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In order to understand how cellular metabolism has taken its modern form, the conservation and variations be-
tween metabolic pathways were evaluated by using a genetic algorithm (GA). The GA approach considered infor-
mation on the complete metabolism of the bacterium Escherichia coli K-12, as deposited in the KEGG database,
and the enzymes belonging to a particular pathway were transformed into enzymatic step sequences by using
the breadth-first search algorithm. These sequences represent contiguous enzymes linked to each other, based
on their catalytic activities as they are encoded in the Enzyme Commission numbers. In a posterior step, these
sequences were compared using a GA in an all-against-all (pairwise comparisons) approach. Individual reactions
were chosen based on their measure of fitness to act as parents of offspring, which constitute the new generation.
The sequences compared were used to construct a similarity matrix (of fitness values) that was then considered
to be clustered by using a k-medoids algorithm. A total of 34 clusters of conserved reactions were obtained, and
their sequences were finally aligned with a multiple-sequence alignment GA optimized to align all the reaction
sequences included in each group or cluster. From these comparisons, maps associated with the metabolism of
similar compounds also contained similar enzymatic step sequences, reinforcing the Patchwork Model for the
evolution of metabolism in E. coli K-12, an observation that can be expanded to other organisms, for which
there is metabolism information. Finally, our mapping of these reactions is discussed, with illustrations from a

particular case.

© 2015 Ortegon et al. Published by Elsevier B.V. on behalf of the Research Network of Computational and

Structural Biotechnology. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The study of the evolution of metabolism is fundamental to under-
standing the adaptive processes of cellular life, the emergence of high
levels of organization (multicellularity), the diversity of cellular organi-
zation in the three major domains of life, Archaea, Bacteria, and Eukarya,
and the complexity of the living world [4]. At present, the large scale of
information derived from genomics and proteomics studies has allowed
the construction of diverse databases devoted to organizing the
metabolic processes, such as the KEGG [21], and MetaCyc [5]. Therefore,
the information contained in these databases can be used to generate an
integrative perspective on cellular functioning.
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Metabolism can be considered one of the most ancient biological
networks; in such a network, the nodes represent substrates or
enzymes and the edges represent the relationships among them. From
a global perspective, the comparative analysis of metabolic pathways
aims to identify similarities and differences among them, providing
insights for the identification of evolutionary events, such as enzyme
recruitment and duplication events. In this regard, metabolic pathways
exhibit high retention of duplicates within functional modules and a
preferential biochemical coupling of reactions. This retention of dupli-
cates may result from the biochemical rules governing substrate-
enzyme-product relationships [1,8,14,19].

In this context, diverse studies have evaluated the variations among
pathways, both intra- and interspecies [7,27], comparing the pathways
based on their Enzyme Commission (EC) numbers and excluding infor-
mation on the compounds. In addition, a method of path-and-graph
matching has been proposed to query metabolic pathways based on a
predefined graph, where a similarity measure based on EC numbers
[30] and the distance between pathways as a combination of distances
between compounds and between enzymes associated with amino
acid biosynthesis networks are considered [11].
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In this work, we evaluated whether there are groups of similar reac-
tions in different pathways, which might suggest a transfer of enzymatic
activities, and whether these groups can be used to define common
and variable regions of an organism's metabolism. This analysis was
addressed using EC numbers, coded as a succession of reaction steps. To
this end the metabolic maps of the bacterium Escherichia coli K-12, as de-
posited in the KEGG database, were transformed into linear Enzymatic
Step Sequences (ESS), to be compared via a genetic algorithm (GA). The
sequences compared were used to construct a similarity matrix to identi-
fy groups of conserved reactions based on a k-medoids clustering analysis,
and then a multiple-sequence alignment (MSA) GA was optimized to
align all the reaction sequences included in a group. Finally, we consider
our comparisons in terms of the clues they provide in reinforcing the
Patchwork Model in the evolution of metabolism for E. coli K-12 and
probably for other organisms beyond this bacterium.

2. Methods
2.1. Construction of Enzymatic Step Sequences (ESS)

The KGML files (version 0.71) that describe the metabolic maps
(pathways) of E. coli K-12 as of June 2011 were downloaded from the
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KEGG database (Fig. 1). Pathways were transformed into linear ESS by
using the breadth-first search (BFS) algorithm [26], which infers the
closer neighbor of each enzyme by considering a common compound,
a substrate or product. In brief, a directed graphical representation of
each metabolic map was created in which the nodes represented
enzymes and the edges represented a shared substrate/product
between two enzymes. This representation takes into account the
reversibility of the reactions. Then, a group of BFS trees was generated
for each metabolic map from a set of initialization nodes, which were
used as roots. In this work, an initialization node was defined by two
criteria: (i) a node whose substrate is not catalyzed by another enzyme
in the metabolic map, and (ii) a node whose substrate comes from
another metabolic map and has two or fewer neighbors in the
graph. These criteria represent the metabolic input for each path-
way; the first criterion considers the substrates not created in the
same pathway, and the second one considers the connections with
other pathways. Each initialization node was used as a root for the
construction of a BFS tree. Thus, each tree was used as a guide for
the construction of the corresponding ESS. In this way, a BES tree
creates as many ESS as the number of branches it contains. Finally, the
first three levels of EC numbers are used to represent an enzyme as a
string or sequence (Fig. 1). ESS constructed per metabolic map

