

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Sequence conservation of linker histones between chicken and mammalian species

Bettina Sarg^b, Rita Lopez^a, Herbert Lindner^b, Inma Ponte^a, Pedro Suau^a, Alicia Roque^{a,*}

^a Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona, Bellaterra, Barcelona, Spain Divisiona de Cluvier, Biochanistra Diventar Incolando Madical Universita Incolando Austria

^b Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria

ARTICLE INFO

Article history: Received 8 October 2014 Accepted 8 October 2014 Available online 15 October 2014

ABSTRACT

The percent identity matrices of two sequence multiple alignments between linker histones from chicken and mammalian species are described. Linker histone protein sequences for chicken, mouse, rat and humans, available on public databases were used. This information is related to the research article entitled "Identification of novel post-translational modifications in linker histones from chicken erythrocytes"published in the Journal of Proteomics [1].

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).

DOI of original article: http://dx.doi.org/10.1016/j.jprot.2014.10.004

http://dx.doi.org/10.1016/j.dib.2014.10.002

2352-3409/© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).

^{*} Correspondance author.

E-mail address: alicia.roque@uab.es (A. Roque).

Subject area	Biology
More specific subject area	Molecular evolution
Type of data	Tables
How data was acquired	Multiple sequence alignment using ClustalW running under MEGA 5.2
Data format	Analyzed
Experimental factors	Two multiple sequence alignments were performed corresponding to the H1.1-H1.5
	clade and the H1.0/H5 clade [2].
	Initial methionine was removed from the protein sequence prior to the multiple
	sequence alignment.
Experimental features	Percent identity matrix contains the identity score from all of the pairwise comparisons
	calculated as the number of identities between two sequences divided by the length of
	the alignment and represented as a percentage.
Data source location	Not applicable
Data accessibility	All the sequences are registered at Uniprot or NCBI protein databases. The specific
	accession numbers are described below in Section 3.

Value of the data

- Paralogous comparisons show that the six H1 subtypes from chicken (H1.01–H1.03, H1.10, H1.1L and H1.1R) are significantly closer, with an average percent identity of 90%, than mammalian paralogs (H1.1–H1.5) in any of the analyzed species, with an average percent identity of 73% (Table 1). The larger divergence of the mammalian paralogs in comparison with chicken paralogs suggests that the mammalian subtypes have acquired specific functions [3–5].
- Orthologous comparisons show that the H1 subtypes (H1.0–H1.5) from mouse, rat and humans, are highly conserved in interspecies comparison, reinforcing the idea of the functional differentiation of the H1 subtypes (Tables 1 and 2). The most divergent subtype is H1.1 with percentages of identity over 79%, while the more conserved subtypes are H1.0 and H1.4 with percentages of identity over 94% [3,4].

• All six chicken H1 subtypes have higher percentages of identity when compared with H1.4 (more than 65%), suggesting that its function is conserved between avian and mammalian species (Table 1).

• The percentage of identity between H5, an avian specific linker histone associated with terminal differentiation and its mammalian counterpart H1.0 is over 66%, indicating function conservation (Table 2).

• Figs. 1 and 2 show that the globular domain is the most conserved region of the linker histores [3,4].

1. Experimental design, materials and methods [1]

Two separate sequence alignments were performed with chicken linker histones (see Figs. 1 and 2). The first included chicken H5 and H1.0 from mouse, rat and humans (Fig. 1), and the second included the six chicken H1 subtypes and H1 subtypes (H1.1–H1.5) from the above specified species (Fig. 2). In both cases an initial alignment was obtained using ClustalW running under MEGA 5.2. The alignment was then optimized by visual inspection. The pairwise identity score was calculated by the number of identities between two sequences divided by the length of the alignment and represented as a percentage. The accession numbers for the chicken (ch), mouse (m), rat (r) and human (h) sequences were as follows: H5_ch, Uniprot: P02259; H1.01_ch, Uniprot: P08284; H1.02_ch, Uniprot: P09987; H1.03_ch, Uniprot: P08285; H1.10_ch, Uniprot: P08286; H1.1L, Uniprot: P08287; H1.1R, Uniprot: P08288; H1.0_m, Uniprot: P10922; H1.1_m, Uniprot: P43275; H1.2_m, Uniprot: P15864; H1.3_m, Uniprot: P43277; H1.4_m, Uniprot: P43274; H1.5_m, Uniprot: P43276; H1.0_r; Uniprot: P43278; H1.1_r, NCBI Protein: NP_001099583; H1.2_r, NCBI Protein: NP_001102887; H1.0_h, Uniprot: P07305; H1.1_h, Uniprot: Q02539; H1.2_h, Uniprot: P16403; H1.3_h, Uniprot: P16402; H1.4_h, Uniprot:P10412; H1.5_h, Uniprot: P16401.

