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The mammalian space circuit is known to contain several functionally

specialized cell types, such as place cells in the hippocampus and grid

cells, head-direction cells and border cells in the medial entorhinal cortex

(MEC). The interaction between the entorhinal and hippocampal spatial

representations is poorly understood, however. We have developed an opto-

genetic strategy to identify functionally defined cell types in the MEC that

project directly to the hippocampus. By expressing channelrhodopsin-2

(ChR2) selectively in the hippocampus-projecting subset of entorhinal

projection neurons, we were able to use light-evoked discharge as an instru-

ment to determine whether specific entorhinal cell groups—such as grid

cells, border cells and head-direction cells—have direct hippocampal pro-

jections. Photoinduced firing was observed at fixed minimal latencies in all

functional cell categories, with grid cells as the most abundant hippocampus-

projecting spatial cell type. We discuss how photoexcitation experiments

can be used to distinguish the subset of hippocampus-projecting entorhinal

neurons from neurons that are activated indirectly through the network.

The functional breadth of entorhinal input implied by this analysis opens

up the potential for rich dynamic interactions between place cells in the

hippocampus and different functional cell types in the entorhinal cortex (EC).
1. Introduction
The hippocampal and parahippocampal cortices contain several cell types with

distinct spatial firing patterns. The first cell type to be discovered was the place

cell, which in small environments typically fires repeatedly and selectively in a

single region of the available space, the cell’s place field [1,2]. In larger environ-

ments, hippocampal cells can have more than one place field, without any

striking spatial arrangement of the firing fields [3,4]. The fact that the majority

of hippocampal principal cells are place cells [5–9] suggested early on that

location is a major component of the functional output of the hippocampus [2],

but it remained unclear how the space signal was generated. It was clear that

the pattern was not merely extracted from sensory inputs, but the mechanism

that generated the space signal, and its location in the brain, were not apparent.

Following the discovery of place cells, accumulating evidence raised the

possibility that the hippocampal place signal was not generated within the hip-

pocampus itself [10,11]. An obvious place to look for an external origin was the

entorhinal cortex (EC). The EC provides nearly all of the cortical input to the

hippocampus, with the exception of weak components from the pre- and para-

subiculum to the dentate gyrus [12,13], and from postrhinal cortex to CA1 [14],

and a more substantial input from perirhinal cortex to CA1 [15]. The majority of

the entorhinal projections to the dorsal hippocampus, where place cells have

easily identifiable firing fields in small standard-sized recording environments,

come from the dorsal part of the medial entorhinal cortex (MEC), near the post-

rhinal and perirhinal cortices [16,17]. When activity was recorded from this part
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Figure 1. (a) Grid cell, (b) border cell, (c) head-direction cell and (d) non-spatial cell. For the grid cell, the border cell and the non-spatial cell, the animal’s
trajectory is shown in grey with spike locations superimposed in black. For the head-direction cell, firing rate is shown as a function of head-direction.
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of the EC for the first time in the early 2000s, it turned out

that a large fraction of the principal neurons in the MEC

had discrete firing fields, reminiscent of the place fields of

hippocampal neurons [18]. Subsequent work showed that

there are several types of cells with spatial firing correlates

in this area. The predominant cell type is the grid cell

(figure 1a), whose multiple firing fields form a periodic hex-

agonal lattice covering the entire space available to the animal

[19]. The network of grid cells is organized in a modular

manner, with cells clustering into semi-topographically

arranged subgroups with similar grid spacing and grid orien-

tation [20]. Grid cells co-localize with head-direction cells,

which fire only when the animal faces a certain direction

[21–23], and border cells, which fire specifically when the

animal is near one or several borders of the local environment

[24,25] (figure 1b). It is likely that place cells are created by

output from one or several of these entorhinal cell types,

although it has not been determined which cell types contrib-

ute to this process, given that only a subset of the entorhinal

projection neurons target the hippocampus [26].

The conversion from spatial signals in the MEC to place

fields in the hippocampus, only one synapse downstream,

is probably one of the most accessible examples of a neural-

code transformation in the higher mammalian cortices. In

this paper, we review recent work from our laboratory in

which we have tried to identify the spatial cell types of the

MEC that project directly to the hippocampus and that may

provide the spatial input from which place fields are gener-

ated [27]. With the origin of place fields as a guiding

question, we demonstrate how optogenetics can be used to

distinguish cells with direct hippocampal projections from

cells that target hippocampal neurons only indirectly via

other cells. The implications of findings from recent exper-

iments using these methods will be discussed and related

to models of place-cell formation.
2. Functional identity of hippocampus-projecting
medial entorhinal cortex cells

A classical method for determining whether a recorded neuron

projects to a given brain location involves antidromic stimu-

lation. Axons in the putative projection area are stimulated at

the same time as spikes are recorded from the putative

parent cell. If the stimulation is followed by short-latency dis-

charge in the recorded cell, and if discharge can be blocked

by appropriately timed oppositely directed spikes from the

soma, then it is safe to conclude that the cell sends axons to

the target area. However, a major disadvantage of this strategy

is that only axons near the tip of the electrode are activated.

