blue regions indicate 
completely identical amino acid sequences . The pink, cyan, and yellow regions indicate amino acid 
similarities greater than 75%, 50%, and 33%, respectively. The purple and red squares indicate signal 
peptide and RX(K/R)R motif, respectively. Mazarine represents the conserved eight cysteine residues. 

Phylogenetic analysis showed that Sc-hep exhibited high similarity to its homologs from M. 
salmoides, M. dolomieu, L. japonicus, and A. schlegelii (Figure 3). The genetic relationship between 
species is consistent with their traditional taxonomic status. 
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Figure 2. Multiple-sequence alignment of the hepcidin protein. The dark blue regions indicate
completely identical amino acid sequences. The pink, cyan, and yellow regions indicate amino acid
similarities greater than 75%, 50%, and 33%, respectively. The purple and red squares indicate signal
peptide and RX(K/R)R motif, respectively. Mazarine represents the conserved eight cysteine residues.

Phylogenetic analysis showed that Sc-hep exhibited high similarity to its homologs from
M. salmoides, M. dolomieu, L. japonicus, and A. schlegelii (Figure 3). The genetic relationship between
species is consistent with their traditional taxonomic status.
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expression increased approximately 110-, 6500-, and 225-fold in the liver, respectively (Figures 4B–
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(Figure 4E). Sc-hep expression increased approximately 52-fold when the fish were domesticated with 
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Figure 3. Phylogenetic MP tree based on hepcidin amino acid sequences. A phylogenetic tree based on
the hepcidin amino acid sequence of multiple vertebrates was constructed using the Clustal W program
and the neighbor-joining method of MEGA 7.0. The node value is a percentage of 1000 replicates.

The predicted tertiary protein structure of Sc-hep showed that the signal peptide has an α-helix
structure, the propeptide has a random coil structure, and the mature peptide has a β-sheet structure
(Figure A1A). The whole folding of mature Sc-hep is stabilized by four disulfide bonds (Figure A1B).

2.2. Sc-Hep Expression

Sc-hep was found to be expressed in the liver (Figure 4A). In fish naturally infected with
ISKNV, stimulated with lipopolysaccharide (LPS) and polyinosinic-polycytidylic acid (Poly I:C), Sc-hep
expression increased approximately 110-, 6500-, and 225-fold in the liver, respectively (Figure 4B–D).
After ferrous sulfate (FS) injection, Sc-hep expression increased approximately 520-fold in the liver
(Figure 4E). Sc-hep expression increased approximately 52-fold when the fish were domesticated with
artificial diets (Figure 4F).
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Figure 4. Expression of Sc-hep. (A): Expression of Sc-hep mRNA in seven tissues. (B–E) and (F) show 
the differential expression of the Sc-hep gene in the liver caused by spleen and kidney necrosis virus 
(ISKNV) infection, lipopolysaccharide (LPS) injection, polyinosinic–polycytidylic acid (Poly I:C) 
injection, ferrous sulfate (FS) overload, and artificial feed domestication, respectively. AF: fish fed 
with artificially diet; PBS: phosphate-buffered saline; PF: fish cultured with live prey; NF: normal fish. 

2.3. Relationship Between Sc-Hep and miR-19c-5p 

A total of 18 miRNAs have targeted binding sites in the 3’-UTR of Sc-hep mRNA (Figure 5A). The 
qPCR results showed that expression of miR-196b, miR-196d, miR-23b-5p, miR-92b-5p, and miR-19c-
5p were negatively correlated with the expression of Sc-hep gene in the liver 24 h after FS or LPS 
injection (Figure 5B). The relationship between these five miRNAs and Sc-hep was verified by a dual-
luciferase reporter assay. Only the luciferase activity of wild-type Sc-hep-3’-UTR reporter gene co-
transfected with miR-19c-5p mimics was significantly reduced compared with that of the negative 
control group (NC) (p < 0.05). The inhibitory activity was abolished after the putative binding sites of 
miR-19c-5p and Sc-hep-3’-UTR were mutated (Figure 5C). These results indicated that miR-19c-5p 
could target Sc-hep 3’-UTR and inhibit its expression. 

