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Increasing evidence suggests that the small EF-hand calcium-binding protein S100B plays an important role in Alzheimer’s disease.
Among other evidences are the increased levels of both S100B and its receptor, the Receptor for Advanced Glycation Endproducts
(RAGEs) in the AD diseased brain. The regulation of RAGE signaling by S100B is complex and probably involves other ligands
including the amyloid beta peptide (Aβ), the Advanced Glycation Endproducts (AGEs), or transtheyretin. In this paper we discuss
the current literature regarding the role of S100B/RAGE activation in Alzheimer’s disease.

1. Introduction

Alzheimer’s disease (AD) is the most common form of
dementia in the elderly [1]. AD patients suffer from a pro-
gressive decline of cognitive functions that include language,
personality, and memory impairments.

The pathological hallmarks of the disease are character-
ized by the presence of senile plaques (SPs), neurofibrillary
tangles (NFTs), and severe gliosis in the cerebral cortex
and the hippocampus [2]. Senile plaques result from the
accumulation of extracellular amyloid-β (Aβ) fibrils [3]
and contain elevated levels of zinc and copper ions [4].
Neurofibrillar tangles are mainly constituted of intracellular,
abnormally phosphorylated tau protein [5–7]. AD brain is
also characterized by increases in inflammatory responses,
oxidative stress, dysregulation of calcium homeostasis [8],
and by elevated levels of several S100 calcium-binding
proteins namely S100B, S100A6, S100A9, and S100A12 [9–
12].

Neurons, microglia, and endothelial cells, surrounding
the senile plaques express higher levels of the receptor for
advanced glycation endproducts (RAGEs) as the pathology
progresses [13, 14]. Although its exact role in AD remains to
be clearly established, RAGE appears to initiate several signal
transduction cascades in response to ligands, related to AD
including Aβ, AGEs, transthyretin, and S100 proteins. The
present paper will focus and discuss the current knowledge
on the role of S100B/RAGE axis in AD.

2. The Receptor for Advanced
Glycation Endproducts

RAGE is an immunoglobulin-like cell surface receptor that
is often described as a pattern recognition receptor due to
the structural heterogeneity of its ligands. RAGE was initially
identified as receptor for the advanced glycation endproducts
(AGEs) [15, 16]. AGEs are formed by nonenzymatic modi-
fication of proteins or lipids by reducing carbohydrates, are
highly heterogeneous (reviewed in [17]), and are often found
elevated at sites of inflammation where they can trigger
RAGE-dependent oxidative stress and NF-κB activation. NF-
κB activation leads to increased RAGE expression because
of the presence of NF-κB response elements within the
promotor region of RAGE [18]. Activation of RAGE in turn
results in sustained NF-κB activation [19]. Positive feedback
loops between RAGE, oxidative stress, and inflammation
can thus develop [20]. In this view high levels of AGEs
have been found at site of inflammation and colocalize with
neurofibrillar tangles and senile plaques in AD brain [21–23].

A second group of RAGE ligand is formed by amyloid-
forming proteins or peptides such as Aβ peptide [13], and
transthyretin (TTR) [24]. The amyloid β-peptide results
from amyloid precursor protein (APP) processing by the beta
and gamma secretases. Aβ accumulation in the brain plays a
key role in the development of the disease [13, 25]. RAGE
has been shown to mediate the transport of Aβ through the
neuronal cell membrane and blood brain barrier [13, 26, 27].
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In contrast, TTR has been suggested to have a protective
effect in AD by binding to Aβ in a chaperone-like manner
[28].

RAGE can also be activated by amphoterin (High
Mobility Group Box 1, HMGB1) that plays a role in neuronal
development and cancer [29]. Although it also plays a role
in inflammation, we will not discuss the putative role of
amphoterin in AD in this paper [30].

