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Pretreatment to terahertz 
absorption curves by narrow 
undulation constraint and Its 
quick implementation suggested 
by convex hull
Yizhang Li, Lingyu Liu, Ke Li, Zhongmin Wang*, Tianying Chang & Wenqing Xu

In this work, a method of pretreating THz absorption curve is proposed, which leads to minimal range 
in absorption, reserving necessary undulation of curve for identification by convolutional neural 
network. The kernel thought of proposed method is about confining the undulation of curve with a 
pair of narrow parallel lines and solving their optimal position by consecutively rotation of normalized 
curve at two fixed points. A fast algorithm is further proposed based on features of convex hull, 
whose procedure is described in detail. The algorithm involves definition of some important point 
sets, calculating and comparing slopes and determining best choice out of 4 potential rotations. The 
rationality of searching critical point is illustrated in a geometric way. Additionally, the adaption of the 
method is discussed and real examples are given to show the capacity of method to extract nonlinear 
information of a curve. The study suggests that methods regarding computer graphics also contributes 
to feature extraction with respect to THz curve and pattern recognition.

Terahertz time domain spectroscopy is widely used for material detection and  identification1–4. The curve of 
absorption or extinction coefficient is so related to the constituents of material that pattern recognition is con-
ducted in various  background5–9. Absorption peaks are not observed for pure substance with symmetrical molec-
ular structure (for example, polyethylene). Besides, the peaks are less observable due to overlaps of component 
spectrum. Therefore, machine learning is significant for data mining in investigations involving but not limited 
to herbs, meats, tea, cereals according to previous reports. It is suggested that pretreatment to curves benefits 
model performance and reducing difficulty for training a satisfactory model. The conventional pretreatment 
includes Savitzky-Golay smoothing, filtering in frequency domain, multivariate scattering correction (MSC) and 
etc., which reserve essential feature for identification but adjust the value at every frequency  sampling10–12. These 
algorithms assume the form of noise mathematically and all points are processed equally. However, the feature 
for identifying curves may be weakened and some parameter is empirically configured to obtain good results. In 
addition, methods involving computer graphics are seldom studied to bridge subsequent identification methods.

Convolutional neural network (CNN) has been employed to identify object in an image as an effective and a 
popular  model13–16. When CNN is associated with a terahertz curve, a conversion (or mapping) from THz curve 
to image is necessary before model training. The spectrum curve is viewed as a meaningful boundary in image to 
separate the upper part and lower part, which however, are meaningless because no actual value hits them. As a 
result, every pixel in an image participates in the training of CNN model. Compressing the range in absorption 
for given frequency band would meet the expectation of reducing computing cost, whereas the difficulty is to 
reserve essential features for identification. As is shown in Fig. 1a, a schematic THz curve has a range that equals 
the difference of offset1 and offset2. Line 2 and Line 1 are parallel lines with frequency axis, which indicate the 
upper and the lower bound in absorption. If another two parallel lines are used to confine curve, the undulation 
(difference in Y offset) between them changes (as is shown in Fig. 1b and Fig. 1c). Thus, we seek optimal parallel 
lines to confine curve with minimal distance and carry out shear transform to generate an image that accom-
modates the proceeded curve with minimal redundancy in Y direction (absorption dimension). Enlighted by 
the basic thought, the proposed method is named narrow undulation constraint (NUC).
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Figure 1.  Schematic of Narrow Undulation Constraint: (a) original undulation in Y-axis; (b) adjusted 
undulation in Y-axis; (c) minimal undulation in Y-axis. Fig. 1 include 3 cases showing different undulation 
constraints. In Fig. 1a, the curve is confined by two lines parallel to X-axis (frequency axis). In this case, 
undulation in Y-axis direction equals the difference of maximum and minimum. In Fig. 1b, the curve is 
confined by two parallel lines and every line has one intersection point with curve. In this case, the undulation 
of curve in Y-axis direction can be further compressed if two parallel lines rotate around the present intersection 
points. In Fig. 1c, the curve is confined by two optimal parallel lines, of which one has one intersection point 
and the other has more than one intersection points with curve. In this case, the undulation of curve in Y-axis 
direction can’t be compressed any more. Apply shear transformation to narrow band indicated by two parallel 
lines, the difference in Y offset of parallel lines turn to new range in Y axis, which allows fewer pixels to quantify 
change in absorption.
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In this study we propose an algorithm of NUC based on convex hull to fulfill optimal shear whose graphic 
annotation is provided to strengthen understanding of mathematic expression. It is believed that mathematic 
definitions are important for describing procedure of algorithm precisely but the rationality behind formulations 
is better accomplished via illustrations. It is suggested that methods regarding computer graphics is complemen-
tary to algebraic method in adjusting shape of curves, which may have an impact on THz spectrum analysis and 
facilitate applications of CNN models in THz curve identification.