Figure 4. Expression of Sc-hep. (A): Expression of Sc-hep mRNA in seven tissues. (B–E) and (F)
show the differential expression of the Sc-hep gene in the liver caused by spleen and kidney necrosis
virus (ISKNV) infection, lipopolysaccharide (LPS) injection, polyinosinic–polycytidylic acid (Poly I:C)
injection, ferrous sulfate (FS) overload, and artificial feed domestication, respectively. AF: fish fed with
artificially diet; PBS: phosphate-buffered saline; PF: fish cultured with live prey; NF: normal fish.

2.3. Relationship Between Sc-Hep and miR-19c-5p

A total of 18 miRNAs have targeted binding sites in the 3’-UTR of Sc-hep mRNA (Figure 5A).
The qPCR results showed that expression of miR-196b, miR-196d, miR-23b-5p, miR-92b-5p, and
miR-19c-5p were negatively correlated with the expression of Sc-hep gene in the liver 24 h after FS or
LPS injection (Figure 5B). The relationship between these five miRNAs and Sc-hep was verified by a
dual-luciferase reporter assay. Only the luciferase activity of wild-type Sc-hep-3’-UTR reporter gene
co-transfected with miR-19c-5p mimics was significantly reduced compared with that of the negative
control group (NC) (p < 0.05). The inhibitory activity was abolished after the putative binding sites
of miR-19c-5p and Sc-hep-3’-UTR were mutated (Figure 5C). These results indicated that miR-19c-5p
could target Sc-hep 3’-UTR and inhibit its expression.

2.4. Sc-Hep DNA Methylation Analysis

The 1804 bp promoter region of the Sc-hep gene contains several regulatory elements and binding
motifs for transcription factors. The TATA box is located at −32 upstream of the transcription start
site (TSS), and 17 putative transcription factor bindings sites are distributed in the promoter region
(Table A1). Five CpG dinucleotides exist in the promoter at positions −899, −1154, −1427, −1439, and
−1739, whose methylation levels were found to be 100%, 100%, 100%, 90%, and 70%, respectively. Liver
and stomach tissues did not differ. Transcription factors predicted to bind to Sc-hep were identified
as CCAAT-enhancer-binding protein-beta (CEBPB), hepatocyte nuclear factor 4 gamma (HNF4G),
transcription factor AP-2 alpha (TFAP2A), HNF4A, and HNF3A (Figure 6).
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2.5. Expression of Iron Balance-Related Genes

Eight genes, namely, ferroportin 1(FPN1), transferrin receptor 1 (TFR1), ferritin (FTN1),
interleukin-1 beta (IL-1β), interleukin-8 (IL8), toll-like receptor 22 (TLR22), tumor necrosis factor-alpha
(TNF-α), and suppressor of cytokine signaling 3 (SOCS3), of mandarin fish were also cloned, and
their sequences were submitted to the GenBank database (accession numbers: MK605396, MK605398,
MK605397, AY647430.1, JN180845.1, JN969981.1, MK605399, and KT895250.1, respectively).

The mRNA levels of Sc-hep and iron balance-related genes (FPN1, TFR1, and FTN) were measured
in the liver 24 h post-injection with PBS, FS, or LPS. In the FS injection group, the relative expression
levels of FPN1 and TFR1 significantly decreased 8.7- and 4.5-fold, respectively. Conversely, the relative
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expression level of FTN was upregulated 2-fold. In the LPS injection group, the relative expression
level of FPN1 significantly increased 3.2-fold, whereas the relative expression level of TFR1 significantly
decreased 18.2-fold. The relative expression of FTN was not significantly different (Figure 7).
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2.6. Expression of Immune-Related Genes

The mRNA levels of immune-related genes (IL-1β, IL8, TNF-α, TLR22, and SOCS3) in the liver
were determined 24 h post-injection with PBS, FS, or LPS. In the LPS group, the relative expression
levels of IL-1β, IL8, SOCS3, and TNF-α were significantly upregulated 22.3-, 6.6-, 2.7-, and 2.5-fold,
respectively, whereas the relative expression of TLR22 was not significantly different. In the FS group,
the relative expression levels of these five genes were not significantly different (Figure 8).Int. J. Mol. Sci. 2019, 20, x 9 of 19 
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Figure 8. Differential expression of immune-related genes in the liver after FS or LPS injection.
(A): interleukin-1 beta (IL-1β); (B): interleukin-8 (IL8); (C): suppressor of cytokine signaling 3 (SOCS3);
(D): tumor necrosis factor-alpha (TNF-α); (E): toll-like receptor 22 (TLR22). Statistical analysis results are
expressed as means ± SEM; * represents p < 0.05, indicating significant differences between the groups.

