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Abstract

Accumulated evidence has suggested associations between glucose abnormalities and

insulin resistance with hepatitis C virus (HCV) and hepatitis B virus (HBV) infections. How-

ever, few studies have reported the effect of hepatitis virus infections on body composition.

Our aim was to explore the association of hepatitis virus infections with percent body fat

(PBF) in a cross-sectional analysis. A total of 69226 subjects obtained from the health

examinations at Tri-Service General Hospital (TSGH) from 2010 to 2016 were enrolled in

the study. Participants were divided into subgroups based on the presence of hepatitis B

surface antigen (HBsAg) and anti-HCV. PBF was measured by bioelectrical impedance

analysis (BIA). A multivariable linear regression model was applied to test the association of

hepatitis virus infections with PBF and glycemic status. In male participants, hepatitis virus

infections were closely associated with increased PBF, especially in those subjects with

HCV/HBV coinfection. HCV/HBV coinfection was positively correlated with fasting plasma

glucose and postprandial glucose while HCV and HBV mono-infection were not. The impact

of hepatitis virus infection on increased PBF was observed in general population with gender

difference. A further study on the treatment of hepatitis virus infection might help prevent the

development of obesity-related diseases.

Introduction

Hepatitis virus infection is a progressive disease leading to the development of cirrhosis and

even hepatocellular carcinoma (HCC) in approximately 20–30% of patients worldwide[1, 2].

Hepatitis B virus (HBV) and hepatitis C virus (HCV) infections were the two major etiologies

of liver diseases that caused medical health and socioeconomic problems in Taiwan[3, 4].

Numerous studies have reported that hepatitis virus infection was related to the risk of type 2

diabetes mellitus (DM) and a higher percentage of patients with viral liver diseases had DM

than did those with other pathogenesis[5, 6].
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Insulin resistance is a pathological condition in which cells) fail to respond normally to

insulin; it is responsible for cardiometabolic disorders[7]. Common features in obesity and

DM are reduced insulin-stimulated glucose transport and metabolism in adipocytes and

impaired suppression of hepatic glucose output[8]. Adipocytes are among the most highly

insulin-responsive cell types[9]. Previous studies have suggested that increased adiposity was a

principal contributor to insulin resistance[10].

The association between hepatitis virus infection and insulin resistance has been published

previously[11, 12]. To our knowledge, no previous studies have explored the interaction

between hepatitis virus infections and adipose tissue. Our aim was to analyze whether hepatitis

virus infections including HCV, HBV and HCV/HBV coinfection would impact percent body

fat (PBF) in the general population composed of participants from the health examinations at

Tri-Service General Hospital (TSGH).

Methods

Study design

All analyzed patient characteristics were obtained from health examinations at Tri-Service

General Hospital (TSGH) from 2010 to 2016, including 69226 participants aged 20 years and

older. The study design met the requirements of the Helsinki Declaration and the design was

approved by the institutional review board of Tri-Service General Hospital. The institutional

review board of Tri-Service General Hospital waived the need to obtain individual informed

consent because the data were analyzed anonymously. Fig 1 presents the flow chart for each

step of the analysis. First, 20143 subjects lacking biochemistry data and serum hepatitis viral

markers, body composition measurements and self-reported medical histories were excluded.

Next, 49083 eligible participants were classified into four groups based on the presence of

HBsAg or anti-HCV: normal (HBsAg (-)/anti-HCV (-)), HBV (HBsAg (+)/anti-HCV (-)),

HCV (HBsAg (-)/anti-HCV (+)), and HBV/HCV coinfection (HBsAg (+)/anti-HCV (+)).

Then, the associations between hepatitis virus infections and anthropometric parameters were

tested in a multivariable linear regression model and a cross-sectional analysis. Finally, the

associations of hepatitis virus infections with fasting plasma glucose (FPG) and postprandial

plasma glucose (PPG) were investigated.