Another group of RAGE ligand is constituted by the S100
proteins. S100 proteins are small EF-hand calcium-binding
proteins that regulate calcium homeostasis and modulate
various enzymes involved in cellular functions such as cell
growth, differentiation, and metabolism (reviewed in [31–
33]). Twenty one members of S100 proteins have been
described [34]. They all share high amino acid and structural
homologies. Among them S100B, S100A6, S100A9 and
S100A12 have been linked to Alzheimer’s Disease [9–12].

Various alternatively spliced isoforms of RAGE exist [16,
35]. The two prevalent isoforms appear to be the full-length
RAGE (RAGE) and the secreted isoform RAGE v1 [36]. Full-
length RAGE is composed of an extracellular part (314 aa),
a single transmembrane spanning helix (27 aa), and a short
cytosolic domain (41 aa) (Figure 1) [16]. The extracellular
part of RAGE contains an Ig-like V-domain (residues 24–
127) and two constant Ig-like C type domains frequently
referred to as C1 (residues 132–230) and C2 domains
(residues 239–320). RAGE possesses two N-glycosylation
sites, one adjacent to the V-domain (residue 26) and the
second one within the V domain (residue 81) (Figure 1)
[16, 37]. Recent studies suggest that glycosylation may
modulate the interaction of certain AGEs with RAGE [38,
39]. The RAGE v1 splice isoform lacks the transmembrane
and cytoplasmic portion and is released in the extracellular
space (Figure 1) [36, 40–42]. The distribution and relative
expression of the different RAGE isoforms are tissue specific.
The full-length RAGE isoform is present at low levels in
most adult tissues but at relatively high levels in lungs
[43]. The truncated variant RAGE v1 appears to be the
prevalent isoform in endothelial cells and in human brain
(Figure 1) [41, 44]. Interestingly, the soluble form of RAGE
(sRAGE) can also be produced by proteolytic cleavage [45–
47]. sRAGE produced either by splicing or shedding has been
suggested to play the role of a decoy that interacts with free
circulating RAGE ligand. RAGE v1 expression is reduced in
hippocampal neurons of AD patients. This could potentially
lead to a sustained RAGE activation [48, 49]. In this view,
sRAGE formed as a result of proteolysis could prevent Aβ
peptide transport across the blood brain barrier and protect
against Alzheimer’s disease [50]. In the last five years, soluble
RAGE has emerged as a new biomarker with potential
clinical and therapeutic applications (reviewed in [51, 52])
and polypeptides based on RAGE v1 are currently tested in
clinical trials for their therapeutic effects against deleterious
effects triggered by RAGE activation by its ligands.

However, the role of sRAGE and its regulation appears to
be very complex. Indeed recent studies aiming at comparing
the concentration of sRAGE in the serum of patients
versus controls in various pathophysiological conditions
have shown both negative and positive correlation between
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Figure 1: Schematic representation of the two main RAGE
isoforms, full-length RAGE and RAGE v1. Full-length RAGE is
an immunoglobulin like receptor with one variable-like domain
(V) and two constant-like domains (C) comprising residues. A
short transmembrane domain anchors RAGE to the cell surface.
A 41 residues intracellular tail is critical for signal transduction.
RAGE v1 does not possess the transmembrane domain and the
intracellular tail. It is soluble in the circulation and plays the
role of decoy to antagonize the activation of full-length RAGE
by its ligands. A soluble form of RAGE can also be generated by
proteolysis. S100B, AGEs Aβ oligomers, and TTR bind to RAGE
V domain. Aβ aggregates binds to RAGE C1 domain. S100A6
binds both to the V and C2 domain but exerts its cellular effects
preferentially through the C2 domain. The exact oligomerization
states of full-length RAGE and RAGE v1 are currently unknown.
RAGE is arbitrarily represented as a dimer.

the concentration of sRAGE and the severity of the disease
([53, 54] and reviewed in [55]). Moreover, blocking RAGE
function might not be beneficial in all pathologies. Indeed
RAGE has been shown to modulate the regeneration of
peripheral nerves in a mouse model of axotomy and block-
ade of RAGE signaling using sRAGE resulted in impaired
regeneration in these animals [56–58]. Although a large
number of studies with rodent models of human diseases
have demonstrated the short-term benefit of treatment with
sRAGE (reviewed in [52]), the long-term effects of such
treatments remain also to be studied. The role of sRAGE as a
decoy that would neutralize the excess of RAGE ligands also
needs to be reconsidered at the view at recent studies showing
very low concentrations (10–50 pM) of sRAGE in the serum
of both patients and healthy individuals [53–55].