2.7. Analysis of Protein–Protein Interactions and Iron Balance Mechanism

Protein–protein interactions (PPIs) among the eight proteins, namely, hepcidin, FPN1, TFR1, FTN,
IL-1β, IL8, TNF-α, and SOCS3, were analyzed using STRING protein association networks. The results
revealed that hepcidin was closely related to iron balance-related proteins and co-expressed with
FPN1 and TFR1 (Figure A2A). A model map for the mechanism of hepcidin, FPN1, TFR1, and FTN
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regulating iron balance was constructed on the basis of our analysis results. The model map showed
that hepcidin could initially bind to and degrade FPN1 and then control the iron concentration of the
body (Figure A2B).

3. Discussion

Among mammals, humans express one hepcidin gene, namely, HAMP, whereas mice express two
hepcidin genes, namely, HAMP1 and HAMP2 [29], but the murine HAMP1 and HAMP2 are in tandem
and have likely arisen from a duplication in chromosome 7.HAMP1 is the main gene that participates
in iron balance and immune response. The concentration of human HAMP in the serum is influenced
by anemia associated with chronic kidney disease, inflammation, and impaired renal clearance [30].
In fish, HAMP1 is present primarily in the liver and is an ortholog of the mammalian sequences.
However, the HAMP2 sequence is only found in acanthopterygians and exists in several tissues at a
low concentration [31]. In D. labrax, HAMP1 is upregulated in response to iron overload and infection
and downregulated during anemia and hypoxic conditions, whereas HAMP2 does not respond to
either iron overload or anemia but is highly upregulated during infection and hypoxia [32,33]. In the
present study, one type of hepcidin similar to HAMP1 in mandarin fish was cloned. The Sc-hep gene
structure is phylogenetically conserved in vertebrates and has three exons and two introns, but the
Sc-hep gene is smaller than the human hepcidin gene because of the small introns. Such small introns
may reflect the size of the genome or different regulatory mechanisms of gene expression [34].

Similar to that in humans, the hepcidin gene from D. rerio [21], C. idellus [22], S. aurata [23],
P. crocea [24], D. labrax [25], T. fasciatus [26], B. lenok [27], and S. trutta [28] have been cloned and proven
to be mainly expressed in the liver. Hepcidin expression can be regulated by different biological
mechanisms. DNA methylation of the CpG site in the promoter region can inhibit the expression of
many genes and is an important research subject in epigenetics [35]. For example, DNA methylation
can downregulate hepcidin gene expression in carcinoma cells [36]. However, in the present study,
five CpG sites distributed in the promoter region showed a high methylation rate and no differential
methylation level among different tissues, so DNA methylation might not be the main regulatory
pathway to control Sc-hep expression in the liver. miRNAs can inhibit the expression of target genes by
binding to the 3’-UTR of target mRNAs [37]. miR-130a is upregulated during iron deficiency and targets
ALK2 (BMP type I receptor) to suppress hepcidin synthesis [38]. miR-122 targets hemochromatosis
and hemojuvelin genes, whereas the overexpression of these genes activates the mRNA expression of
hepcidin [39]. In the current study, we found for the first time that miR-19c-5p has a direct targeted
inhibitory effect on Sc-hep mRNA.

The promoter region of Sc-hep contains binding sites for some transcription factor, such as USF1,
USF2, STAT3, HNF, CEBPA, CEBPB, and NFKB, which are conserved in human [40,41], mouse [42,43],
zebrafish [44], and white bass [11]. In the current study, binding sites for some other transcription
factors, such as GATA1, GATA3, GATA4, STAT1, and TFAP2A, were also predicted in the Sc-hep
promoter region, suggesting additional control of the expression of Sc-hep by different signaling
pathways. Related in-depth studies may help reveal the specific expression characteristics of Sc-hep in
the liver.