Examination of hepatitis B/C infection

Serum viral markers of hepatitis B surface antigen (HBsAg) and anti-HCV were tested during

the health examinations at Tri-Service General Hospital. Radioimmunoassay kits (Abbott Lab-

oratories, Chicago, IL, USA) were used for detecting HBsAg. Anti-HCV was detected by using

a 3rd-generation enzyme immunoassay (Abbott Laboratories).

Measurement of body composition

Body mass index (BMI) was used as an attempt to quantify the amount of tissue mass of an

individual and as a standard for recording obesity[13]. BMI was estimated based on the for-

mula of body mass divided by the square) of the height (kg/m2). Waist circumference (WC)

was measured using the smallest circumference between the lower ribs and iliac crests. Bioelec-

trical impedance analysis (BIA) is an effective, validated method for assessing body composi-

tion[14]. It is an alternative to more invasive and expensive methods such as dual-energy X-

ray absorptiometry, computerized tomography, or magnetic resonance imaging. In the present

study, we measured PBF and total lean mass (TLM) using BIA (InBody720, Biospace, Inc.,

Cerritos, CA, USA).

Association among hepatitis B and C virus and body fat
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Covariates measurement

Blood samples collected from subjects after fasting for at least 8 hours were used to analyze bio-

chemical laboratory data. FPG and PPG were measured using a glucose oxidase method. Total

cholesterol was measured by using an enzymatic colorimetric method. Other biochemical

parameters were measured by standard laboratory tests.

Statistical analysis

The Statistical Package for the Social Sciences, version18.0 (SPSS Inc., Chicago, IL, USA) for

Windows was used for statistical calculations. The differences between the various hepatitis

infection subgroups in terms of demographic information and biochemical data were tested

with the Student’s t test and Pearson’s chi-square test. The threshold for statistical significance

was defined by a two-sided p-value of� 0.05. The extend-model approach was applied for

multivariable adjustment for pertinent clinical variables. A multivariable linear regression

model was applied for associations between the various hepatitis infection subgroups and

anthropometric parameters and for the relationships between different hepatitis infection sub-

groups with FPG and PPG.

Fig 1. Flow chart of enrollment.

https://doi.org/10.1371/journal.pone.0200164.g001
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Results

Demographic characteristic of the study population

The characteristics of the study sample including age, body composition, laboratory data and

medical history are summarized in Table 1. The mean ages of the various subgroups were as

follows: Normal: 39.57±13.74 years; HCV: 44.18±13.73 years; HBV: 43.17±11.59 years; HCV/

HBV: 46.02±11.29 years. The HCV/HBV coinfection group had higher levels of FPG (97.17

±38.92 mg/dL), PPG (156.30±61.59 mg/dL), and prevalence of T2DM (6.4%) than other sub-

groups. Participants in the HCV group had higher PBF (28.86±7.25%) than did the other sub-

groups. All characteristic data showed significant differences, except serum for total

cholesterol, uric acid and history of smoking.

Association between hepatitis virus infections and anthropometric

parameters

The associations of hepatitis virus infections and PBF, WC and TLM were analyzed by multi-

variable linear regression model (Table 2). HCV, HBV and HCV/HBV coinfection had posi-

tive association with PBF, with β values of 0.578, 0.425 and 0.997 (95%CI = 0.215, 0.941; 0.094,

0.756; 0.175, 1.820), respectively, in the fully adjusted model. In particular, subjects with HCV/

HBV coinfection were more closely associated with PBF than were other subgroups. However,

no interaction was noted among the hepatitis virus infections groups with WC and TLM.

A gender difference in associations between hepatitis virus infections and anthropometric

parameters are displayed in Table 3. The previous results remained in the male population

with β values of 0.828, 0.464 and 1.445 (95%CI = 0.337, 1.318; 0.033, 0.895; 0.314, 2.577),

respectively, but not in the female population.

Table 1. Characteristics of study sample.