In order to understand the role of RAGE in the various
RAGE-related pathologies including AD, it is important to
understand how the different RAGE ligands interact with
the receptor. Binding and activation of RAGE by S100B was
first demonstrated in HUVEC cells [59]. In recent years, our
laboratory and others have studied in detail the interaction of
S100B with RAGE. S100B interacts preferentially with the V
domain of RAGE and might involve multimerization of the
receptor [60–62]. The V domain of RAGE is also the binding
site of AGEs and TTR [63–66].

Aβ-RAGE interactions are more complex since Aβ
exhibits several conformational states. Aβ is generated



Cardiovascular Psychiatry and Neurology 3

by proteolytic cleavage of the transmembrane β-amyloid
precursor protein (APP) (reviewed in [67]). The resulting
1-40 or 1-42 amino acid Aβ peptides can form soluble
oligomers (AβO), beta-sheet containing fibrils, and insoluble
aggregates (AβA) [25, 68–74]. It is now believed that the
synaptic dysfunction and neuronal death observed in AD
patients are caused mainly by Aβ oligomers and Aβ fibrils
[25, 71–73, 75–78]. We recently showed that the interaction
of Aβ with RAGE is driven by conformational states of Aβ.
Indeed AβO and AβA were found to bind to distinct domains
of RAGE, the V-, and C1-domain, respectively. Furthermore,
AβO RAGE interaction was found to modulate ERK activity
and to induce neuronal death [25].

Although S100B, AGEs, and AβO interact with the V
domain of the receptor, it is currently not known if they
interact within the same region of the V domain. Future
studies will answer this question.

3. RAGE in Alzheimer’s Disease

RAGE is up-regulated in the brain of Azheimer’s disease and
triggers the generation of proinflammatory cytokines at the
blood brain barrier [13, 27]. The role of RAGE in AD has
been demonstrated in cell culture and in animal models.
In various cell types that include neurons, endothelial cells,
and microglia, engagement of RAGE by Aβ can lead to the
formation of reactive oxygen species (ROS), the activation
of NF-κB, or the expression of cell adhesion molecules
mediating the recruitment of inflammatory cells [79, 80].
Neurons overexpressing RAGE showed higher susceptibility
to Aβ-induced cell death than control cells [81]. Several
models of transgenic mice have been used to demonstrate
the role of RAGE in AD. The double transgenic RAGE/APP
mouse model combines the overexpression of RAGE with
the expression of mutants of APP [82, 83]. RAGE/APP mice
show impaired spatial learning and memory capabilities,
reduced basal synaptic transmission and long-term potenti-
ation (LTP) compared to their single transgenic littermates.
At the cellular level, these mice show reduced density of
cholinergic fibers and synapses, characteristics often asso-
ciated with AD-like pathology [83]. At the molecular level,
RAGE/APP mice show enhanced activation of inflammation
and stress-related MAP kinases and of the transcription
factors NF-κB [83]. Despite these evidences the role of RAGE
in Alzheimer’s disease is still to be understood in detail.
Indeed, recent experiments performed on RAGE (-/-) arcA-
beta double transgenic animals showed that RAGE deletion
could not prevent the decline in cognitive performance of
the mice nor the age-related cerebral accumulation of Aβ
peptides [84]. These discrepancies may be due to differences
in the mouse models used in the distinct studies. The Arc
mutation is characterized by a change in amino acid within
the Aβ peptide sequence and thus may generate distinct
peptide conformations that have less or no affinity for RAGE.
Interestingly, the arcBeta transgenic mice showed reduced
clearance of Aβ accross blood vessels [85]. This could reflect a
decrease in the binding capacity of the arcAbeta for another
of its receptor, LRP that has been shown to mediate brain
efflux of Aβ [86].

