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Chromatin architectures and epigenetic fingerprint regulation are fundamental for 
genetically determined biological processes. Chemical modifications of the chromatin 
template sensitize the genome to intracellular metabolism changes to set up diverse 
functional adaptive states. Accumulated evidence suggests that the action of epigenetic 
modifiers is sensitive to changes in dietary components and cellular metabolism inter-
mediates, linking nutrition and energy metabolism to gene expression plasticity. Histone 
posttranslational modifications create a code that acts as a metabolic sensor, translat-
ing changes in metabolism into stable gene expression patterns. These observations 
support the notion that epigenetic reprograming-linked energy input is connected to the 
etiology of metabolic diseases and cancer. In the present review, we introduce the role 
of epigenetic cofactors and their relation with nutrient intake and we question the links 
between epigenetic regulation and the development of metabolic diseases.
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iNTRODUCTiON

During their lifetime, cells receive several external signals, including hormones, growth factors, 
cytokines and other extracellular factors. Cells translate those signals to make crucial adaptive 
decisions, such as quiescence, proliferation, or differentiation. Recent works highlighted a funda-
mental role of environmental cues and nutrient availability in cell metabolism and adaptation. This 
flow of metabolites, through complex but well characterized metabolic networks, constitutes a fuel 
for diverse epigenetic cofactors thus relaying nutrition and diet changes into cytoplasmic signaling 
and chromatin remodeling.

Through their ability to sense internal and external cues, several transcriptional cofactors allow 
a cell to rapidly adapt by introducing reversible protein posttranslational modifications (PTMs). 
Hundreds of PTMs have been identified (1–3). However, only few have been directly linked to 
metabolic fluxes. PTMs include histone and non-histone modifications and represent a key physi-
ological signal for cell adaptation (4–12). For the purposes of this review, we will only focus on 
PTMs linking changes in metabolism to histone modification.

Histone modifications—all with DNA methylation, RNA interference, and non-coding RNA—
encompassed by the term epigenetics represent diverted ways by which cells control the expression 
of genes without any alteration in the underlying genetic material. Since each cell has the same 
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genetic code, epigenetic modifications allow a fine regulation 
of the gene expression and determine cell identities. Thereby, 
various chromatin modification patterns, such as acetylation, 
methylation, phosphorylation, O-linked glycosylation, ubiquit-
ination, and SUMOylation, result in a particular configuration 
that determines chromatin accessibility to the transcriptional 
machinery. For example, acetylation of lysine nine residues of 
histone H3 (H3K9), H3K14, and/or (mono-, di-, or tri) meth-
ylation of H3K4, H3K36 and H3K79 are often associated with 
transcriptionally active chromatin. By contrast, methylation of 
H3K9, H3K27, and H4K20 are markers of transcriptional silenc-
ing (13–15).

The generated metabolites remain the same for a given cell. 
Yet, the tissue function and nutriment availability will determine 
the metabolite requirements. Moreover, metabolic challenges, 
such as caloric or oxygen restriction or even a high-fat diet 
(16–19), will drive cell fate decisions. Consistent with this, 
dramatic epigenetic changes have been linked to metabolic 
disorders, such as obesity, insulin resistance, type-2 diabetes, 
and cancer (20–25). In this perspective, this review will focus 
on cofactor families linking nutritional input and metabolism to 
epigenetic pattern modifications.

ACeTYL-CoA AND HiSTONe/LYSiNe 
ACeTYLTRANSFeRASe eNZYMeS

Lysine/Histone acetyltransferases (KAT/HAT) catalyze the 
transfer of an acetyl group from acetyl-CoA to ε-amino group 
of a histone lysine residue (26), which allows a transcriptional 
access to DNA by either neutralizing the positive histone 
charge, or serving as a binding site for chromatin remolding 
complexes. HAT can be divided on the basis of their subcellular 
localization or of the structural and functional similarity of 
their catalytic domains (27).