Method
Formulation. Assuming we have a curve with N effective samplings (N ≥ 3) in frequency domain and the 
serial number of every point is determined by the ascending order of its frequency. The normalization is equiva-
lent to a combination of translation and zooming. Then, the shear transformation is equivalent to cropping area 
beyond one of parallel lines by subtracting Y coordinates of one parallel lines from the normalized curve. Thus, 
we need matrices to denote input, translation, zoom factor, which are denoted by XN×2, TN×2, Z2×2 by (1), (2), 
(3) respectively where the subscript (or subscript in parenthesis) indicates the size of matrix. The final output of 
algorithm is denoted by Y in (4) and the range of its second column is expected to fall as much as possible, which 
is already described in introduction section. It is our goal to optimize LN×2, the matrix to denote cropping line.

Fast algorithm. It’s sensible to determine both the direction of cropping line and one point it goes through 
so as to have numeric expression of L. In other words, the optimization on L is equivalent to a task of point 
searching since the straight cropping line is determined by some critical points in the curve. Assume that the 
direction of cropping line is indicated by θ , the acute angle between X-axis and cropping line. If the rotation from 
X-axis to cropping line is done counter clockwise, θ > 0 ; if the rotation is done clockwise, θ < 0 . It is reasonable 
to conclude that −0.5π < θ < 0.5π for all cases if cropping line are not orthogonal to X-axis.

The steps of algorithm are described in detail in this section and summarized in Fig. 2. Above all, the visu-
alization of algorithm is discussed in next section.

Step 1: Organize potential critical points by sets.
The local minimum and local maximum of original curve at fi are defined by (5) and (6) respectively. The 

bump point and the pit point at fi are defined by (7) and (8) respectively. Build sets including A,  A1,  A2, B,  B1 and 
 B2 according to (9), (10), (11), (12), (13), (14) respectively. It is easy to prove that  A1,  A2,  B1 and  B2 are mutually 
exclusive; A1 ⊂ A and B1 ⊂ B . For convenience, the element in set A and B are denoted by a and b respectively.
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Step 2: Record indexes for potential rotation centers based on Step 1.
The calculation of a1, a2, b1 and b2 is shown in (15), (16), (17), (18) respectively. Particularly, the expression 

‘min’ denotes the operation to get minimal value in the set while the expression ‘max’ denotes the operation to get 
maximal value in the set. P1 and P2 are both global maximum of the curve; Q1 and Q1 are both global minimum 
of the curve. In particular, P1 and P2 overlaps if Card(A1) = 1, thus a1 = a2; Q1 and Q2 overlaps if Card(B1) = 1, thus 
b1 = b2. The expression ‘Card’ means to obtain total number of elements in the set (cardinal number).

Step 3: Check if curve can be processed effectively by the algorithm.
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Figure 2.  Schematic of the fast algorithm. Fig. 2 consists of all steps described in fast algorithm section. Note 
that there is an ‘if-else’ statement in block diagram, whose effect is to check the adaption of method to current 
curve (discussed in detail in Discussion Part).
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Check if (a1−b2)(b1−a2) < 0. If this condition is met, the curve can be processed effectively. Just follow Step 
4–8 and Y = X, then restart from Step 1. If (a1-b2)(b1-a2) > 0, the current X would be final output.

Step 4: Normalize original curve and obtain coordinate in Euclidean Space.
The position of every point in Euclidean Space after normalization can be determined by (19) where the defi-

nition of matrix Z is found in (3). The coordinate of normalized points is a function of serial number indicated 
by (20) and (21). After normalization, the curve is inlaid into a square area defined by {(0,0), (1,0), (1,1), (0,1)} 
in Euclidean Space whose edge equals one. The normalized curve has at least one intersection point with every 
edge. It is important that the type of one point does not change after normalization because the normalization 
have no impact on the sorting of values. For example, one point is known as a bump point in original coordinate 
and it’s still a bump point after normalization although the coordinate values for two directions change. Such 
phenomena can be generalized to points marked as pit, local minimum, local maximum.