4. S100B

S100B is a member of the S100 protein family mainly
expressed in the CNS [87]. Animal studies using S100B
transgenic mice revealed that S100B plays important roles
in spatial and fear memory, learning capabilities, and
epileptogenesis [88–90].

Unlike other members of the S100 protein family, the
gene of S100B is located on human chromosome 21 [91, 92].
S100B possesses two Ca2+-binding sites of the EF-hand type,
defined as a helix-loop-helix motif connected by a central
hinge region. The C-terminal domain contains the classical
EF-hand with a canonical 12 amino acid Ca2+-binding loop
whereas the N-terminal domain contains the S100B specific
14 amino acid Ca2+-binding loop [93, 94]. S100B binds two
calcium ions per subunit with moderate affinity (2–20 μM)
[95]. Binding of calcium to the EF-hands triggers structural
changes that allow the interaction with target proteins [32,
96]. Besides calcium, S100B also binds zinc (KD = 0.1–1 μM)
and copper (KD = 2.2 μM), two metal ions highly abundant
in senile plaques [32, 96–98]. Interestingly, binding of zinc to
S100B results in higher affinity for both calcium and S100B’s
target proteins. The extracellular function of S100B may thus
be altered in the brain of AD patients due to the high levels
of zinc and copper [99].

S100B interacts with various intracellular targets. These
targets have been extensively described in previous reviews
[98, 100, 101]. S100B interacts with elements of the
cytoskeleton (microtubules, type III intermediate filaments),
with enzymes of the glycolytic pathway (fructose 1,6-
bisphosphate aldolase, phosphoglucomutase), and with the
tumor suppressor p53. S100B also regulates calcium home-
ostasis, protein phosphorylation and degradation [100].
S100B is mainly found as homodimer but can also form
active tetramers, or hexamers exhibiting distinct functions
[61, 102–104]. Furthermore, S100B is also able to interact
with S100A1. This protein complex exhibits distinct physio-
logical functions compared to S100B or S100A1 homodimers
[32, 61, 102–105].

Besides its known intracellular function, S100B can also
be secreted in the extracellular space where it acts as a
cytokine. The secretion of S100B occurs via both the classical
endoplasmic reticulum-Golgi pathway and an alternative
pathway involving cytoskeletal tubulin [106, 107].

High levels of extracellular S100B have been detected
in various clinical conditions that include brain trauma,
ischemia and neurodegenerative, and inflammatory and psy-
chiatric diseases [108, 109]. S100B is also a well-established
prognostic marker for melanoma and high serum concentra-
tion of S100B correlate with poor prognosis [110, 111].

In the brain, S100B is actively secreted from astrocytes
in the extracellular medium (Figure 2) [112]. S100B release
is driven by the developmental stage of the astrocytes
[112], and metabolic stress (oxygen, serum, or glucose
deprivation) [113]. S100B can also be released in response
to external stimuli such as glutamate [114], serotonin
[115], the pro-inflammatory cytokines TNF-alpha [116]
and IL-1beta [117], beta-amyloid peptides [118], 1-methyl-
4-phenyl 1,2,3, and 6 tetrahydropyridine (MPTP) [119],
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Figure 2: Crosstalk between RAGE and its ligands in Alzheimer’s disease. RAGE mediates Aβ brain influx and accumulation. Aβ directly
or indirectly triggers dysregulation of calcium homeostasis thereby activating the S100 proteins. RAGE-mediated activation of glia cells
results in the activation of NF-κB driven gene transcription, and the release of inflammatory cytokines such as IL-1, IL-6, TNF-α, IL-1β,
M-CSF and S100B. The brain of AD patients becomes the site of intense inflammation and oxidative stress that facilitates formation of
AGEs. S100B, Aβ and AGEs as well as other RAGE ligands including TTR, HMGB1, S100A6, S100A8/A9, and S100A12 accumulate in
the brain during the course of the disease. Secreted S100B and chronic RAGE activation trigger several AD-associated neuropathological
features including microglia activation, the production of reactive oxygen species (ROS), neurite degeneration, NFT formation, and neuronal
apoptosis ultimately leading to memory impairment.