Acetyl-CoA availability is a major input for histone acetyla-
tion. A rise in acetyl-CoA level is sufficient to drive a yeast growth 
program by promoting histone acetylation at specific growth 
genes through the General control of amino acid synthesis pro-
tein 5-like 2 (GCN5, KAT2A) (28). In mammalian cells, histone 
acetylation with acetyl-CoA generated from glucose metabolism 
controls the early differentiation of embryonic stem cells (ESCs) 
(29). The limiting ATP citrate lyase enzyme that controls the 
conversion of citrate into oxaloacetate and acetyl-CoA was 
shown to be important for histone acetylation in response to 
glucose and growth factor stimulation (30).

As demonstrated for yeast, the mammalian GCN5 activity 
is required for histone acetylation during cell differentiation 
(30, 31). Tracing experiments using 13C-carbon combined with 
acetyl-proteomics showed that up to 90% of histone acetylations 
on certain histone lysines are derived from fatty acid even in glu-
cose excess. Acetyl-CoA generated from fatty acid β-oxidation 
seems to be important for the control of a gene expression 
program involved in lipid metabolism (32). Cytosolic acetate is 
another acetyl-CoA source that leads to an increase in H3K9, 
H3K27, and H3K56 histone acetylations of specific promoter 
regions, enhancing de novo lipid synthesis under hypoxic condi-
tions (33). KAT2b is a KAT that acetylates H3K9 and H3K14. 

During embryogenesis, GCN5 mRNA is already expressed at 
high levels by day 8, whereas KAT2b mRNA is first detected on 
day 12.5, suggesting that KAT2b and GCN5 play distinct roles 
by controlling the expression of a distinct set of genes (34).  
We have demonstrated that KAT2b is required for pancreatic 
β-cell adaptation to metabolic stress by promoting histone 
acetylation and gene expression of several unfolded protein 
response markers (35). While a β-cell-specific deletion of Kat2b 
in mouse has no effect under normal diet, Kat2b deficiency leads 
to a dramatic effect on β-cell morphology and function upon 
high fat feeding. KAT2b is thereby a major sensor of acetyl-CoA 
under hyperglycemic condition (35). Altogether, those data 
suggest that distinct histone acetyltransferases can sense acetyl-
CoA upon different conditions and translate the appropriate 
cell response by activating different sets of genes. Moreover, the 
origin of acetyl-CoA seems to be important for this selectivity. 
Sutendra et  al. recently demonstrated that acetyl-CoA is gen-
erated in the nucleus through a dynamic translocation of the 
mitochondrial pyruvate dehydrogenase complex (PDC), raising 
new questions about intracellular acetyl-CoA compartmentali-
zation and the way its origin can regulate a specific set of genes 
(36–38). A better understanding of KAT activation, of the origin 
of acetyl-CoA and of its fluctuations within subcellular compart-
ments upon different nutritional challenges can be of interest for 
the development of new therapeutic strategies against metabolic 
disease and cancer.

NAD+-DePeNDeNT AND iNDePeNDeNT 
HiSTONe/LYSiNe DeACeTYLASeS

Lysine/Histone deacetylases (KDAC/HDAC) are the enzymes 
that catalyze the removal of the acetyl group from lysine residues 
of histones. On the basis of their mechanistic similarities, they 
can be divided into two groups: classical HDAC and NAD+-
dependent sirtuin deacetylase families (39, 40).

The mammalian NAD+-dependent KDACs consist of seven 
sirtuin members (SIRT1 to SIRT7), with distinct subcellular 
localizations. Three sirtuins are located in the mitochondria 
(SIRT3–SIRT5), while SIRT1, SIRT6, and SIRT7 are predomi-
nantly located in the nucleus, and SIRT2 is found in the cyto-
plasm (41, 42). NAD+ levels rise in energy deficiency situations, 
such as exercise, caloric restriction, and fasting, leading to sirtuin 
activation (43, 44). In contrast, when energy is in excess, NAD+ 
is depleted, generating a higher NAD+/NADH ratio, which 
inhibits sirtuin activity (6, 41, 42). This notion further argues 
toward a direct link between the nutritional status and epigenetic  
control.