Obviously, according to our definition, we get y(a1) = y(a2) = 1 and y(b1) = y(b2) = 0.
Step 5: Calculate slope of probable edge of convex hull in Cartesian coordinate.
Four sets to accommodate potential edge point of convex hull are built according to (22), (23), (24) and (25), 

respectively. Set S, the union of 4 mutually exclusive subsets  S1,  S2,  S3 and  S4 (indicated by (26)), contains all 
the slope values for comparison. The specific definition of  S1,  S2,  S3 and  S4 is shown in (27), (28), (29) and (30) 
respectively. The slope between two points whose indexes are i and j is calculated according to (31) where 1 ≤ i, 
j ≤ N, i and j are integers.

Step 6: Mark potential rotation and critical points for distance check.
Serial number c1, c2, c3 and c4 are used to indicate points in the convex hull of the normalized curve, which 

play a role in further calculations. The stipulation of them are seen in (32), (33), (34) and (35) respectively.
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The coordinate of P1, P2, Q1, Q2 are confirmed depending on the rotation angle θ and rotation center. Assume 
parallel lines are named line1 and line 2 according to Y offset (offset2 > offset1). A universal rule to claim P1, P2, 
Q1, Q2 is described as follow:

Pi denotes point (the fixed rotation center or the critical point to be found) in line 1 and Qi denotes point (the 
fixed rotation center or the critical point to be found) in line 2. If critical edge of convex hull is determined by 
line 1 (in case 1 and case 2), Q1 and Q2 overlaps. If critical edge of convex hull is supposed to betermined by line 
2 (in case 3 and case 4), P1 and P2 overlaps. (x(a1), y(a1)) and (x(b2), y(b2)) are fixed as rotation center of line 2 
and line 1, respectively in both case 1 and case 4. As a contrast, (x(a2), y(a2)) and (x(b1), y(b1)) are fixed as rota-
tion center of line 2 and line 1, respectively in both case 2 and case 3. P1 lies to the left of P2 unless they overlap; 
Q1 lies to the left of Q2 unless they overlap.

A deduction of above-mentioned rule in 4 cases are described as follow:

Case 1 If point (x(a1), y(a1)) is fixed as rotation center, P1 is defined as P1(x(c1), y(c1)) and P2 is defined as P2(x(a1), 
y(a1)). Meanwhile, Q2 is defined as Q2(x(b2), y(b2)) and Q1 overlaps with Q2.

Case 2 If point (x(a2), y(a2)) is fixed as rotation center, P1 is defined as P1(x(a2), y(a2)) and P2 is defined as 
P2(x(c2), y(c2)). Meanwhile, Q1 is defined as Q1(x(b1), y(b1)) and Q2 overlaps with Q1.

Case 3 If point (x(b1), y(b1)) is fixed as rotation center, P2 is defined as P2(x(a2), y(a2)) and P1 overlaps with P2. 
Meanwhile, Q1 is defined as Q1(x(c3), y(c3)) and Q2 is defined as Q2(x(b1), y(b1)).

Case 4 If point (x(b2), y(b2)) is fixed as rotation center, P1 is defined as P1(x(a1), y(a1)) and P2 overlaps with P1. 
Meanwhile, Q1 is defined as Q1(x(b2), y(b2)) and Q2 is defined as Q2(x(c4), y(c4)).

Four possible rotation angles expressed by its tan function is found in (36).

Step 7: Determine optimal rotation on account of slopes and distance in Y direction.
Assume that the convex hull of curve will be confined by a pair of parallel lines that penetrate at least three 

points in its edge. The line with minor offset is named Line 1 and the other is named Line 2. The difference 
between offset of Line 2 and Line 1 is formulated by (37). The optimal Ry* is found in (38). Correspondingly, k* 
is determined according to (39). After comparing Ryi, only one case is reserved as the final result and the cor-
responding rotation centers are recorded.

Step 8: Adjust curve in original space according to previous calculation.
Line 1 is denoted by L in matrix. The offset of Line 1 in Y axis is calculated by (40). The equation of Line for the 

investigated internal is formulated according to (41). After obtaining L, we get the adjusted curve according to (4).