Variables Normal HCV HBV HCV+HBV P

Value

Continuous Variables, mean (SD)

Age (years) 39.57 (13.74) 44.18 (13.73) 43.17 (11.59) 46.02 (11.29) <0.001

Body mass index (kg/m2) 23.87 (4.07) 24.00 (3.97) 24.21 (4.04) 23.76 (4.01) <0.001

Percentage body fat (%) 28.23 (7.34) 28.86 (7.25) 27.96 (7.42) 28.33 (7.07) 0.045

Total cholesterol (mg/dL) 185.00 (35.59) 185.12 (36.60) 185.33 (33.39) 185.93 (35.65) 0.862

FPG (mg/dL) 92.68 (21.34) 93.53 (20.51) 94.31 (23.39) 97.17 (38.92) <0.001

PPG (mg/dL) 142.28 (51.09) 146.67 (51.31) 138.53 (48.81) 156.30 (61.59) 0.020

Uric acid (mg/dL) 5.54 (1.48) 5.57 (1.47) 5.59 (1.44) 5.57 (1.48) 0.359

Creatinine 0.81 (0.31) 0.83 (0.48) 0.83 (0.31) 0.81 (0.26) <0.001

AST (U/L) 20.15 (12.06) 20.83 (10.27) 24.97 (29.71) 22.36 (12.13) <0.001

Albumin (g/dL) 4.52 (0.29) 4.46 (0.27) 4.51 (0.30) 4,43 (0.28) <0.001

HsCRP (mg/dL) 0.24 (0.53) 0.26 (0.50) 0.19 (0.31) 0.17 (0.20) 0.007

Category Variables, (%)

Proteinuria 11820 (32.1) 556 (30.8) 1263 (29.7) 141 (33.3) 0.006

Pre-DM 4856 (11.6) 290 (13.7) 615 (13.2) 48 (10.5) 0.002

Type 2 DM 1481 (3.6) 85 (4.2) 196 (4.3) 24 (6.4) <0.001

Smoking 4017 (28.2) 329 (30.6) 501 (28.3) 58 (29.0) 0.570

Drinking 5936 (48.4) 491 (46.2) 647 (45.4) 86 (44.1) 0.010

https://doi.org/10.1371/journal.pone.0200164.t001
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Association of hepatitis virus infections with FPG and PPG

A linear regression model was applied to the association of hepatitis virus infections with FPG

and PPG (Table 4). Only HCV/HBV coinfection was closely associated with FPG and PPG, as

opposed to the other subgroups after multivariable adjustment with β values of 12.063 and

15.906 (95%CI = 7.110, 17.016; 2.875, 28.937), respectively.

Discussion

The present study highlighted the important role of the interaction of hepatitis virus infection

with obesity. Hepatitis virus infections such as HCV, HBV and HCV/HBV coinfection had a

positive relationship with increased PBF, especially in males. HCV/HBV coinfection was sig-

nificantly associated with increased FPG and PPG. This suggested that hepatitis virus infection

might influence the mechanisms of glucose uptake and might cause the development of adi-

posity accumulation. To the best of our knowledge, our study was the first to explore the asso-

ciation between hepatitis virus infection and adipose tissue by estimating anthropometric

parameters in a population-based cross-sectional study.

Previous studies examined the close relationship between liver diseases and glucose metab-

olisms. Interventions for DM such as pioglitazone, glucagon like peptide-1 (GLP-1), and

sodium-glucose cotransporter 2 inhibitor (SGLT2I) have been reported to provide benefits in

nonalcoholic steatohepatitis[15–17]. Allison et al. first reported that patients with HCV-related

cirrhosis had more T2DM than did those with cirrhosis from other etiologies[6]. Accumulated

clinical and experimental studies demonstrated that HCV directly contributed to perturbed

glucose metabolism, leading to both insulin resistance and diabetes[18, 19]. Glucose intoler-

ance was reported to be prevalent in patients with HBV[20]. In a large population-based study,

chronic HBV was associated with insulin resistance defined by HOMA-IR. Papatheodoridis

et al. observed that diabetes was present in more than 10% of patients diagnosed with hepatitis

virus infection without a significant difference between those with chronic hepatitis B or C

Table 2. Association between hepatic infection and anthropometric parameters.