In the hippocampus, for example, a single electrode can recruit
only a small fraction of the entorhinal projection neurons,

even when the electrode is placed in the centre of the fibre

bundle and stimulation intensities are maximized [28].

Negative results with antidromic stimulation are therefore

hard to interpret as the recorded cell may send axons to

the target region (the hippocampus) that bypass the tip of the

stimulation electrode.

In response to this challenge, we have recently developed a

method for functional tagging of neurons with axonal projec-

tions to a region of interest in which we bypass the limited

spatial range of conventional stimulation electrodes [27]. A

viral vector was used to induce expression of a light-responsive

transgene in the subset of MEC neurons that project directly

to the hippocampus. The viral vector was a recombinant

adeno-associated virus (rAAV) carrying genes for the light-

sensitive cation channel channelrhodopsin-2 (ChR2) as well

as a marker protein such as EYFP or FLAG. The virus was

infused into the dorsal hippocampus, where it transduced

local cells as well as axons from neurons with cell bodies in

other brain regions, such as the EC. Retrograde transport of

virus from axons to soma was maximized by cross-packaging

rAAV2 with the viral capsid of AAV1 to generate chimeric

rAAV2/1. Membrane trafficking was improved by a trafficking

signal, and an endoplasmic reticulum exporting motif derived

from the inward-rectifier potassium ion channel Kir2.1 [29].

Rats injected with EYFP-carrying rAAV2/1 in the hippocampus

showed strong EYFP expression not only at the injection site

but also in the layers II and III of the EC (figure 2). Only mini-

mal staining was observed in the deep layers of EC, as expected

in this area if only neurons with direct projections to the

hippocampal injection site were infected.

Expression of ChR2 in the subset of hippocampus-projecting

MEC neurons allowed us to identify hippocampus-projecting

entorhinal neurons as those functionally characterized cells

that responded instantaneously to short locally delivered light

pulses. Because the conductance of native ChR2 channels is

small, we used the photocurrent-enhanced gain-of-function

mutant H134R [30], whose expression led to reliable photoin-

duced discharge in a large number of neurons below the light

source, in the superficial layers of the dorsal tip of the MEC

[27]. Among the light-responsive neurons, approximately 50%

had spatial or directional firing correlates (figure 3). Grid cells

were the most abundant functional cell type, accounting for

approximately one-quarter of the responsive cell population

(27%). The sample of light-activated neurons also included a

smaller number of border cells (7%) and head-direction cells

(12%). The data suggest that the hippocampus receives a broad

spectrum of functional inputs from the MEC. These inputs

include grid cells and border cells but also a large heterogeneous

group of cells with no detectable stable spatial firing correlates

(figure 1), whose contributions to hippocampal firing are less
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Figure 2. Sagittal sections showing viral transduction of hippocampus-
projecting neurons in MEC. EYFP-carrying rAAV was injected in the dorsal
hippocampus. (a) EYFP expression at low magnification (green), sagittal sec-
tion; (b) section co-stained for NeuN (red), low magnification; (c) high
magnification of the framed area in (b). The framed area shows the dorsal
part of MEC. Note co-expression of EYFP and NeuN in layer II – III but not
layer V – VI cells of the MEC. Modified with permission from [27].
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well understood. The method does not, in principle, distinguish

between neurons that project to the hippocampus and those that

pass through or over the structure, for example via the alveus,

although most bypassing axons are likely to have collaterals

with terminals in the hippocampus itself.

The breadth of responsive cell types does not necessa-

rily imply that projections from all cell types are direct. Light

pulses may evoke action potentials either because the cell

expresses ChR2 or because ChR2 is expressed in cells with

synaptic connections to the recorded cell. It is possible, how-

ever, to distinguish direct and indirect firing on the basis of

the cell’s latency of discharge in response to the light pulse.

Direct activation would be expected to discharge cells at mini-

mal latencies and with minimal variation. Indirect or synaptic

activation should be slower, and the variation in spike latencies

larger, considering that there may be more than one pathway

from the ChR2-expressing cell to the recorded cell [31–33].