Geometric Interpretation. Given that the meaning of matrices, points and sets is abstract, we show how 
the algorithm is designed with help of figures. It’s necessary to claim that the ‘curve’ shall be understood as ‘pol-
ylines’ because of sampling and that a true curve does not exist in digital system. The polylines look as smooth 
as a curve if the change is not drastic in scale of sampling.

Assume there is a set of points S, and convex hull is the intersection of all convex sets containing  S17–19, which 
has been widely used in computer graphics. In a plane, a convex hull is the polygon with minimal area to cover 
all points. Some widely used convex hull algorithms are gift  wrapping20, Graham  scan21, quick  hull22, divide and 
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 conquer23 and monotone  chain24. A schematic of convex hull is presented in Fig. 3 that has 7 segments as edges 
in red. The example curve is connected by 16 segments in black and three of them overlaps with the edge of 
convex hull. According to local variation of curve, we build point set A,  A1,  A2, B,  B1,  B2 according to expressions 
in (9)–(14). The representative points are marked using blue arrows. The direction change between two adjacent 
edges of convex hull is not allowed to increase further for given set S. As a result, gift wrapping algorithm is 
designed to obtain convex hull. In Andrew’s  Algorithm24, the search of convex hull starts from point with extreme 
X or Y value, we develop this thought to process normalized curve, where both dimension difference and range 
difference in X and Y direction are removed. In Fig. 4, the normalized curve has intersections with segment 
D1D2 and OD3 that indicate the two parallel lines to confine undulation presently. In addition, the convex hull of 
polyline is a polygon that now locates in the square  OD1D2D3. In our work, we make use of convex hull to find 
optimal adjustment of curves by searching critical edges, however, we do not need to obtain entire convex hull. 
As a result, the proposed method is aimed at calculate convex hull.

As is mentioned, two parallel lines for reference are employed to confine undulation and one of them would 
coincide with one edge of convex hull since the continuous rotation of reference line centered at some point is 
like wrapping in Andrew’s Algorithm. In our algorithm, the parallel line determined by convex hull is described 
as ‘dominating parallel line’ and the other as ‘following parallel line’. The difference in offset of two parallel lines 
is the undulation we try to confine. Above all, to ensure wrapping is valid, we start from points with extreme Y 
values including (x(a1),1), (x(a2),1), (x(b2),0) and (x(b1),0) as fixed rotation center. The details are illustrated in 
Fig. 5 in 4 cases that correspond with the descriptions in ‘Fast Algorithm’ part.

In Fig. 5, the area of convex hull is depicted using a polygon in gray and the dominating parallel line is high-
lighted in blue. As the rotation direction is limited in 4 cases, we search another point to determine dominating 
parallel line by calculating the slope of line that penetrates (x(a1),1), (x(a2),1), (x(b2),0) and (x(b1),0), respectively. 
Due to the particularity of location of the fixed rotation centers, only a part of points is utilized, which reduces 
the calculation cost. The rejection subcases with respect to case 1 and case 3 are illustrated in Fig. 6, and the slope 

Figure 3.  Schematic of convex hull and critical points defined in this paper. Fig. 3 gives examples of bump, pit, 
local maximum, local minimum, global maximum, global minimum. Point with maximal x and minimal x (x 
can be replaced by serial number) set the right and left boundary of curve, respectively. In addition, points with 
consecutive serial number but same y value do not belong to any above-mentioned point set, which are not 
depicted in this figure. They are not employed in this algorithm and do not affect result either.

Figure 4.  Schematic of normalized curve in a square. In Fig. 4, the normalized curve is laid in a square which 
is defined by {(0,0), (0,1), (1,1), (1,0)}. The curve has one intersection point with  OD1 and  D2D3 respectively 
regardless of curve shape although the intersection point can be any of O(0,0), D1(0,1),  D2(1,1) and  D3(1,0). 
However, with the change of curve, one or more intersection points are allowed to find in  D1D2 and  OD3.
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calculation is omitted for the points mentioned. Therefore, we conduct set operations in Eq. (22) and Eq. (24). 
Similarly, some points can also be filtered before calculating slope in case 2 and case 4, which corresponds with 
regulations in Eq. (23) and Eq. (25). As an exception, the slope of lines parallel with Y axis are defined as 0, which 
does not conform to corresponding mathematic term. Once the cardinal number of  A3,  A4,  B3,  B4 reaches 1, the 
index ‘slope’ would be a number defined by one point itself. The treatment in Eq. (31) is to ensure robustness of 
algorithm.(Fig. 7).