Variables Model a 1

βb (95% CI)

P
Value

Model a 2

βb (95% CI)

P
Value

Model a 3

βb (95% CI)

P
Value

PBF
HCV 0.617 (0.249, 0.984) <0.001 0.580 (0.217, 0.944) 0.002 0.578 (0.215, 0.941) 0.002

HBV 0.399 (0.066, 0.732) 0.019 0.442 (0.111, 0.773) 0.009 0.425 (0.094, 0.756) 0.012

HCV+HBV 1.072 (0.240, 1.905) 0.012 0.984 (0.161, 1.807) 0.019 0.997 (0.175, 1.820) 0.018

WC
HCV 0.310 (-0.183, 0.803) 0.217 0.299 (-0.193, 0.792) 0.233 0.306 (-0.186, 0.798) 0.223

HBV 0.262 (-0.195, 0.718) 0.261 0.289 (-0.169, 0.747) 0.217 0.307 (-0.151, 0.765) 0.189

HCV+HBV 0.964 (-0.136, 2.063) 0.086 0.993 (-0.105, 2.092) 0.076 0.966 (-0.132, 2.063) 0.085

TLM
HCV -0.247 (-0.542, 0.049) 0.102 -0.239 (-0.533, 0.055) 0.111 -0.237 (-0.531, 0.056) 0.113

HBV -0.157 (-0.424, 0.111) 0.251 -0.151 (-0.418, 0.117) 0.271 -0.136 (-0.404, 0.131) 0.318

HCV+HBV -0.513 (-1.182, 0.157) 0.133 -0.509 (-1.176, 0.157) 0.134 -0.520 (-1.185, 0.146) 0.126

a Adjusted covariates:

Model 1 = age + gender + BMI

Model 2 = Model 1 + proteinuria, serum total cholesterol, uric acid, creatinine, AST, albumin, hsCRP

Model 3 = Model 2 + history of smoking, drinking
b β coefficients was interpreted as change of PBF, WC, and TLM for each increase in different hepatic infection

https://doi.org/10.1371/journal.pone.0200164.t002
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Table 4. Association between hepatic infection and FPG and PPG.

Variables Model a 1

βb (95% CI)

P
Value

Model a 2

βb (95% CI)

P
Value

Model a 3

βb (95% CI)

P
Value

Fasting plasma glucose
HCV 0.896 (-1.335, 3.126) 0.431 0.848 (-1.374, 3.069) 0.455 0.815 (-1.405, 3.035) 0.472

HBV -0.786 (-2.852, 1.279) 0.455 -0.997 (-3.066, 1.071) 0.344 -0.991 (-3.058, 1.075) 0.347

HCV+HBV 12.075 (7.100, 17.051) <0.001 12.278 (7.322, 17.235) <0.001 12.063 (7.110, 17.016) <0.001

Postprandial plasma glucose
HCV 0.919 (-4.852, 6.690) 0.755 0.884 (-4.829, 6.596) 0.762 0.784 (-4.925, 6.493) 0.788

HBV -3.230 (-8,164, 1.704) 0.199 -4.044 (-8.970, 0.882) 0.108 -4.277 (-9.202, 0.648) 0.089

HCV+HBV 16.457 (3.291, 29.624) 0.014 15.584 (2.545, 28.623) 0.019 15.906 (2.875, 28.937) 0.017

a Adjusted covariates:

Model 1 = age + gender + BMI

Model 2 = Model 1 + proteinuria, serum total cholesterol, uric acid, creatinine, AST, albumin, hsCRP

Model 3 = Model 2 + history of smoking, drinking
b β coefficients was interpreted as change of fasting plasma glucose and postprandial plasma glucose for each increase in different hepatic infection

https://doi.org/10.1371/journal.pone.0200164.t004

Table 3. Association between hepatic infection and anthropometric parameters in gender difference.