SIRT1, one of the most studied KDAC, controls circadian 
rhythm and liver metabolism through the deacetylation of H3K9 
and H3K14 at the promoter of clock genes (45, 46). Furthermore, 
through its interaction with Menin, SIRT1 enhances histone 
deacetylation and controls hepatic triglyceride accumulation 
(47, 48). SIRT1 can also deacetylate H4K16, functionally link-
ing metabolic activity to genome stability and aging (49, 50). 
SIRT6, another nuclear sirtuin, is linked to aging by controlling 
a specific deacetylation of H3K9 at NF-κB target gene promoters 
(51). In cancer cells, SIRT7 is involved in the stabilization of their 
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transformed phenotype by inducing the deacetylation of H3K18 
at specific oncogene promoter regions (52).

The second families of KDAC are classical HDAC, and, in 
spite of their independent activity on endogenous metabolite, 
they have been linked to cellular metabolism. Shimazu et  al. 
showed that β-hydroxybutyrate produced under fasting, star-
vation or intense exercise condition is a natural endogenous 
HDAC inhibitor leading to increased H3K9 and H3K4 acetyla-
tion (18, 53). It also increases histone acetylation at the Foxo3a 
and Mt2 promoters through the inhibition of HDAC1 and 
HDAC2 (18).

Lactate production, as a result of an increased rate of gly-
colysis, has also been shown to upregulate the expression of 
genes associated with HDAC proteins (54). The authors have 
demonstrated that the primary effect of lactate on gene expres-
sion depends on HDAC inhibition (54). Therefore, lactate may 
be an important transcriptional regulator, linking the metabolic 
state of the cell to gene transcription. Further work is needed 
to corroborate whether the lactate produced in vivo has a tissue 
specific effect on HDAC cofactors. Moreover, lactate has been 
implicated in the modulation of the DNA damage and repair 
processes as well as in the resistance of carcinoma cells to anti-
cancer therapy (55).

Altogether, those data provide evidence for a direct link 
between metabolism products and cellular adaptation through 
the modulation of KDAC activity.

HiSTONe MeTHYLATiON AND 
S-ADeNOSYLMeTHiONiNe (SAM)

S-adenosylmethionine, generated by the methionine cycle,  
contains the active methyl donor group used by methyltrans-
ferases to methylate RNA, DNA, and proteins, including histones 
(56–61). While extensive studies focused on the changes of meth-
ylation status upon embryonic development, physiology, and  
diseases, the link between intracellular SAM fluctuation and 
their conversion into specific epigenetic modifications remains 
poorly understood. For instance, only histone methylation has 
been linked to methionine availability, an essential amino acid 
obtained from the diet (62).

Histone methylation can occur on arginine or lysine residues. 
While lysine can be mono-, di-, or trimethylated, arginine can 
only be mono-methylated. There are three classes of histone 
methyltransferase: SET domain lysine methyltransferases, non-
SET domain lysine methyltransferases (disruptor of telomeric 
silencing 1-like, DOT1L), and arginine methyltransferases 
(PRMT) (63–65).

In mouse ESCs, mitochondrial threonine dehydrogenase 
(TDH), an enzyme that catabolizes threonine into glycine and 
acetyl-CoA, has been shown to be important in maintaining 
the intracellular SAM level (66). Threonine depletion in culture 
medium or TDH knockdown in mouse ESCs decreases SAM  
accumulation and H3K4me3 mark, whereas no effect was observed 
in other methylation marks (66). In cancer cells, an aberrant  
expression of Nicotinamide N-methyltransferase—a limiting 
enzyme that metabolizes SAM—exerts specific control over the 
cells methylation potential (67). Moreover, recent works provide 

evidence in both mouse and human that methionine status is 
sufficient for the control of numerous physiological processes 
including the activity of genes involved in cell fate through the 
modulation of histone methylation levels (62).