The data show that the distribution of MEC firing laten-

cies in animals infected with ChR2-carrying rAAV in the
hippocampus is sharp, unimodal and symmetric, with a

mean of 9–10 ms in each functional cell type and a standard

deviation across the entire cell sample of 1–2 ms (figure 3). If

a major subset of the cells had been discharged indirectly,

then a right-skewed distribution with scattered long-latency

values would be expected. The short and symmetric firing

latencies of the light-responsive neurons suggest instead that

the discharging cells were activated directly. This interpret-

ation is further supported by the fact that spike latencies

were substantially longer (between 16 and 30 ms) when MEC

cells were activated by photostimulation of presynaptic

fibres, in the alveus of the hippocampus, and it is consistent

with the finding that backfiring of MEC neurons from the

angular bundle or perforant path led to fast discharge, at

latencies just slightly longer than those obtained with light

pulses in the MEC itself [27]. Synaptically induced activity

was occasionally seen also after stimulation in the MEC,

expressed either as secondary spikes at longer latencies

(fig. S9C and S14 in [27]) or as longer firing latencies for the

primary spike (bottom rows in each panel of figure 3 of this

paper, as well as in fig. 6D of [27]). However, the incidence of

such extended latencies was low, in agreement with the near

absence of excitatory connections between stellate cells in the

MEC [31–33]. Taken together, these observations imply that, fol-

lowing light pulses in MEC, discharge was normally caused by

ChR2 photocurrents in the recorded cell itself.

While the above spike latencies were remarkably constant

across cells and animals (figure 3), the range of reported spike

latencies varies across studies. In anaesthetized mice, local

light flashes led to stereotyped discharges at a mean latency

of 9.9 ms in layer V pyramidal cells of the primary motor

cortex [34]. This is almost identical to the average latency in

our entorhinal study. Photostimulation in ChR2-expressing

cultured hippocampal neurons discharged cells slightly

faster, at an average latency of 8.0 ms [30]. Similar stimulation

of pyramidal neurons in cortical slices led to light-evoked

firing at latencies ranging from 3 to 11 ms, with low jitter

within cells and large differences between cells [35–37].

The latter datasets were obtained in the presence of glutamater-

gic blockers, suggesting (i) that the cells were discharged by

ChR2 conductances in the recorded cells themselves and

(ii) that certain expression patterns can, indeed, lead to long

intracellular activation latencies under certain test conditions.

The fastest responses have been reported in the somatosensory

cortex after expression of ChR2 in fast-spiking interneurons

[38], which generally have a lower input resistance, lower

capacitance and different dendritic cable properties. The vari-

ation in firing latencies across studies may also have a

number other causes, including differences in preparation

(in vivo versus in vitro slices or cultured neurons), differences

in transgene delivery (in utero electroporation versus trans-

fected plasmid, viral transduction or transgenic animals),

differences in expression intensity and time and differences

in the intensity of the stimulation.

It may appear surprising that it took almost 10 ms to dis-

charge a ChR2-expressing principal cell in the in vivo studies

[27,34]. To test the extent to which late firing reflects low

conductances, we applied steps of intracellular current in

whole-cell recordings from stellate cells in horizontal MEC

slices (figure 4). Current steps between 50 and 400 pA were

compared with a command current pulse used specifically

to generate precisely timed spike train in vitro (1200 pA).

The two smallest steps did not reliably elicit spikes. Currents
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Figure 3. Photoinduced spike activity in multiple functional cell types. (a) Spike rasters for the 100 ms following photostimulation above the recording site in the
MEC for (i) one grid cell, (ii) one border cell, (iii) one head-direction cell and (iv) one non-spatial cell. Light was on from 0 to 3.5 ms. Dots indicate spike times. Note
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above 200 pA induced firing, with latencies decreasing from

more than 30 ms at the lowest intensity to 10 ms at 400 pA

and less than 5 ms at 1200 pA. Spike latencies were shorter
in recordings from fast-spiking interneurons (3.9+0.3 ms at

400 pA, 10 cells from P21 to P28, mean+ s.e.m.). Standard

deviations were extremely small, in accordance with the mini-

mal variation observed in response to light flashes in vivo.

Taken together, the intracellular current injections suggest that

minimal latencies of 9–10 ms are in the range of values to be

expected for principal cells in the MEC with low-to-moderate

light-evoked conductances. They also show that latencies

change only moderately within a rather large range of supra-

threshold current amplitudes in the 400 pA region. A perhaps

even more striking lack of sensitivity to stimulation intensities

was observed in MEC cells in vivo (figure 5). In these cells,

spike latencies exhibited little variation at power densities

above 2.5 mW mm22, which is well below the 10 mW mm22

setting used for identification of hippocampus-projecting cell

types. Because of the rather minimal change in spike latency

with increasing power density, it is likely that the latencies

were also not substantially affected by the distance between

the optic fibre and the recorded cells. The reasons for the relative

constancy of firing latencies in the in vivo preparation remain to

be determined, but the in vitro study suggests that variations in

current amplitude matter less when light intensities are strong,

as they were in the in vivo study. With sufficiently strong inten-

sities, the large amounts of positive charge that enter the cell

may override natural variations in the membrane potential,

resulting in relatively constant firing latencies.
3. Implications for place cell formation
A role for grid cells in the formation of place cells was