Research on hepcidin function in mammals has mainly focused on regulation iron balance [45] and
participation in immune responses [7]. Hepcidin resists pathogens by destroying their cell membranes
and inhibiting cell wall synthesis, cellular respiration, and entry of nucleic acids or proteins into
cells [27]. Hepcidin inhibits the activity of pathogens by binding to and interfering with the DNA
of pathogens [46]. Hepcidin can also promote the secretion of inflammatory cytokines [7]. In fish,
hepcidin can resist the invasion of pathogenic bacteria and has a broad-spectrum antibacterial activity.
Hepcidin treatment can significantly improve the survival rate of C. idellus infected with Flavobacterium
columnare [22] and T. fasciatus infected with Vibrio anguillarum [26]. P. crocea hepcidin exhibits strong
resistance to many pathogens, such as Aeromonas hydrophila, Vibrio parahaemolyticus, Vibrio alginolyticus,
and Vibrio harvryi [24]. The mRNA expression levels of hepcidin in B. lenok [27] and S. trutta [28]
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significantly increased after they were infected with Aeromonas salmonicida and A. hydrophila. Platichthys
stellatus hepcidin can inhibit the activity of V. parahaemolyticus and Edwardsella tarda [47].

The mechanism by which hepcidin regulates iron balance in humans mainly involves internalizing
and degrading FPN1 to block the output of intracellular iron, thereby controlling extracellular iron
concentration and systemic iron balance [16,17]. FPN1 is a membrane protein that is the only known
iron export protein in vertebrate cells [13]. TF is a protein that exhibits high affinity to iron and
transports iron into body parts where iron is needed and stored. TFR1 is a cell surface receptor of
TF, which is the major protein that regulates iron uptake in most cells, allowing iron to enter the
cells through endocytosis [14]. When iron demands in the body are high, intracellular iron is rapidly
transferred across the BLM by FPN1. When the demand is low, intracellular iron can be stored in FTN,
which consists of an apoprotein shell of 24 light- and heavy-chain subunits, surrounding a core of up
to 4500 iron atoms [15]. Therefore, in our study, when the iron content of the body is excessive, the
expression of Sc-hep in the liver significantly increases, indicating its importance for regulating iron
balance, and the expression of FPN1 in the liver decreases, indicating that the iron output is blocked.
TFR1 expression in the liver also decreases, indicating a decreased cellular iron uptake. FTN expression
increase in the liver indicates that a sufficient amount of iron is stored in FTN in the cells. These results
suggest that Sc-hep and human hepcidin may have similar functional mechanisms.

Iron metabolism and immunity are closely related. When the body is infected or inflamed,
hepcidin levels in the serum are increased and iron concentration is decreased [45]. Hepcidin can
limit the amount of iron required for microbial growth and survival by inhibiting iron release from
macrophages [48].

Domestication affects the expression of hepcidin1 in liver, which is low in fast-growth strain and
high in slow-growth strain. Domesticated rainbow trout may reduce innate immunity and change
iron balance, involving more iron in hemoglobin synthesis [49]. Currently, there is no report on the
relationship between dietary changes of fish and liver hepcidin. In this study, high expression of the
Sc-hep gene through short-term domestication may be related to immune stress of S. chuatsi. IL-1β,
IL8, TNF-α, and TLR22 expression increased after LPS injection. FPN1 expression also increased, and
TFR1 expression decreased in the liver, indicating that pathogens that infected the host stimulated the
differential expression of iron balance-related genes. These results showed that cytokine expression
level and iron balance-related genes were affected when the host was attacked by pathogens. Sc-hep
expression dramatically changed under different physiological conditions, indicating that this gene
might serve as a biomarker of mandarin fish liver.