Table 1	
Percent identity matrix of the avian and mammalian H1	subtypes.

H1.01_ch H1.02_ch H1.03_ch H1.10_ch H1.1L_ch H1.1R_ch H1.2_m H1.2_m H1.2_m H1.4_m H1.4_m H1.4_m H1.1_r H1.2_r H1.1_r H1.2_r H1.3_r H1.4_r H1.5_r H1.4_r H1.2_h H1.03_h H1.4_h H1.5_h	100.00 91.66 88.33 92.50 89.16 90.00 60.41 62.50 66.66 70.00 65.00 60.41 62.50 65.00 69.16 63.74 60.41 64.58 65.41 70.00 65.50 H1.01_ch	100.00 86.25 90.83 86.66 87.08 61.66 62.91 66.25 67.91 64.16 60.83 62.91 65.00 67.50 62.50 62.50 62.50 65.00	100.00 89.16 89.58 89.58 60.00 60.83 64.58 65.41 62.91 58.75 60.83 63.33 65.41 61.66 59.16 62.50 63.33 67.08 64.58 H1.03_	100. 90.4 59.5 63.7 65.8 68.3 64.1 58.7 63.7 64.1 67.5 62.5 59.5 65.0 64.1 70.0 64.1 70.0 67.0 67.0 67.0	00 0 1 8 4 3 3 6 5 5 4 6 0 0 8 0 0 8 0 0 8 0 0 ch	100 92. 60. 62. 64. 65. 60. 62. 62. 62. 62. 67. 65. H1.	0.00 08 41 08 16 00 56 41 08 91 00 00 41 91 08 08 08 00 11ch	100.00 61.25 62.91 66.25 67.50 63.74 60.00 62.91 65.00 67.50 62.50 60.83 63.74 64.16 69.58 67.08 H1.1R_ch	100.00 63.33 68.75 68.75 67.91 95.00 64.16 66.25 68.75 66.25 80.83 63.74 66.66 69.58 64.58 H1.1_m	100.00 78.75 78.75 69.16 62.08 97.91 75.83 80.41 67.08 64.58 87.91 75.00 81.25 72.50 H1.2_m	100.00 87.08 81.25 66.25 78.75 94.58 88.33 80.00 70.83 80.83 88.75 90.00 81.25 H1.3_m	100.00 77.50 67.91 79.58 83.33 97.08 76.25 70.00 80.00 84.16 94.16 81.66 H1.4_m
H1.01_ch H1.02_ch H1.02_ch H1.10_ch H1.1L_ch H1.1L_ch H1.1_m H1.2_m H1.3_m H1.4_m H1.5_m H1.4_m H1.5_m H1.4_r H1.5_r H1.4_r H1.5_r H1.1_h H1.2_h H1.03_h H1.4_h H1.5_h	100.00 66.25 69.16 77.91 96.25 68.75 71.25 75.83 80.00 91.25 H1.5_m	100.00 62.91 64.58 67.91 65.00 79.16 62.50 65.41 68.75 63.74 H1.1_r	100.00 75.83 81.25 67.08 65.00 87.91 75.00 81.25 72.50 H1.2_r	100.00 84.58 76.66 69.16 77.50 84.16 85.83 77.91 H1.3_r	100.0 76.66 70.83 80.44 84.58 95.44 82.00 H1.4	00 5 3 1 3 1 3 1 3 2	100.00 67.50 69.16 74.58 78.75 89.16 H1.5_r	0 100.00 65.00 69.16 72.50 68.33 H1.1_h	100.00 78.33 81.66 72.91 H1.2_h	100.00 85.83 77.08 H1.3_h	100.00 84.16 H1.4_h	100.00 H1.5_h

The pairwise identity score was calculated by the number of identites between two sequences, divided by the length of the alignment represented as a percentage. Abbreviations: ch, chicken; m, mouse; r, rat and h, humans.