As observed for HDAC, PMRT activity can be controlled by 
intermediary metabolites. Three recent reports showed that an 
increased intracellular concentration of methylthioadenosine 
(MTA) in cancer cells harboring 5-methylthioadenosine phos-
phorylase (MTAP) deletions leads to PMRT5 inhibition (68–70). 
MTAP is the enzyme controlling MTA cleavage to generate pre-
cursor substrates for methionine and adenine salvage pathways. 
In cancer cells, MTAP deficiency leads to partial metabolite- 
based inhibition of PRMT5 by altering the ratio of MTA to 
SAM, which results in a decreased H4R3me2s mark (68–70). 
More studies are needed to understand whether the MTA-to-
SAM ratio can also be controlled by physiological metabolic 
nutritional states.

FLAviN ADeNiNe DiNUCLeOTiDe (FAD) 
AND HiSTONe DeMeTHYLASeS

Histone methylation was originally considered as a permanent 
chromatin alteration until the landmark discovery of histone 
lysine-specific demethylase 1 (LSD1) by Shi Yang’s group, 
established both in  vitro and in  vivo methylation reversibility 
(71). LSD1 uses FAD formed from ATP and riboflavin (vitamin 
B2) in mitochondria as a cofactor to demethylate mono- and 
di-methylated H3K4 and H3K9 (72, 73). Although LSD1 dem-
ethylase activity appears to control the metabolism in favor of  
de novo fatty acid synthesis over gluconeogenesis in hepatocyte  
and brown adipose tissue thermogenic activity, a direct link bet-
ween nutritional status and LSD1 activity still needs to be estab-
lished (74–78). For instance, recent works demonstrate that livers 
from mouse fed with folate-deficient diet present an increased 
dimethyl-H3K4 and decreased LSD1 activity (79). More studies 
are needed to decipher the metabolic consequence of FAD fluc-
tuation upon physiological and pathophysiological conditions.

α-KeTOGLUTARATe (αKG) AND  
HiSTONe DeMeTHYLASeS

α-ketoglutarate is produced from isocitrate through the activity 
of two key-enzymes of the Krebs cycle, isocitrate dehydrogenase 
1 and 2 (IDH 1 and IDH2) (16, 80). αKG can also be produced 
anaplerotically from glutamate by oxidative deamination, using 
glutamate dehydrogenase (49). Under fasting or caloric restric-
tion, the accumulation of αKG is used by the αKG-depending 
dioxygenase to influence the epigenetic status of the cells (81, 82).  
Several chromatin-modifying enzymes are regulated by αKG 
availability, including demethylase enzymes containing a Jumonji 
C domain (JmjC) and ten-eleven translocation (TET) protein 
families (83–86).

The JmjC subfamily comprises the largest identified family 
of lysine demethylases (KDMs) with more than 60 enzymes 
identified in humans (87). In addition to αKG, JmjC-dependent 
histone demethylation requires iron Fe(II) (88). Each JmjC 
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family member exhibits preference to reverse lysine or arginine 
trimethylated histone. Considering the key-determinant role 
of methylation on gene expression and demethylase specific-
ity, KDM2 and KDM5 families have been shown to promote a 
repression chromatin status, while KDM3, KDM6 and KDM7 
act as chromatin activators (63).

Ten-eleven translocation protein family can catalyze 
5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 
5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) in three 
consecutive Fe(II)- and 2-oxoglutarate (2-OG)-dependent oxida-
tion reactions (89, 90). Gene expression depends on the location 
of the 5hmC marks. Indeed, the presence of 5hmC in the gene 
bodies was found to correlate positively with gene expression, 
whereas no correlation with gene expression was found when 
5hmC peaks are located at transcription start sites (91, 92).