However, confine all points within band determined by convex hull is not always successful if only one 
parallel line is considered (in Fig. 5a and Fig. 5c, at least one vertice of convex hull lies beyond the band). Thus, 
we need to select the appropriate rotation (indicated by k*) from candidate ones (ki*). The undulation in Y-axis 
between parallel lines (offset difference in Y-axis, denoted by Ryi) is derived according to Fig. 8. Note that the 
difference between Ryi and 1 is proportional to the absolute tan of angle. Thus, the four Ryi indicates the utmost 
allowed rotation. Calculate Ry* and k* according to (38), (39) before deriving L based on slope and one point it 
goes through. In case 1 and case 4, the rotation center of line with minor offset (cropping line, line 1) in Y-axis 
is marked Q1; in case 2 and case 3, the rotation center of cropping line in Y-axis is marked Q2. After obtaining L, 
the curve is normalized reversely according to (4) and the range of undulation is reduced.

Results
An example based on a random curve (polylines made up by 21 points) is shown in Fig. 9 using (42) where the 
term ‘rand’ means a random value within interval [0,1]. As is seen, the fluctuation attached to rising trend is 
extracted and the resultant range is confined within local undulation indicated by random function. Note that 
the proposed method is not aimed at removing straight base line because the value of proceeded curve at every 
frequency sampling is no longer the random values employed in original X.

Figure 5.  Schematic of searching critical edge of convex hull. Fig. 5 involves 4 cases to search critical edge of 
convex hull, which starts by rotating line that go through the point in northwest, northeast, southwest, southeast 
as the rotation center, respectively. The gray polygon indicates the area that a typical convex hull covers. Imagine 
θ changes continuously from 0 for both parallel lines and if |θ| is big enough, a region formed by one of parallel 
lines and part of convex hull is found, proving that at least one vertice of convex hull lie beyond the narrow 
band. As the processed undulation change monotonically with θ, we just calculate extreme cases and select the 
optimal one out of four. One critical point to determine parallel lines belong to set  A3  A4  B3  B4 respectively in 4 
cases, respectively. The other critical point is (x(a1),1), (x(a2),1) (x(b2),0) and (x(b1),0) for 4 cases.
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Examples based on 3 real THz curves (extinction coefficient of colla corii asini, a well-known Chinese tradi-
tional medicine) are shown in Fig. 10 to show cases with more points. Given complex chemical constituents of 
individual samples and test errors, 3 samples have similar profiles but different details. As is seen, the range in 
Y axis of all curves are notably reduced after processing, and the difference between curves are magnified. Thus, 
more pixels can be employed to reflect detailed difference rather than supplementary area. Besides, the Y value of 
processed curve would be no less than 0 and the minimum of processed curve in Fig. 10b is marked by an arrow.

Although THz spectrum is predicted as a fingerprint spectrum, notable peaks are not observed for many cases, 
especially in tests on mixture as the spectra of various components overlap. As the example mentioned, colla corii 
asini is also named Ejiao in China, which is produced by boiling donkey hide as well as auxiliary materials and the 

Figure 6.  Rejection subcases in searching critical points: rotating line with 0 < θ < 0.5π in case 1 and case 4: (a) 
any local minimum (b) any internal point aligned in curve (c) any pit. Fig. 6 shows why some points are ignored 
during calculating slopes. According to Fig. 6, with the increasing of θ, solid black line would coincide with 
blue dash line first and with blue solid line then, indicating  Pi loses its qualification as a vertice in convex hull 
of curve. As a special case where red dash line coincides with blue dash line (not depicted),  Pi-1,  Pi,  Pi+1 would 
contribute to the same k1

* and  Pi is also not a vertice in convex hull.