forskolin, lysophosphatidic acid [120], and the plant natural
antioxydants resveratrol and epicatechin [121, 122] and by
the increase of calcium concentration [107].

Extracellular S100B has been shown to modulate the
activity of neurons, microglia, astrocytes, monocytes, and
endothelial cells (Figure 2). On neurons, S100B triggers
trophic or toxic effects, depending on its concentration.
Nanomolar concentration of S100B is neuroprotective,
induces neurite outgrowth, and triggers glial cell prolifer-
ation in a RAGE dependent manner, whereas micromolar
concentration of S100B is neurotoxic [120, 123–126]. At
the molecular level, nanomolar concentration of S100B
induces the upregulation of the antiapoptotic factor Bcl-2
resulting in neuroprotection. In contrast, when present in
micromolar concentration S100B induces the up-regulation
of caspase 3 through the activation of the oxidant stress-
dependent MEK/ERK pathways, leading to apoptosis [126].
In addition, S100B can also modulate the toxicity of other
extracellular molecules. In rat hippocampal neurons low
concentration of S100B protects the cells against the toxic
effect of N-methyl-D-aspartate, through the activation of
NF-κB and possibly through the engagment of RAGE [127].
S100B also protects astrocytes and microglia against toxicity
of trimethyltin [128]. Similar protection is observed in
LAN-5 neuroblastomas, in the presence of Aβ peptide

[129]. Importantly, in these cells, higher concentration of
S100B (micromolar) potentiates the toxicity of Aβ pep-
tide.

S100B activates astrocytes in an autocrine manner and
triggers the release of TNF-α and IL-6, probably through the
activation of RAGE [130] leading to cellular inflammation
(Figure 2).

Extracellular S100B can also stimulate endothelial cells,
resulting in perpetuated activation of NF-κB and the up-
regulation of vascular cell-adhesion molecule (VCAM-1) and
the monocyte chemoattractant protein 1 (MCP-1) through
the engagement of RAGE [59, 131]. Stimulation of endothe-
lial cells by S100B results in adhesion and transendothelial
migration of monocytes, leading to further inflammation in
adjacent tissue [132]. Engagement of RAGE by S100B could
thus contribute to the chronicity of inflammation observed
to Alzheimer’s disease [19].

5. S100B in Alzheimer’s Disease

A role of S100B in AD is suggested by a large number of
clinical studies showing elevated levels of S100B in the brain
or cerebrospinal fluid of AD patients [9, 108, 133–137].
Furthermore, studies showed enhanced susceptibility to
neuroinflammation and neuronal dysfunction after infusion
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of Aβ in transgenic mice overexpressing S100B supporting
a role for S100B in AD [138]. Additional supporting
evidence comes from recent studies using double transgenic
mice over-expressing S100B and carrying mutation in APP
(Tg2576/S100B) [139]. Over-expression of human S100B
in these mice promotes brain inflammation as shown by
astrogliosis and microgliosis and enhances Aβ generation
from APP.

Evidence also suggests a role of S100B in the formation
of neurofibrillar tangles. Hyperphosphorylated tau protein is
the main component of neurofibrilar tangles. S100B binds
directly to tau protein in the presence of calcium resulting in
the inhibition of its phosphorylation by Ca2+/Calmodulin-
dependent kinase II [140]. Intriguingly, extracellular S100B
has also been found to promote RAGE-dependent hyper-
phosphorylation of tau protein through the modulation of
the JNK and Wnt pathways [141]. Thus, S100B exhibits
opposite effects depending on its localization. In AD patients
S100B is actively released and may promote the hyper-
phosphorylation of tau protein and the development of
neurofibrillary tangles in a RAGE dependent manner [129,
142, 143]. The secretion of S100B itself might be triggered by
RAGE endocytosis [144, 145].