α-ketoglutarate can be derived from glucose and glu-
tamine. However, few studies have demonstrated a direct link 
between αKG generation and histone demethylation. A direct 
manipulation of intracellular αKG/succinate ratio is sufficient 
to regulate chromatin state in ESCs. The accumulation of αKG 
promotes self-renewal of ESCs through JMJD3 and Tet1/Tet2 
demethylation of H3K9me3, H3K27me3, and H4K20me histone 
marks (93). Gas chromatography coupled to mass spectrom-
etry analysis revealed a rapid increase in hepatic α-KG levels  
following intraperitoneal glucose injection in mice. Strikingly, 
5hmC and 5fC marks are reported to increase in various mouse 
tissues including the liver, kidney, and muscle without any 
change in TET protein expression or localization leading to a 
change in gene expression (94). Changes in demethylase activity 
may thereby contribute to cellular and tissue dysfunction under 
persistent hyperglycemic conditions.

In cancer cells, a loss of function mutation of TCA cycle 
enzymes, such as mitochondrial succinate dehydrogenase or 
fumarate hydratase, promotes succinate and fumarate abundance 
(95, 96). Both metabolites inhibit α-KG-depending demethy-
lase leading to a decreased 5hmC mark and a specific increase 
in H3K9me3 levels (96, 97). Somatic mutations of IDH1 and 
IDH2 have been identified in glioblastomas, acute myelogenous 
leukemia, chondrosarcomas and lymphomas and other solid 
tumors (98–103). These gain-of-function mutations lead to a 
new enzymatic activity promoting the conversion of α-KG to 
produce D(R)-2-hydroxyglutarate (R2HG) (104, 105). This onco-
metabolite, which accumulates in tumors with IDH mutations,  
is a competitive inhibitor of TET and JmjC protein family  
activity (106–109).

Two recent reports describe another metabolite generated 
under hypoxic condition by the conversion of α-KG to produce 
L(S)-2-hydroxyglutarate (S2HG) (110, 111). Both reports dem-
onstrate that S2HG is the product of malate dehydrogenase 1, 
malate dehydrogenase 2, and lactate dehydrogenase A. The accu-
mulation of this metabolite leads to α-KG-depending demethy-
lase activity inhibition toward TET1/2 and KDM4C (110, 111).  
Interestingly, this effect is not cancer-specific since a similar 
level of S2HG production was observed in endothelial cells 
(110). Moreover, manipulating S2HG is sufficient to increase 
the methylation of histone repressive marks, suggesting that this 
metabolite may be generated in other conditions than hypoxia. 

Further studies are needed to understand the role of S2HG in 
controlling proliferation versus fate in ES cell.

NUCLeAR LOCALiZATiON OF 
MeTABOLiTeS

The cytosol and nucleus are dense and very viscous. This may 
restrict the diffusion of small molecules and slow down bio-
chemical reactions. Moreover, several metabolite pathways are 
organized in multiprotein complexes to allow reaction chan-
neling to facilitate signaling. A multiprotein complex (molecular 
assembly line) has been proposed to promote efficient substrate 
channeling from one enzyme to the next (112). Accumulated evi-
dence suggests a close coupling of the histone-modifying enzymes 
with their critical cofactor synthesis enzyme in the nucleus. 
Their nuclear translocation aims to provide in  situ metabolite 
synthesis in response to metabolic stress. For example, Katoh 
and colleagues demonstrate that the SAM-generating enzyme, 
methionine adenosyltransferase II (MATIIα), is localized in the 
nucleus and interacts with the Swi/Snf and NuRD complexes, 
supplying SAM for methyltransferases (113). MATIIα will 
maintain a local high SAM concentration, which is used by an 
H3K9-specific histone methyltransferase to repress the oncogene 
MafK transcriptional activity (113).