Gender Variables Model a 1

βb (95% CI)

P
Value

Model a 2

βb (95% CI)

P
Value

Model a 3

βb (95% CI)

P
Value

PBF

Male

HCV 0.845 (0.347, 1.343) <0.001 0.813 (0.321, 1.305) <0.001 0.828 (0.337, 1.318) <0.001

HBV 0.430 (-0.005, 0.866) 0.053 0.488 (0.056, 0.920) 0.027 0.464 (0.033, 0.895) 0.035

HCV+HBV 1.596 (0.448, 2.744) 0.006 1.453 (0.319, 2.588) 0.012 1.445 (0.314, 2.577) 0.012

Female

HCV 0.329 (-0.214, 0.873) 0.235 0.264 (-0.271, 0.800) 0.333 0.270 (-0.266, 0.806) 0.323

HBV 0.412 (-0.106, 0.930) 0.119 0.490 (-0.024, 1.003) 0.062 0.493 (-0.022, 1.007) 0.060

HCV+HBV 0.459 (0.744. 1.662) 0.454 0.364 (-0.820, 1.543) 0.546 0.371 (-0.814, 1.557) 0.539

WC

Male

HCV 0.413 (-0.181, 1.006) 0.173 0.413 (-0.180, 1.005) 0.172 0.416 (-0.176, 1.008) 0.168

HBV 0.133 (-0.396, 0.661) 0.622 0.113 (-0.417, 0.643) 0.676 0.125 (-0.405, 0.655) 0.644

HCV+HBV 1.437 (0.042, 2.832) 0.044 1.479 (0.085, 2.874) 0.038 1.438 (0.044, 2.832) 0.043

Female

HCV 0.163 (-0.659, 0.984) 0.698 0.136 (-0.685, 0.956) 0.746 0.164 (-0.657, 0.985) 0.695

HBV 0.301 (-0.505, 1.106) 0.465 0.426 (-0.382, 1.235) 0.301 0.461 (-0.348, 1.269) 0.264

HCV+HBV 0.430 (-1.299, 2.158) 0.626 0.392 (-1.131, 2.115) 0.656 0.372 (-1.349, 2.092) 0.672

TLM

Male

HCV -0.283 (-0.739, 0.172) 0.223 -0.282 (-0.736, 0.171) 0.222 -0.291 (-0.744, 0.162) 0.208

HBV -0.205 (-0.603, 0.193) 0.313 -0.207 (-0.606, 0.191) 0.308 -0.193 (-0.592, 0.205) 0.341

HCV+HBV -0.892 (-1.943, 0.159) 0.096 -0.830 (-1.877, 0.216) 0.120 -0.832 (-1.877, 0.214) 0.119

Female

HCV -0.225 (-0.541, 0.091) 0.163 -0.197 (-0.512, 0.118) 0.219 -0.183 (-0.497, 0.132) 0.255

HBV -0.238 (-0.539, 0.064) 0.123 -0.229 (-0.531, 0.073) 0.137 -0.215 (-0.517, 0.087) 0.163

HCV+HBV -0.098 (-0.798, 0.603) 0.785 -0.086 (-0.782, 0.610) 0.809 -0.103 (-0.798, 0.593) 0.773

a Adjusted covariates:

Model 1 = age + BMI

Model 2 = Model 1 + proteinuria, serum total cholesterol, uric acid, creatinine, AST, albumin, hsCRP

Model 3 = Model 2 + history of smoking, drinking
b β coefficients was interpreted as change of PBF, WC, and TLM for each increase in different hepatic infection

https://doi.org/10.1371/journal.pone.0200164.t003
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[12]. The exact mechanisms of HCV-induced insulin resistance were not determined, but

numerous potential viewpoints had been reported[21]. Impaired expression of insulin receptor

substrates was noted among patients with HCV[22]. Impaired insulin resistance signaling

pathways caused by HCV were included downregulation of PPARγ, activation of the mTOR/

S6K1 pathway, and increased secretion of TNF-α[23–25]. HCV infection also promoted the

expression of gluconeogenic genes resulting in glucose metabolic dysfunction, such as reduced

glucose uptake and increased plasma glucose[26].