suggested as soon as grid cells were identified as a major

cell type of the MEC. It was first proposed that localized

firing is generated in the hippocampus by linear summation

of inputs from grid cells with different grid spacing and grid

orientation but overlapping grid phases [39–43]. An alterna-

tive possibility was that place cells are generated from more

random combinations of inputs from grid cells, in the pres-

ence of Hebbian plasticity [44–46] or with the help of local

feedback mechanisms [47,48]. The presence of a strong

input from grid cells in the optogenetics experiment [27] is

consistent with a role for these cells in the formation of

place cells. However, the existence of additional inputs,

from cells with other spatial correlates or no spatial correlate

at all, introduces a need for local mechanisms for the hippo-

campus to be able to extract or enhance inputs from grid cells

and maybe specific subpopulations of grid cells [49].

The nature of the intrahippocampal mechanisms converting

grid signals and other signals from the EC to place signals in the

hippocampus remains as one of the key questions to be resolved

in the years to come. At this time, we do not know whether

different place cells receive different types of input from the

EC, making some of them more grid-cell-dependent and

others more border-cell-dependent, or whether, alternatively,

all place cells receive more or less the same mix of inputs, with

differentiation taking place subsequently. Such subsequent

mechanisms may involve local excitatory–inhibitory circuits,

or they may be predominantly intracellular, as they appear to

be in some other cortical cell types. In orientation-selective neur-

ons of the visual cortex, for example, a wide range of orientation

preferences at the synaptic input level has been reported to be

converted into a highly specific output signal [50], and in the

auditory cortex, synapses tuned to different tone frequencies
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are highly interspersed on the same dendrite, at the same time as

the output of the cell is tuned to a single frequency range [51].

The mechanisms for converting functionally distributed synap-

tic inputs to a selective visual or auditory output signal remain

to be determined but whatever the mechanism is, it may share

critical elements with intradendritic mechanisms for place-cell

formation, if such mechanisms exist.

A key finding of the optogenetics experiment is the identi-

fication of border cells with direct inputs to the hippocampus.

Although the number of border cells is substantially lower

than the number of grid cells, these cells may provide infor-

mation that by summation, and independently of grid cells,

results in a localized signal in hippocampal target cells. The

presence of a dual spatial input, from grid cells and border

cells, is in agreement with early work suggesting that place

cells get path integration and landmark-related inputs from

distinct sources [52]. It is also interesting to see that a contri-

bution for cortical cells with border-related firing properties

was suggested already before the discovery of any functional

cell types in the MEC [53]. Specifically, it was proposed that

place cells originate from ‘boundary-vector cells’, cells that

fire whenever the animal is at a particular distance and direc-

tion from an environmental boundary. Summation of inputs

from cells with different boundary-vector relations was

shown in a computational model to result in place cells that

responded in predictable ways to changes in geometric shape

[53–55]. The presence of entorhinal border cells with projec-

tions to the hippocampus revitalizes these ideas, although it

should be noted that whereas the original model generated

place fields from cells with firing fields at a continuous range

of distances from the walls, nearly all cells in the experimental

data from MEC have firing fields that directly touch the periph-

eral boundaries [25,27]. Whether place cells can be formed only

from this subset of the population, and whether the properties
of such place cells match those of observed cells, remains to

be determined.

The optogenetics data suggest that place fields can be

generated in more than one way. In doing so, they may

account for the observation that in young rats, place cells

appear at a stage of development when the inhibitory net-

work of MEC is not fully matured and grid cells lack the

strict periodicity of adult cells [32,56,57]. The data may also

account for the finding that place cells can be observed

after interventions that disrupt grid-cell firing in the MEC,

such as inactivation of the medial septum [58]. In both

cases, spatial firing might be maintained by geometrical

inputs from border cells. The findings would be consistent

with a dual set of spatial inputs to the hippocampus [52],

where grid cells provide the place cells with a spatial

metric, whereas border cells provide them with information

about geometrical relationships [59,60]. If this is true, then

the metric properties of place cells [61,62] should be impaired

under conditions with low spatial periodicity in entorhinal

grid cells. Whether grid cells and border cells contact the

same place cells or different subsets, and whether place

cells that receive inputs from multiple sources can dynami-

cally amplify inputs of one type or the other, is not known.

Addressing the detailed mechanisms of place field formation

would require genetic tagging at the level of individual

cells—a technology that is on the horizon, after the emer-

gence of single-cell monosynaptic tracing technologies [63]

as well as methods for intracellular recording and stimulation

in MEC cells of behaving animals [64,65].
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