Table 2						
Percent identity	matrix	of avian	H5	and	mammalian	H1.0.

H5_ch H10_m	100.00 67.01	100.00		
H1.0_r	66.49 67.01	97.93	100.00	100.00
H1.0_n	67.01 H5_ch	94.84 H1.0_m	94.32 H1.0_r	H1.0_h

The pairwise identity score was calculated by the number of identites between two sequences, divided by the length of the alignment represented as a percentage.

Abbreviations: ch, chicken; m, mouse; r, rat and h, humans.

	10	20	30	40	50	60	70	80	90	100	110	120)
		+	+	+	+	+	+	+	+	+	+	+	
H1.01_ch	SETAPAAAPDAI	PAPGAKAAAK	KPKKAAGGAKA	RKPAC	GPSVTELITK	AVSASKERKGI	SLAALKKAL	AAGGYDVEKN	NSRIKLGLK	SLVSKGTLVQI	KGTGASGSF	RLNKK	110
H1.02_ch	SETAPVAAPAV	SAPGAKAAAK	KPKKAAGGAKP	RKPAC	3PSVTELITK	AVSASKERKGI	SLAALKKAL	AAGGYDVEKN	INSRIKLGLK:	SLVSKGTLVQT	KGTGASGSF	KLNKK	110
H1.03_Cr	SETAPVAAPDVA-AA	ΡΤΡΑΚΑΑΡΑΚ. ΔΔΡΔΔΚΔΔΔΚ	KPKKAAGGAKA	RKPAC	SPSVIELIIK SPSVTELITK	AVSASKERKGI	SLAALKKAL	AAGGIDVEKS	INSRIKLGLK	SLVSKGTLVQI	KGTGASGSF	RUSKK	110
H1.1L ch	SETAPAPAAEAAPAA	APAPAKAAAK	KPKKAAGGAKA	RKPAC	JPSVTELITK	AVSASKERKGI	SLAALKKAL	AAGGYDVEKN	NSRIKLGLK	SLVSKGTLVO	KGTGASGSF	RLSKK	114
H1.1R_ch	AETAPAAAPAAA	PAPAAKAAAK	KPKKAAGGAKA	RKPAC	GPSVTELITK	AVSASKERKGI	SLAALKKAL	AAGGYDVEKN	NSRIKLGLK	SLVSKGTLVQT	KGTGASGSF	RLSKK	111
						Magarenaa					women neer		111
H1.1_m	SETAPVAQAA	STATERPAAA Addafkadak	KKI-KKPAKAA.	APRRRPAG	SPSVSELIVQ SPDVSELITK	AVSSSKERSG	SLAALKKSL	AAAGIDVEKP	INSRIKLGLK	SLVSKGTLVQ1	KGTGAAGSF	KTWKK	109
H1.3 m	SETAPAAPAAI	PAPVEKTPVK	KKA-KK-TG	AAAGKRKASO	3PPVSELITK	AVAASKERSG	SLAALKKAL	AAAGYDVEKN	NSRIKLGLK	SLVSKGTLVO	KGTGASGSF	KLNKK	110
H1.4_m	SETAPAAPAAI	PAPAEKTPVK	KKA-RKAA-GG	AKRKTSC	GPPVSELITK	AVAASKERSG	SLAALKKAL	AAAGYDVEKN	NSRIKLGLK	SLVSKGTLVQI	KGTGASGSF	KLNKK	109
H1.5_m	SETAPAETAAI	PAPVEKSPAK	KKTTKKA	GAA-KRKATO	SPPVSELITK	AVSASKERGG\	SLPALKKAL	AAGGYDVEKN	NSRIKLGLK	SLVSKGTLVQI	KGTGASGSF	KLNKK	109
H1.1 r	SETAPVPOPAS	SVAPEKPAAT	KKT-RKPAKAA	VPRKKPAG	SPSVSELIVO	AVSSSKERSG	SLAALKKSL	AAAGYDVEKN	NSRIKLGLK	SLVNKGTLVOJ	KGTGAAGSF	KLNKK	111