4. Materials and Methods

4.1. Fish and Sample Preparation

Mandarin fish were obtained from Guangdong tilapia fish farm (Panyu, Guangdong Province,
China). Cirrhina mrigala fry was used as a live prey fish in this study. The fish larvae were cultured in
different cement ponds (5 m × 3 m × 1.5 m) with a continuous water filtration system 2 weeks after
hatching. The first group was continuously cultured with the live prey fish and served as a control
group (PF group). The second group was fed artificially domesticated fish (AF group). In this group,
20 days after hatching, the fish in the AF group were trained to accept dead prey fish. Then, 40 days
after hatching, they were trained to accept artificial diet gradually in 2 weeks.

Twenty healthy and uniformly sized fish from the PF group were selected 90 days after hatching and
divided into four small groups with five fish in each group. Group 1 was injected with PBS (pH 7.4) and
used as the control. Group 2 was injected with FS (Sangon Biotech, Shanghai, China, 30 mg/kg of body
weight [BW], FS heptahydrate dissolved in PBS). Group 3 was injected with LPS (Sigma Chemical Co.,
St. Louis, MO, USA, 0.04 mg/kg of BW, LPS dissolved in PBS;). Group 4 was injected with Poly I:C (Sigma
Chemical, 0.04 mg/kg of BW, Poly I:C dissolved in PBS). Five fish of each group were used for tissue
isolation and RNA extraction 24 h after injection. The fish were euthanized. Tissue samples, including
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liver, intestine, kidney, head kidney, gill, stomach, and brain, were isolated, immersed in RNAlater solution
(Ambion, Austin, TX, USA), and frozen at −80 ◦C for subsequent use. In one pond of the PF group, some
fish appeared to have a disease in accordance with the method recommended by Office International des
Épizooties [50]. The results revealed that they had ISKNV infection. The tissues of five fish were also
isolated as previously described. All animal experimental procedures were performed in accordance
with the Regulations for the Administration of Affairs Concerning Experimental Animals approved and
authorized by the State Council of the People’s Republic of China and the Animal Ethics Committee of
Shanghai Ocean University (2016NO. 4). Fish were sacrificed, and all efforts were exerted to minimize
suffering. Clove oil (30–40 mg/L) was used for anesthesia.

4.2. Total RNA Extraction and cDNA Synthesis

Total RNA was extracted using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) in accordance
with the manufacturer’s instructions. Approximately 1 µg of RNA from liver, intestine, kidney, head
kidney, gill, stomach, and brain was reverse-transcribed into cDNA by using a PrimeScriptTM RT
kit (TaKaRa, Tokyo, Japan). miRNA first-strand cDNA in the liver was synthesized using a tailing
reaction kit (Sangon Biotech). The obtained cDNA products were prepared for subsequent real-time
quantitative PCR (qPCR) experiments.

4.3. DNA Extraction and Identification of Sc-Hep DNA Sequences

DNA was extracted using a TIANamp Marine Animals DNA kit (Tiagen Biotech Co., Ltd, Beijing,
China) in accordance with the manufacturer’s instructions. The full-length mRNA and DNA sequences
of Sc-hep were obtained from the full-length transcriptome (Accession number: SRR9649372) and
genome (Accession number: PRJNA552957) of mandarin fish submitted to the NCBI database. One pair
of primers (Sc-hep-F and Sc-hep-R) was designed to amplify the Sc-hep transcript and to verify the
sequencing data. Two pairs of primers (Sc-hep-DNA-F1 and Sc-hep-DNA-R1; Sc-hep-DNA-F2 and
Sc-hep-DNA-R2) were designed to amplify the Sc-hep gene. Eight genes, namely, FPN1, TFR1, FTN,
IL-1β, IL8, TLR22, TNF-α, and SOCS3 in mandarin fish were also cloned. All the primers are listed in
Table A2.

4.4. Analysis of Sc-Hep Gene And Deduced Protein Sequence

A phylogenetic tree of the selected hepcidins was constructed with the Maximun Parsimony
method by using MEGA7 based on sequence alignment with Clustal W [51]. A predicted secondary
structure of Sc-hep was analyzed online with PredictProtein (https://www.predictprotein.org/).
The presence and location of the signal peptide were predicted using SignalP 4.1 (http://www.
cbs.dtu.dk/services/SignalP/). A predicted tertiary protein structure of Sc-hep was obtained using
Phyre2 (http://www.sbg.bio.ic.ac.uk/phyre2) [52] and visualized using PyMOl. The promoter
region of Sc-hep was analyzed in terms of transcription factor binding sites by using PROMO
(http://alggen.lsi.upc.es/) [53] and JASPAR (http://jaspar.binf.ku.dk/) [54]. The online software STRING
(https://string-db.org/) was used to analyze protein interaction.