Generation of ESS using the BFS algorithm.
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Fig. 1. General strategy for the comparative analysis of E. coli K-12 metabolism. The metabolic maps from KEGG were converted to ESS by using the breadth first search (BFS) algorithm. For
each map a graphical representation was created, where nodes represent enzymes and edges are product-substrate relationships. Then, a set of initialization nodes was selected (green
arrowhead) as roots for BFS trees. Those trees were used as guide for ESS construction. Afterwards all the ESS were compared against each other by GA pairwise alignments. The similarities
among ESS were used to conduct a clustering analysis based on the k-medoids algorithm. Finally, clusters of similar sequences were aligned using an MSA approach.
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is shown in Fig. 2 and Table S1, with mean lengths + standard
deviation (SD).

2.2. Sequence Alignments Obtained via Genetic Algorithms

The proposed GA starts by creating a random initial population of
variable-length chromosomes, which represents the potential for alter-
native alignments. For each iteration or generation, the population
evolves by means of selection, crossover, and mutation. Here, a tourna-
ment selection that randomly selected a subset of individuals and chose
the best individual of each subset was used.

eco00010 -
eco00020
eco00030 -
eco00040
eco00051
eco00052
eco00053
eco00061
eco00071
eco00100
ec000130
ec000220
eco00240
eco00251
eco00252
eco00260
ec000271
eco00272
eco00280
eco00290
eco00300
eco00310
eco00330
eco00340
eco00360
eco00362
eco00380
eco00400
eco00410
eco00430
eco00450
eco00471
eco00473
eco00480
eco00500
ec000520
eco00521
eco00530
eco00540
eco00550
eco00561
eco00564 -
eco00603
eco00604 -
eco00620
eco00621 -
eco00629 -

Metabolic map

2.3. Crossover Operator

In this work, one-point crossovers were considered; however, it is
important to note that for crossover two alternative metabolic pathway
sequence alignments, they must be in general, of different sizes
(i.e. have a different number of columns). Then, this operator is used
to select a position in the first parent and the second parent is cut, keep-
ing in mind the EC numbers conserved for the left side of the first parent.
As shown in Fig. 3, offspring 1 is generated by combining the left of
parent 1 and the right of parent 2, inserting a gap in the first column
for the first three rows of the right side of parent 2. Offspring 2 is
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Fig. 2. Statistics for the ESS per metabolic map. Only the 45 metabolic maps that generate at least one sequence are shown. In the left panel, the number of ESS generated by the metabolic

map are shown; in the right panel, the distribution of lengths of those sequences is shown.
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Fig. 3. Crossover for MSA of metabolic pathways.

produced by combining the left side of parent 2 (inserting a gap at the
end of the last row) with the right side of parent 1. Thus, the EC numbers
are kept constant, and only gaps vary.

2.4. Mutation

A binary codification was used, where 1 represented an enzyme and
0 represented a gap. The gap insertion was highly penalized. The algo-
rithm was designed to find the best alignment with the maximum
score. Therefore, if the selected position is a gap, this can be extended
or reduced in one unit with an uniform probability; on the contrary, if
the selected position corresponds to an EC number, a gap is inserted.

2.5. Objective Function

Assessment of the quality of an alignment considers the column
homogeneity, with penalizations for gap insertions and column incre-
ments. Thus, the proposed objective function (O.F.) is composed of
three weighted terms, defined in Eq. (1):

0.F. = 0.9 Homogeneity+0.05 Gap Penalty+0.05 Column Increment.
(1)

2.6. Homogeneity

The sum of pairs is a popular criterion for column homogeneity
evaluation, as it assigns a cost to each pair of aligned codifications in
each column of an alignment (substitution cost) and a cost to gap inser-
tions (gap costs). The sum of these costs yields the global cost of the
alignment. In this work, rating the grade of diversity in the elements
of a given position (column) was evaluated as a measure of column
homogeneity.