H1.2_r	SETAPAAPAA	APPAEKAPAK	KKAAKKPA-GM	RRKASC	SPPVSELITK	AVAASKERSG	SLAALKKAL	AAAGYDVEKN	NSRIKLGLK	SLVSKGILVQ	KGTGASGSF	KLNKK	109
H1.3_r	SETAPAAPAAI	PAPVEKTPVK	KKA-KK-TS	SAAGKRKASO	GPPVSELITK	AVAASKERSG	SLAALKKAL	AAAGYDVEKN	NSRIKLGLK:	SLVSKGILVQ1	KGTGASGSF	KLNKK	110
H1.4_r	SETAPAAPAAI	PAPAEKTPIK	KKA-RKAA-GG	AKRKASC	SPPVSELITK	AVAASKERSG\	SLAALKKAL	AAAGYDVEKN	NSRIKLGLK:	SLVSKGTLVQI	KGTGASGSF	KLNKK	109
n1.5_f	SEIAPAEIIAI	PAPVERSPAR	KKI-KKA	GAA-KKKAI	SFFVSELLIN	AVSASKERGG	STEADKRAD	MAGGIDVERP	INSKIKLGLK:	STASKGITAĞI	KGIGASGSF	KUNKK	100
H1.1_h	SETVPPAPAAS	SAAPEKPLAG	кка-ккракаа	AA-SKKKPAG	GPSVSELIVQ	AASSSKERGG	SLAALKKAL	AAAGYDVEKN	NSRIKLGLK	SLVSKGTLVQI	KGTGASGSF	KLNKK	112
H1.2_h	SETAPAAPAA	APPAEKAPVK	KKAAKKAG-GT	PRKASC	GPPVSELITK	AVAASKERSG	SLAALKKAL	AAAGYDVEKN	NSRIKLGLK	SLVSKGTLVQT	KGTGASGSF	KLNKK	109
H1.3_h	SETAPLAPTI	PAPAEKTPVK	ККА-КК-АG	ATAGKRKASC	GPPVSELITK	AVAASKERSG	SLAALKKAL	AAAGYDVEKN	NSRIKLGLK	SLVSKGTLVQI	KGTGASGSF	KINKK	110
H1.4_h	SETAPAAPAAI	PAPAEKTPVK	KKA-RKSA-GA	AKRKASC	SPPVSELITK	AVAASKERSG	SLAALKKAL	AAAGYDVEKN	NSRIKLGIK	SLVSKGTLVQI	KGTGASGSF	KLNKK	109
H1.5_h	SETAPAETATI	PAPVEKSPAK	KKATKKAA-GA	GAA-KRKATO	3PPVSELITK	AVAASKERNGI	SLAALKKAL	AAGGYDVEKN	INSRIKLGLK:	SLVSKGTLVQI	KGTGASGSF	KLNKK	112
	130	140	150	160	170	180	190	200	210	220	230	240	
						·							
H1.01_ch	PGEVKEKAPRKRATAAF	PKKPAAP	KPAAAAKKPKP	AAAVKKSPK	KAKKPAAAA-	TKKA-AKSPK	KAAKAGRPKK	AAKSPAKA	KAVKPKAAK	PKATKPKAAKA	KKT	AAKKK	218
H1.02_ch	PGETKAKATKK-KPAAF	CPKKPAAF	KPAAAAKKPKF	AAAVKKSPK	KAKKPAAAA-	TKKA-AKSPK	KATKAGRPKK	TAKSPAK	KAVKPKAAK	SKAAKPKAAKA	KKA	ATKKK	217
H1.03_Ch	SGDVKEKAPKKKTPAAP DCEVKEKA DDKDTDAAP	(PKKPAAP	(KPAAAAKKPKP	AVAVKKSPK	KAKKPAAAA	TKKA-AKSPK	KVIKAAKPKK	AVAVKSPAKA ATAKSDAKA	KAVKPKAAK.	PKATKPKAAKA	KKA	APKKK	223
H1.1L ch	PGEVKEKAPKKKASAAF	(PKKPAAF	KPAAAAKKPKF	AVAVKKSPK	KAKKPAASA-	TKKS-AKSPK	KVTKAVKPKK	AVAAKSPAK/	KAVKPKAAK	PKAAKPKAAKA	KKA	AAKKK	224
H1.1R_ch	PGEGLEKAPKKKASAAF	(PKKAAAF	KPAAAAKKPKF	AVAVKKSPK	KAKKPAASA-	TKKS-VKSPK	каакркк	AVAAKSPAKA	KAVKPKAAK	PKAAKPKAAKA	KKA	AAKKK	218