4.5. qPCR Analysis of the Sc-Hep Gene

qPCR was conducted using SYBR Green Premix Ex Taq (Takara) in a CFX96 real-time PCR
system (Bio-Rad, Hercules, CA, USA) as in our previous work [55]. β-actin was used as an internal
reference. Gene expression levels were calculated using 2−∆∆CT. In brief, reactions were carried
out in a total volume of 10 µL containing 5 µL of 2× SYBR Premix Ex Taq, 1 µL diluted cDNA, and
4 µL of each primers (1µM). The amplification procedure consisted of an initial denaturation step at
95 ◦C for 2 min, and then 39 cycles at 95 ◦C for 5 s, 55 ◦C for 30 s, 72 ◦C for 30 s, followed by a final
dissociation stage. Three technical replicates were set for each cDNA sample, and four biological
replicates were set for each tissue sample to be tested. The expression levels were calculated by 2−44CT

with 44CT = 4CTSc-hep − 4CTβ-actin.

https://www.predictprotein.org/
http://www.cbs.dtu.dk/services/SignalP/
http://www.cbs.dtu.dk/services/SignalP/
http://www.sbg.bio.ic.ac.uk/phyre2
http://alggen.lsi.upc.es/
http://jaspar.binf.ku.dk/
https://string-db.org/
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4.6. DNA Methylation Analysis of the Sc-Hep Promoter

DNA from the liver and the stomach was processed using an EpiTect® Fast DNA Bisulfite
kit (Qiagen, Duesseldorf, Germany) in accordance with the manufacturer’s protocol and then
subjected to bisulfite sequencing PCR by using the methylated primers Sc-hep-met-F1, Sc-hep-met-R1,
Sc-hep-met-F2, and Sc-hep-met-R2, which were designed with MethPrimer 2.0 (http://www.urogene.
org/methprimer2/), to analyze the CpG sites located in the region between −899 bp and −1739 bp from
the transcription start site (TSS). For bisulfite-treated DNA, the PCR reaction mixture was prepared
using a TaKaRa EpiTaq™ HS kit (TaKaRa) in accordance with the manufacturer’s protocol. Four
individuals were tested in each group, and 10 clones from each individual were selected for sequencing.

4.7. qPCR Analysis of miRNA and Dual-Luciferase Reporter Assay

The putative 3’-untranslated regions (UTRs) of Sc-hep mRNAs were used to predict miRNA target
sites with RNA22 (https://cm.jefferson.edu/rna22/) [56] and miRanda (http://www.microrna.org/) [57].
The networks of these selected pairs were constructed using Cytoscape by defining the target pair
interaction between Sc-hep and its target miRNA [58]. The relative expression levels of miRNA and
Sc-hep were tested 24 h after FS or LPS injection. U6 was used as an internal reference. The miRNA
and U6 downstream primers were universal primers (Universe R).

The 3′-UTR of wild-type (WT) Sc-hep was amplified from liver cDNA and cloned downstream of
the firefly luciferase ORF in the pmirGLO vector (Promega, Madison, WI, USA) by using the XhoI
and SalI restriction sites, obtaining the pmirGLO-3’-UTR-WT vector. For the mutated (MT) construct,
the mutant 3′-UTR sequences of target genes, mutated in 5 bp in the conserved binding site, were
synthesized and inserted into the pmirGLO vector, obtaining the pmirGLO-3’-UTR-MT vector. miRNA
mimics were synthesized by GenePharma (Shanghai, China).

Three groups, namely, pmirGLO + mimics, pmirGLO-3’-UTR-WT + mimics, and pmirGLO-3’-
UTR-MT + mimics, were transfected into HEK293T cells by using FuGENE® HD (Promega) in
accordance with the manufacturer’s instructions. Dual-luciferase assays were carried out 24 h after
transfection by using the Dual-Luciferase Reporter Assay System (Promega) and Synergy2 (Bio-Tek,
Winooski, Vermont, USA) Multi-Mode Microplate Reader in accordance with the manufacturer’s
instructions. Firefly luciferase activity was normalized to Renilla luciferase activity by using Gen5
CHS 2.04 (Bio-Tek). Three replicate experiments were set for each group.