Similarly, a pyruvate conversion to acetyl-CoA is processed in 
the nucleus through the nuclear translocation of the mitochon-
drial PDC. Nuclear PDC levels, as well as the histone H3 and 
H4 global acetylation levels, increase in a cell-cycle depending 
manner upon epidermal growth factor, serum, or mitochondrial 
stress (36). Nuclear PDC inhibition leads to a specific decrease 
in the acetylation of the histone that is important for the gene 
expression of G1-S phase progression and S phase markers (36). 
Moreover, nuclear concentration of acetyl-coA has been shown 
to be important for osteoblast differentiation (114). In line 
with this, recent works showed that pyruvate is critical for the 
TCA cycle enzyme nuclear localization in mammalian zygotic 
genome activation (115). The authors demonstrated that nutri-
ents, such as pyruvate, are essential for an early pre-implantation 
development in mouse and human. Mechanistically, Nagaraj 
and colleagues showed that pyruvate controls the nuclear locali-
zation of multiple TCA enzymes in addition to proteins related 
to TCA cycle entry, including pyruvate carboxylase, pyruvate 
dehydrogenase, pyruvate dehydrogenase phosphatase, citrate 
synthase, aconitase-2, and isocitrate dehydrogenase 3A (115). 
Moreover, acetate-dependent acetyl-coA synthase 2 (ACSS2) 
binds to chromatin nearby regions of genes that are upregu lated 
during neuron differentiation. A decrease in ACSS2 lowers 
nuclear acetyl-coA levels, histone acetylation, and neuronal 
genes in hippocampus, leading to defective spatial memory 
(116). Those data support a critical role of ACSS2, linking 
acetate metabolism to localized acetyl-coA production, histone 
acetylation, and gene expression. In hepatocellular carcinoma 
cells, the nuclear localization of ACCS2 promotes cancer cell 
survival by increasing H3K9, H3K27, and H3K56 acetylation 
levels at the promoter regions of lipogenic genes such as acetyl-
CoA carboxylase alpha and fatty acid synthase and enhances de 
novo lipid synthesis (33).
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Finally, NAD+, the critical cofactor of sirtuin deacetylase, 
can also be generated in the nucleus through the conversion of 
nicotinamide by nuclear NMNAT1. NMNAT1 enzymatic activity 
is required to provide NAD+ for SIRT1 (117) and PARP1 (118) 
during transcriptional regulation and DNA repair.

The precise nuclear localization of critical cofactor-generating 
enzymes supports the presence of localized subdomains within 
the chromatin that may promote the clustering of relevant PTMs 
at specific genomic loci. This model raises a new question on how 
the nutritional state and metabolism products control the nuclear 
localization and activity of those microdomains. The second 
question is to know whether those processes are tissue and cell 
specific and if they are disturbed under pathophysiological condi-
tions such as obesity or cancer. Then, the final question is: what 
is the functional and physiological significance of this process?

CONCLUSiON

Scientific evidence clearly supports that nutrition and diet are 
the most influential lifestyle factors that contribute to health and 
the development and progression of chronic diseases, including 
metabolic disorders, neurodegenerative diseases, cancers, and 
cardiovascular diseases.

The recent exciting advances surveyed herein show that eating 
habits and nutritional input is deciphered by a metabolic sensor 
and translated into an adaptive epigenetic code that controls 
major biological processes such as cell survival, proliferation, 
DNA damage, and cellular energy production and/or storage 
(Figure 1). The next major challenge for epigenetic research will 
depend on the ability to translate the lessons learned from epig-
enomic profiling, structural studies, and regulatory mechanisms 
to treatment.

However, it will also be important to strengthen our under-
standing on how metabolite fluctuations can control a specific 
gene set in a given tissue. Importantly, it will be of interest to 
understand how all those pathways integrate into a specific 
physiological and/or pathophysiological state. The mechanisms 
controlling the concentration of metabolites in microdomains 
within the nucleus and the ability for this chromatin compart-
mentalization of critical cofactor synthesis enzyme to coordinate 
specific responses to metabolite changes are two other intriguing 
questions.

Finally, the most important question might be to determine 
whether cofactors can be successful targets for metabolic dis-
eases. Although this review highlights how far we have come 
in less than two decades, those findings shed light on a wide 
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range of more open questions to understand the role of cofac-
tors in nutritional sensing and the epigenetic control of gene 
expression.
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