Figure 7.  Rejection subcases in searching critical points: rotating line with −0.5π < θ < 0 in case 2 and case 
3: (a) any local maximum (b) any internal point aligned in curve (c) any bump. According to Fig. 7, with the 
decreasing of θ, solid black line would coincide with blue dash line first and with blue solid line then, indicating 
 Pi loses its qualification as a vertice in convex hull of curve. As a special case where red dash line coincides with 
blue dash line (not depicted),  Pi-1,  Pi,  Pi+1 would contribute to the same k3

* and  Pi is also not a vertice in convex 
hull.
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chemical compound is very complex. A number of researchers focus on identify mixture without notable feature 
in THz band. NUC makes it possible to extract undulation for identification while removing overall linear trend 
that contributes to large range in absorption, therefore reducing pixels required for CNN model. An estimation 
can be made that original curve with 50 frequency samplings and absorption range of 0.045 need 50 × 450 = 22500 
pixels according to Fig. 10a if range of 0.01 in absorption is quantified using 100 pixels. However, with the same 
ration of value to pixel, only 50 × 50 = 2500 pixels are needed to build a CNN model according to Fig. 10b.

(42)X =











0 0+ rand
...

...
19 19+ rand
20 20+ rand











Figure 8.  Calculation of distance between parallel lines in Y-axis: (a) Ry1 or Ry4 (b) Ry2 or Ry3. The calculation 
of Ryi in Case 1 and case 4 (i.e., i = 1 or 4) is shown in Fig. 8a ; the calculation of Ryi in Case 2 and case 3 (i.e., i = 2 
or 3) is shown in Fig. 8b. It is easy to get (37) with elementary geometry and trigonometric function.

Figure 9.  An NUC example based on simulated curve: (a) plot or simulated curve (b) plot of processed curve. 
The simulated curve is about a straight line with addictive white noise. After executing NUC, a similar noise 
figure is extracted for further study. Note that the algorithm is not used to remove line function but to highlight 
undulation.
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Discussion
It is important to discuss the adaption of NUC before using it to pretreat THz curves. We start the discussion by 
analyzing necessary conditions for reasoning.

All of calculations are based on the convex hull of normalized curve. Therefore, the algorithm does not adapt 
to cases where convex hull does not exist (all points are in a line). This is seldom found in real practice because 
of random error and various values at multiple frequency. Thus, we assume the proposed method works for 
extracting undulation information if other condition is not considered.

In addition, the searching of point in convex hull is based on comparing slope and therefore it is important to 
assure that the slope can be calculated regardless of the shape of curve. All of points have different x coordinate 
before and after normalization. Consequently, the slope can’t approach infinity. Although the values at differ-
ent frequency may equal, the slope can’t be 0 if two different points are involved in calculation (the cardinal 
number exceeds 1) because that the searching scope is beyond a1, a2, b1, b2. P1, P2, Q1, Q2 belong to  A3,  A4,  B3, 
 B4, respectively, only if the curve goes through (0, 1), (1, 1), (0, 0), (1, 0), respectively. In other words, set  A3,  A4, 
 B3,  B4 contain one or more non-zero elements or contain only one element 0. In order to calculate in all cases, 
we expand the definition of slope in narrow sense but define piecewise function ‘slope’ according to (31). It is 
expected that at least one of the Ryi is minor than 1 because we want to reduce the undulation; the adaption is 
bad if Ry* ≥ 1. A detailed case study is listed in Table 1.

Figure 10.  An NUC example based on extinction coefficient of colla corii asini: (a) plot of original curves (b) 
plot of processed curves.  After excuting NUC, the undulation in Y-axis is reduced to only 1/9 of the original 
one. However, we do not assume the resultant curve as the standard spectrum. As is mentioned previously, the 
method is proposed for identification with CNN model at a low calculation cost.

Table 1.  Adaption analysis of algorithm: a case study by discussing numeric relationship between a1, a2, b1 and 
b2.

numeric relationship Ry1 = 1 + (b2-a1)·|k1*| Ry2 = 1 + (a2-b1)·|k2*| Ry3 = 1 + (a2-b1)·|k3*| Ry4 = 1 + (b2-a1)·|k4*| adaption