4.8. Statistical Analysis

Statistical analysis was performed in GraphPad Prism 7. Values were expressed as mean ± SEM.
Student’s t-test was conducted to compare the difference in means between two groups; p < 0.05 was
considered to be statistically significant.
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Abbreviations

Sc-hep Siniperca chuatsi hepcidin
ISKNV infectious spleen and kidney necrosis virus
LPS lipopolysaccharide
Poly I:C Polyinosinic–polycytidylic acid
FS ferrous sulfate
PBS phosphate buffered saline
PF cultured with the live prey fish
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AF fed with artificially domesticated fish
BLM basolateral membrane
HAMP hepcidin
FPN1 ferroportin 1
TFR1 transferrin receptor 1
TF transferrin
FTN ferritin
IL-1β interleukin-1 beta
IL8 interleukin-8
SOCS3 suppressor of cytokine signaling 3
TNF-α tumor necrosis factor-alpha
TLR22 toll-like receptor 22
PPI protein–protein interaction
C/EBP CCAAT-enhancer-binding protein
HNF Hepatocyte nuclear factor
NFKB1 Nuclear factor NF-kappa-B p105 subunit
USF Upstream stimulatory factor
GATA GATA-binding factor
STAT Signal transducer and activator of transcription
TFAP2A Transcription factor AP-2 alpha
NC Negative control
WT Wild-type
MT Mutated-type
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balance mechanism. Transferrin (TF) carries Fe3+ and binds to TFR1. In this process, Fe3+ is changed to 
Fe2+ by other accessory proteins, and Fe2+ is transported into cells by TFR1. FTN can store excess Fe2+ 
in the cells. Fe2+ is exported outside of the cells via FPN1. In this process, Fe2+ is changed to Fe3+ by 
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Figure A2. Analysis of iron balance and immune-related genes. (A): Protein–protein interaction
analysis. The interactions among hepcidin (HAMP), FPN1, TFR1, FTN, IL-1β, IL8, TNF-α, and SOCS3
proteins were analyzed using a human model. The spheres and lines represent proteins and interactions.
The light blue, pink, olive, and black lines represent the analysis from the database, experimental data,
text mining data, and co-expression data, respectively. (B): Model diagram of iron balance mechanism.
Transferrin (TF) carries Fe3+ and binds to TFR1. In this process, Fe3+ is changed to Fe2+ by other
accessory proteins, and Fe2+ is transported into cells by TFR1. FTN can store excess Fe2+ in the cells.
Fe2+ is exported outside of the cells via FPN1. In this process, Fe2+ is changed to Fe3+ by other accessory
proteins. Fe3+ is then carried by TF and transported by blood to the site where it is stored or needed.
HAMP binds to FPN1, internalizes, and degrades FPN1 to block iron output.

Table A1. Transcription factor binding site prediction.

Transcription Factors Putative Binding Site

TATA box −32
CEBPA −1738, −1619, −1500, −1102, −1024, −896, −790, −607, −136, −107
CEBPB −1738, −1042, −896, −607, −136, −107
HNF1A −1793, −1605, −201
HNF1B −199, −330
HNF3A −911
HNF3B −1753, −1247, −597
HNF4A −1158
HNF4G −741, −1442
NFKB1 −164, −140
USF1 −1661, −1533, −1226, −783, −569
USF2 −1699, −904, −783, −655

GATA1 −1737, −1364, −986, −945, −321
GATA3 −943
GATA4 −324
STAT1 −288
STAT3

TFAP2A
−1548, −288
−1434

CEBP: CCAAT-enhancer-binding protein; HNF: Hepatocyte nuclear factor; NFKB1: Nuclear factor NF-kappa-B
p105 subunit; USF: Upstream stimulatory factor; GATA: GATA-binding factor; STAT: Signal transducer and activator
of transcription; TFAP2A: Transcription factor AP-2 alpha.
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Table A2. Primers used in this study.