111 1 m	AEC KATEENIGU	ANA CCA M	KDKKEB CAAA	KKUNI KUDK	KDKKDAU	CKKE CKCDK	KDKURL KAKK	U AKCDAKI	KAUKDKACK	N KU JII KU DI KU DI N	D 1/1/2	ADKKK	21.2
H1.2 m	AASGEAKPOAKKAGAAK	AKKPAGA-AF	KPKKATGAATI	-KKAAKKTPK	KAKKDAAAAA	TKKV-AKSPK	KAKVT-KPKK	-VKSASKI	VKPKAAKPK	VAKA	KKV	AAKKK	212
H1.3 m	AASGEAKPKAKKAGAAF	AKKPAGA-AR	KPKKATGAATE	KKTAKKTPK	KAKKPAAAA	AKKV-SKSPK	KVKAA-KPKK	AAKSPAK	KAPKAKASK	PKASKPKA-TF	AKKA	APRKK	220
H1.4_m	AASGEAKPKAKRAGAAF	KAKKPAGA-AH	KPKKAAGTATA	KKSTKKTPK	KAKKPAAAA	GAKKAKSPK	KAKAT-KAKK	APKSPAK/	KTVKPKAAK	PKTSKPKA-AF	PKKT.	AAKKK	218
H1.5_m	AASGEAKPKAKKTGAAF	KAKKPAGATPH	KPKKTAGA	-KKTVKKTPK	KAKKPAAA-0	SVKKV-AKSPK	KAKAAAKPKK	AAKSPAKI	PKAVKSKASK	PKVTKPKT-AF	PKAAKAKKA	VSKKK	222
H1.1 r	AESKASTTKVTV-F	AKA-SGA-AF	KPKKTAGAAA-	-KKTV-KTPK	KPKKPAV	SKKTSSKSPK	KPKVV-KAKK	-V-AKSPAK	KAVKPKAAK	VKVTKPKTPAR	PKKA	арккк	213
H1.2 r	AASGEAKPKAKKAAAAA	AKKPAGA-AH	KPKKATGAATI	KKAAKKTPK	KAKKPAAAA	TKKV-AKSPK	KAKVT-KAKK	-VKSASKA	VKPKAAKPK	VAKA	KKV	AAKKK	211
H1.3_r	ASSGEAKPKAKKVGAAF	KAKKPAGS-AH	KPKKATGSATI	PRKT-KKTPK	KAKKPGATAG	GAKKV-SKSPK	KVKAA-KPKK	AAKSPAK	KAPKAKATK	PKASKPKA-NF	AKKA	APRKK	219
H1.4_r	AASGEAKPKAKKAGAAF	AKKPAGA-AH	KPKKATGTATI	*KKSTKKTPK	KAKKPAAAA	SAKKAKSPK	KAKAT-KAKK	APKSPAK	RAVKPKAAK	PKTSKPKA-AF	PKKT	AAKKK	218
n1.5_r	VASGEARPRARETGAAP	MARPIGATPI	NEAKTAGA	-VVI.AKI, bK	.nakkpaaa-(VARV-TRSPR	NANAAARPKK	ATKSPARI	NAVESEASE.	ervirera-Af	FRAARVKKA	VƏRRK	221
H1.1 h	ASSVETKPGASKVAT-F	TKA-TGA-SH	KLKKATGA-S-	KKSV-KTPK	KAKKPAA	TRKS-SKNPK	KPKTV-KPKK	-V-AKSPAK	KAVKPKAAK	ARVTKPKT-AF	PKKA	APKKK	214
H1.2_h	AASGEAKPKVKKAGGTH	(PKKPVGA-AF	KPKKAAGGATI	PKKSAKKTPK	KAKKPAAAT	TKKV-AKSPK	KAKVA-KPKK	AAKSAAK/	VKPKAAKPK	VVKP	KKA	APKKK	212
H1.3_h	AASGEGKPKAKKAGAAF	(PRKPAGA-AH	(KPKKVÅGÅÅTI	PKKSIKKTPK	KVKKPATAA	TKKV-AKSAK	KVKTP-QPKK	AAKSPAK	KAPKPKAAK	PKSGKPKV-TH	AKKA	APKKK	220
H1.5 h	AASGEAKPKAKKAGAAB	AKKPAGATP	KAKKAAGA	-KKAVKKTPK	KAKKPAAA-0	VKKV-AKSPK	KAKAAA-KPKK	APKSPAKA ATKSPAKI	KAVKPKAAK	FRIARFRA-AF	PKAAKAKKA	AAKKK	225
	* *		**	* **	* ***	* * * *	* **		* *		**	**	220
		1		1	111								