a1 < a2 < b1 < b2  ≥ 1  ≤ 1  ≤ 1  ≥ 1 good

a1 < b1 < a2 < b2  ≥ 1  ≥ 1  ≥ 1  ≥ 1 bad

a1 < b1 < b2 < a2  ≥ 1  ≥ 1  ≥ 1  ≥ 1 bad

b1 < b2 < a1 < a2  ≤ 1  ≥ 1  ≥ 1  ≤ 1 good

b1 < a1 < b2 < a2  ≥ 1  ≥ 1  ≥ 1  ≥ 1 bad

b1 < a1 < a2 < b2  ≥ 1  ≥ 1  ≥ 1  ≥ 1 bad

a1 = a2 < b1 < b2  ≥ 1  ≤ 1  ≤ 1  ≥ 1 good

b1 < a1 = a2 < b2  ≥ 1  ≥ 1  ≥ 1  ≥ 1 bad

b1 < b2 < a1 = a2  ≤ 1  ≥ 1  ≥ 1  ≤ 1 good

b1 = b2 < a1 < a2  ≤ 1  ≥ 1  ≥ 1  ≤ 1 good

a1 < b1 = b2 < a2  ≥ 1  ≥ 1  ≥ 1  ≥ 1 bad

a1 < a2 < b1 = b2  ≥ 1  ≤ 1  ≤ 1  ≥ 1 good

a1 = a2 < b1 = b2  ≥ 1  ≤ 1  ≤ 1  ≥ 1 good

b1 = b2 < a1 = a2  ≤ 1  ≥ 1  ≥ 1  ≤ 1 good
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As is found, if both b2 > a1, a2 > b1 are satisfied, the adaption is bad because Ryi ≥ 1 for i =∈ {1, 2, 3, 4} . When 
the above mentioned two expressions are neither satisfied, we would conclude b2 < a1 ≤ a2 < b1 that conflicts with 
b1 ≤ b2. If b2 < a1 and a2 > b1, k1* ≠ 0 and k4* ≠ 0 because a1 ≠ 1 and b2 ≠ N. Thus, Ry* < 1; if b2 > a1 and a2 < b1, k2* ≠ 0 
and k3* ≠ 0 because a2 ≠ N and b2 ≠ 1. In summarize, the algorithm adapts to process curves which are governed 
by (43). That’s the reason why a judgement is needed to check if the curve can be effectively processed by the 
algorithm. It turns out that after one shear transformation, the adjusted curve may be proceeded further as 
expression (43) is still met. Thus, one can iterate the process discussed above until expression (43) is no longer 
valid. The algorithm is destined to terminate after several circulations because every polygon has a dimension 
orthogonal to one of its edges, which is smaller than any other dimension.

The computation cost of algorithm is also concerned by potential users. The time required is tightly associate 
with shape of curve. Given number of points, the cost to obtain A,  A1,  A2 B,  B1,  B2 can be estimated. However, 
the cardinal number of  A3,  A4,  B3,  B4, would be greater for curves with drastic fluctuation than smooth curves, 
which may add pressure to slope calculation and comparison. Unlike other common methods to pretreat THz 
curve, including MSC, SG filter, median filter, the time cost varies notably.

The most suitable curves are estimated curves resemble that of colla corii asini, which have overall increasing 
or decreasing trend, large range but small local undulation relatively. After NUC, the range is compressed sig-
nificantly, which allows fewer pixels to present supplementary space if quantification of absorption change over 
pixel is fixed. Considering that the scattering by grains tend to cause uptrend baseline in experiments conducted 
by THz-TDS, featureless smooth curve of some materials may magnify their local fluctuation after NUC in finer 
level, make it possible to identify them with CNN models.

Conclusion
The conversion of THz spectroscopic data to 2-D image for CNN model can be achieved if a unit interval in 
absorption is quantified by definite number of pixels. Only a few pixels are hit by curve and the rest pixels do 
not provide effective information regarding curve shape. In order to reduce calculation cost of CNN, it is pos-
sible to reserve effective undulation and confine Y-range by adjusting curve in a normalized space and restore it 
into value-frequency space. Such operation is narrow undulation constraint (NUC), whose kernel thought is to 
confine curve with narrow parallel lines repeatedly and adjust range in Y by shear transformation.

A fast algorithm is proposed to achieve such goal whose kernel is searching critical points in the edge of con-
vex hull and comparing slopes. The algorithm, described in several steps, is further illustrated and discussed from 
aspect of its adaption to THz curve. A number of set and definitions are purposefully built in this work, which 
facilitates understanding of calculations. The study suggests that studies on computer graphics also contributes 
to pretreatment of THz wave, which may be ignored in previous studies.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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