GenBank ID Gene Name Primer Purpose

MK111643

Sc-hep-F AAGGAGCTGACAAGAGTCAT Clone the cDNA
sequence of Sc-hepSc-hep-R GCTGCAACATTTTCTAATAAG

Sc-hep-qPCR-F TGCTCACCTTTATTTGCCTTCA

Real-time quantitative
PCR

Sc-hep-qPCR-R CGCTTCTGTCTGTTGTTATACG

MK605396
Sc-FPN1-qPCR-F CAGCCTCACCAGCGTTCTT

Sc-FPN1-qPCR-R CTCCGACTCTATCACATTCTCCT

MK605397
Sc-FTN-qPCR-F TCCTACACCTTCCTTGCTCTG

Sc-FTN-qPCR-R GACCACCTCTCCAATCCTCTC

MK605398
Sc-TFR1-qPCR-F GAATGCCTCTGCTGTGTTGAT

Sc-TFR1-qPCR-R GCCTGTCGTGATGGTCTGA

AY647430.1
Sc-IL-1β-qPCR-F TTCAGTTCAGGAGGACGGATG

Sc-IL-1β-qPCR-R TGTGGCAAGACAGGTAGAGATT

JN180845.1 Sc-IL8-qPCR-F GAAGAGCAGCAGAGTTATCATCA

Sc-IL8-qPCR-R ATCTCAGTCTCCTCGCAGTG

JN969981.1 Sc-TLR22-qPCR-F CCTACGCCTACTACTTCTTCTTG

Sc-TLR22-qPCR-R GGTCTTCCTGCTTCCATAGATG

MK605399
Sc-TNF-α-qPCR-F GCATACACAACCGCACTA

Sc-TNF-α-qPCR-R CTTCCATTCCAGCACCAA

KT895250.1
Sc-SOCS3-qPCR-F TCCTCACCACACTCCACAAG

Sc-SOCS3-qPCR-F CACATTGGATACGCAGGTTCTT

FJ436084 β-actin-qPCR-F GTGCGTGACATCAAGGAGAAG

β-actin-qPCR-R GGAAGGAAGGCTGGAAGAGG

Sc-hep-met-F1 TGATGTGATTATATGTTAAGTATTTGTAAATATTA

MethylationSc-hep-met-R1 ACTAATATATTAATACTATATATTTATACAAAC

Sc-hep-met-F2 ATTGTAAATGTTTTTTTAGATGTTGTTTTAATAG

Sc-hep-met-R2 ATCATCAAACTCAAAAATCTAAATACAAATAATAC

Sc-hep-DNA-F1 GGCAGGCTGTAGTTAATGTGT
Clone the DNA sequence

of Sc-hep
Sc-hep-DNA-R1 AGTTCTCCTGACTGATGGTTGA

Sc-hep-DNA-F2 CACACTCAACCATCAGTCAGG

Sc-hep-DNA-R2 CAGTTTCCCACTACAAATGTTATGC

Sc-hep-3’-UTR-WT-F CTCGAGCAGTGTTGCAGTTGCAGTGGCCGT

qPCR analysis of miRNA
and Dual-Luciferase

reporter assay

Sc-hep-3’-UTR-WT-R GTCGACAATTTTGCAGGAAACATTAAATGAAC

Sc-hep-3’-UTR-MT-F CTCGAGGGAGAGCTCATCATCATCGTCACTGAA
GTGCAAGAGCTGGA

Sc-hep-3’-UTR-MT-R GTCGACAACCGTACACGAAACATTAAATGAATCAC
TTCCTGTGTGC

miR-196b-F TAGGTAGTTTCAAGTTGTTGGG

miR-196d-F TAGGTAGTTTTATGTTGTTGGG

miR-23b-5p-F GGGTTCCTGGCGTGCTGATTT

miR-92b-5p-F AGGTGTGGGATGTTGTGCAGTGTT

miR-19c-5p-F AGTTTTGCAGGATTGCATCCGG

U6-F TTGGAACGATACAGAGAAGATTAGCA

Universe-R GCTGTCAACGATACGCTCG
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