Fig. 1. Multiple sequence alignment of chicken (ch) H1 subtypes and mammalian subtypes (H1.1–H1.5) from mouse (m), rat (r) and humans (h). The globular domain is underlined. Conserved aminoacids are denoted with an asterisk (*).

	10) 2	20	30	40	50	60	70	80	90	100	110	
H5_ch H1.0_m H1.0_r H1.0_h	TESLVLSPAH TENSTSAPA- TENSTSTPA- TENSTSAPA- ** **	PAKPKRVKAS -AKPKRAKAS -AKPKRAKAS -AKPKRAKAS ***** **	GRRSASHPT SKKSTDHPK AKKSTDHPK SKKSTDHPK * **	YSEMIAAAI YSDMIVAAI YSDMIVAAI YSDMIVAAI XYSDMIVAAI	RAEKSRGGS QAEKNRAGS QAEKNRAGS QAEKNRAGS	SSRQSIQKYI SSRQSIQKYI SSRQSIQKYI SSRQSIQKYI *********	IKSHYKVGHNA IKSHYKVGENA IKSHYKVGENA IKSHYKVGENA	DLQIKLSIRRL DSQIKLSIKRL DSQIKLSIKRL DSQIKLSIKRL X ****** **	LAAGVLKQTKG VTTGVLKQTKG VTTGVLKQTKG VTTGVLKQTKG *******	-+ VGASGSFRLA VGASGSFRLA VGASGSFRLA VGASGSFRLA *****	-+ KSDKAKRSPG KGDEPKRSVA KGDEPKRSVA KSDEPKKSVA * * * *	-+ FKKTKKEVKK FKKTKKEVKK FKKTKKEIKK * **	114 115 115 115
	120	130	140	150	160) 1	70 1	30 19 ++	0				
H5_ch H1.0_m H1.0_r H1.0_h	STSPKKAAF VATPKKAAK VATPKKAAK VATPKKASK ****	PRKARSI PKKAASKAI PKKAASKAI PKKAASKAI	PAKKPKATI PSKKPKATI PSKKPKATI PTKKPKATI	A-RKARKKS PVKKAKKKP PVKKAKKKP PVKKAKKKL ** **	RASPKKAKH AATPKKAKH AATPKKAKH AATPKKAKH * ******	XPKTVKAKSI XPKVVKVKP XPKIVKVKP XPKTVKAKP	RKASKAKKVK VKASKPKKAK VKASKPKKAK VKASKPKKAK	RSKPRAKSGARI IVKPKAKSSAKI PVKPKAKSSAKI PVKPKAKSSAKI ** *** *	KSPKKK 189 RASKKK 193 RASKKK 193 RAGKKK 193				

Fig. 2. Multiple sequence alignment of chicken (ch) H5 and mammalian H1.0 from mouse (m), rat (r) and humans (h). The globular domain is underlined. Conserved aminoacids are denoted with an asterisk (*).

References

- B. Sarg, R. Lopez, H. Lindner, I. Ponte, P. Suau, A. Roque, Identification of novel post-translational modifications in linker histones from chicken erythrocytes, J. Prot. 113 (2015) 162–177, http://dx.doi.org/10.1016/j.jprot.2014.10.004.
- [2] P.B. Talbert, K. Ahmad, G. Almouzni, J. Ausió, F. Berger, P.L. Bhalla, et al., A unified phylogeny-based nomenclature for histone variants, Epigenet. Chromatin 5 (2012) 7.
- [3] I. Ponte, J.M. Vidal-Taboada, P. Suau, Evolution of the vertebrate H1 histone class: evidence for the functional differentiation of the subtypes, Mol. Biol. Evol. 15 (1998) 702–708.
- [4] I. Ponte, R. Vila, P. Suau, Sequence complexity of histone H1 subtypes, Mol. Biol. Evol. 20 (2003) 371-380.
- [5] M. Orrego, I. Ponte, A. Roque, N. Buschati, X. Mora, P. Suau, Differential affinity of mammalian histone H1 somatic subtypes for DNA and chromatin, BMC Biol. 5 (2007) 22.