Thus, it is tempting to speculate that the role of S100B
in Alzheimer’s disease is mediated by RAGE and numerous
studies mentioned in this paper support this hypothesis.
Targeting specifically RAGE/S100B interaction in the brain
might be beneficial to AD patients. Another interesting
therapeutic approach may be to inhibit the binding of both
S100B and Aβ to the V domain of RAGE using specific
antibodies or small molecules.

6. Other RAGE Ligands in Alzheimer’s Disease

Besides S100B, RAGE can also be engaged by other ligands
that are all relevant in Alzheimer’s disease.

S100A6 is another member of the S100 protein family.
S100A6 is upregulated in astrocytes of animal models and
in patients with AD [10]. High levels of this protein were
also found in the senile plaques of AD patients [10]. The
exact role of S100A6 in AD is currently unknown but our
recent studies suggest that S100A6 might play a role through
RAGE. Indeed we recently showed that S100A6 interacts with
both the V- and C2-domains of RAGE in vitro. However, in
contrast to S100B, the cellular effects triggered by S100A6
appeared to occur via the C2-domain only [62]. Two other
S100 family members, S100A8/A9 and S100A12 may play
a role in AD as well by participating in inflammatory-
mediated events contributing to neurodegeneration. High
levels of S100A9 and S100A12 have been found in microglia
of patients suffering from sporadic AD [11, 12]. As with
S100B, the effects triggered by S100A8/A9 and S100A12
could involve RAGE. Indeed, these two cytokine-like S100
proteins have been shown to interact with RAGE and to
trigger RAGE-dependent cellular signaling [59, 146, 147]
leading to sustained inflammation [24, 28, 148–153]. Thus,
RAGE can be engaged by distinct ligands associated with
AD.

Beside S100 proteins the senile plaques also contain
elevated levels of AGEs, and TTR. The role of TTR in AD is
suggested from both in vitro experiments and animal models
studies [151–153]. RAGE interacts with both soluble and
fibrillar TTR [149, 150]. TTR might have a protective effect
in AD by binding to Aβ in a chaperone-like manner [28].
In AD settings, production of cytokines as a result of local
inflammation would suppress TTR expression and reduce
its protective role. However in other conditions TTR could
also trigger NF-κB activation through RAGE resulting in
sustained inflammation and cellular stress [24, 150].

7. Synergistic Effects between RAGE Ligands

Recent cell-based experiments have shown synergistic effects
between the different RAGE ligands. In cultured neurons,
AGEs and Aβ act synergistically resulting in increased APP
and RAGE expression [142]. In microglia, Aβ acts as an
amplifier of the inflammatory response when cells are
preactivated with AGEs [143]. In endothelial cells, only AGEs
pretreated cells could respond to stimulation by S100A8/A9
[154]. As mentioned earlier, S100B can also potentiate the
toxic effect of Aβ in LAN-5 neuroblastomas [129].

8. Conclusion

Alzheimer’s disease is a complex disease involving many
molecular partners including RAGE and S100B. Following
the large number of promising studies where blockade of
RAGE could reverse a large number of symptoms in animal
models, RAGE became a well-pursued therapeutic target. We
mentioned earlier in the paper that polypeptides based on
the sequence of sRAGE were currently evaluated in clinical
trials [155]. Small molecule compounds are also currently in
phase 2 clinical trials (Pfizer: PF-04494700 [156]). Targeting
RAGE would be beneficial to treat chronic RAGE-dependent
pathologies. However, the recent studies on the role of RAGE
in peripheral nerve regeneration also suggest that care must
be taken when blocking RAGE signaling.
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