Several studies have found a higher prevalence of glucose metabolism disturbances in

patients with HCV infection[27, 28]. Specifically, an increased risk for T2DM was noted in

patients with chronic HCV infection[29]. T2DM occurred in 14.5–33.0% of chronic HCV

patients[30, 31]. However, only 3.7% of participants were diagnosed with T2DM in the present

study. As seen in Table 4, HCV infections were not associated with glucose abnormalities. One

possible explanation for this was that all participants’ FPG levels were within normal range,

and a low prevalence of T2DM was found. Neverthelss, higher levels of FPG and PPG were

observed in HCV subjects than in the normal group. In addition, a higher prevalence of

T2DM was observed in the HCV group than in the normal group. Notably, HCV/HBV coin-

fection was closely associated with increased FPG and PPG in a relatively healthy population,

but there was no such association with HCV or HBV infection alone.

Insulin resistance was significantly related to adipose tissue, especially visceral adiposity

[32]. Eguchi et al. suggested that HCV infection potentially influenced glucose metabolism

regardless of the amount of visceral fat accumulation. Increasing visceral fat accumulation sig-

nificantly developed insulin resistance in HCV-infected patients[33]. Specific cytokines pro-

duced by visceral adipose tissue, such as leptin, adiponectin and inflammatory factors

including TNF-α and IL-6, might lead to insulin resistance[34]. This was consistent with our

findings that hepatitis virus infections were related to increased PBF. The mechanisms of the

interaction of body fat accumulation with HCV and HBV remained unknown and should be

investigated in further studies.

Gender difference were noted in the relationship between hepatitis virus infections and

PBF. Epidemiological studies revealed that chronic HBV and HCV infections progressed more

rapidly in males than in females[35, 36]. The predominant liver diseases tending to occur in

men and postmenopausal women were cirrhosis, nonalcoholic fatty liver disease (NAFLD)

and hepatocellular carcinoma (HCC)[37]. In a previous study, estradiol was suggested to have

a beneficial effect on the progression of chronic liver disease by suppressing hepatic fibrosis

and reducing hepatocyte apoptosis[38].

Although the large population-based sample analyzed in our study was a strength, there are

nevertheless several limitations. First, measurement of insulin resistance was absent in the

health examinations. This measurement might be more accurate to test the association of glu-

cose metabolism with hepatitis virus infection. Second, our data did not support a causal infer-

ence that might be drawn from a longitudinal survey, therefore such examination in the future

is needed. Third, a causative effect of hepatitis virus infection on PBF was not established in

the present study. Finally, we could not distinguish participants with spontaneously or thera-

peutically resolved HCV infection in this cross-sectional study based on past and medication

histories. Serum anti-HCV may persist over time, decrease slightly, or disappear gradually

after a few years in patients with spontaneously or therapeutically resolved infection[39]. The

measurement of anti-HCV was only performed once in our study rather than repeated several

times during a long-term follow-up. The diagnosis of chronic inactive HBsAg carrier status

was made based on the absence of HBeAg, repeated normal liver function, and even normal

histology on biopsy[40]. However, the examination of HBeAg or liver biopsy was unavailable

in the current study, such that we could not determine the difference between inactive carriers
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and chronic hepatitis patients. As seen in Table 1, the majority of participants with hepatitis B

infection had relatively normal liver function (AST: 24.97 U/L). It is tempting to speculate that

most of our participants were chronic inactive carriers, not chronic hepatitis patients.

Conclusion

Hepatitis virus infections including HCV, HBV and HCV/HBV coinfection were observed to

be closely associated with increased PBF in male patients. The plausible underlying pathophys-

iologic mechanism concerning these associations might be related to increased glycemic status.

Better recognition of the interactions between body composition and hepatitis virus infections

might provide useful data for treatments applied in obesity-related diseases.
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