The EC numbers (columns in the alignment) are represented by
three levels (subcolumns), evaluating the normalized entropy of each
level based on Shannon's entropy. These results are weighted, giving a
higher value to the first level. Gaps are considered one more symbol,
and a penalty is applied to compensate for the possibility of “false

homogeneity” indicated by a high number of gaps in a column. The
following equations give details for the evaluation of the homogeneity
of each column. Given alignment M, where m; is the jth column and
mjy, Mz, and mys are the three levels of the EC number represented by
m;:

H(mj) = O.6E<mj> + 0.4Gaps (mj) (2)
o) - )] o)

_ Number of Gaps
"~ Number of Sequences—1

Gaps (m j) (4)
where E(mj,) is the normalized entropy for the kth level of the jth col-
umn and ®;, ®,, and w3 have values of 15, 10 and 5, respectively.
Then, the entropy for each column is estimated as follows,

E(my) = =" cju(a) log, pye(a) (5)

where a I {all different symbols in column j} and,

il
pi(a) = 7%((1,) . (6)

The probability of symbol a in column jk is the ratio of the symbol a
counter in column jk and the sum of all symbol counters a’ (number of
sequences). Gaps are also considered as a symbol [9]. It is important to
mention that a column of only gaps is removed previously to objective
function evaluation. Thus, the homogeneity for the whole alignment is
given as,

iy
Homogeneity = & per of Columns
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2.7. Gap Penalty

The gaps concentration criterion is used to penalize the number of
gap blocks in the whole alignment. This criterion is defined as:

_Ses
GC = op (8)

where S is the average length of gap blocks and GP corresponds to the
total number of individual gaps in the alignment. It is important to men-
tion that initial and final gaps are not taken into account for the gaps
penalization. If there are no gaps in the alignment, the GC value is zero.

This criterion serves to reward alignments where gap codifications
are more concentrated, that is, where there are few larger blocks of
gaps rather than blocks of smaller lengths, in contrast to Equation 4,
which penalizes the number of gaps in a column. The column increment
term penalizes the addition of columns into the aligned matrix and is
defined as follows:

_G
=g 9)

where Cy is the length of the longest sequence in the unaligned matrix
and C; corresponds to the number of columns of the aligned matrix.
Thus, the defined objective function (O.F.) has to be minimized to attain
better alignments.

2.8. Clustering

The k-medoids algorithm is used to cluster the sequences previously
compared and included in the similarity matrix. The number of clusters
is settled by using the elbow criterion and plotting the cluster quality
from k = 2 to k = 100. A total of 20 replicates for each k value are eval-
uated, and the best result is selected. To define the cutoff for the cluster-
ing, the second derivative associated with this function is used, and
when k is maximized, this value represents the greater slope, i.e., the
greater difference between two k’ values.

3. Results
3.1. Construction of Enzymatic Step Sequences (ESS)

In order to evaluate the conserved and variable catalytic steps in
metabolic pathways of the bacterium E. coli K-12, a collection of ESS
was generated and compared using a GA. In this work, an ESS was
defined as a linear collection of consecutive enzymatic reactions from
a given substrate to a given product, similar to the method used for a
previously proposed definition of metabolic pathways [7]. Therefore,
each ESS was reconstructed by following subsequent reactions in each
metabolic map. The enzymes related to each reaction were represented
by using the first three levels of the EC classification to describe their
general type of chemical reaction, as previously suggested [17]. In
total, 452 ESS associated with 47 metabolic maps of E. coli K-12 were ob-
tained [21] (see Fig. 2 and also Table SI in the supplementary material).
From these, the average of sequences generated per metabolic map was
9.6 with an average length of 3.91 + 1.1 ESS, where the map associated
with pyruvate metabolism showed the highest number of ESS (145,
with an average length of 9 4- 2.27 steps), probably because it repre-
sents an intersection of key pathways of energy metabolism. The second
most frequent pathway corresponds to the glutamate map (39 ESS, with
an average length of 5 & 1.53 steps). Indeed, almost all maps considered
in this analysis generated ESS, and the pyruvate metabolism map
was also the map with the highest diversity of ESS. Finally, we found
5 pathways with only two ESS and 11 pathways with only one ESS.

Therefore, it seems that the numbers and lengths of sequences of
enzymatic steps depend on the size of the metabolic map and reflect

the number of alternative pathways that can be traced, beginning
from the start nodes, i.e., large metabolic maps generate more ESS
than small metabolic maps as a consequence of the complexity of the
map. In this regard, the pyruvate metabolism is represented by a com-
plex map, as it is the endproduct of glycolysis and the starting point
for gluconeogenesis, and it can be generated by transamination of
alanine. It can be converted by the pyruvate dehydrogenase complex
to acetyl-CoA [6,23,25,28], which can enter the TCA cycle or serve as
the starting point for the synthesis of long-chain fatty acids, steroids,
and ketone bodies.

3.2. Significance of ESS Alignments

To evaluate the significance of the alignments, 10 random sets of ESS
were constructed by shuffling the EC numbers from the real sequences,
where the length and the EC composition were conserved (Figure S1).
Because we were interested in evaluating the most significant scores,
a threshold of fitness of 0.4 that considers “X—30” was chosen, including
7.16% of the real ESS alignments. In contrast, an average of 0.34% +
0.029 of the total random sequence alignments were below the fitness
threshold of 0.4. According to these data, we expect an average of 30
ESS alignments included in our dataset to be possible false positives,
suggesting that GAs infer efficiently the significant and similar sequences.

Alternatively, we assessed the consistency of the GA approach in a
different scenario, one which considered a Dynamic Programing (DP)
Needleman-Wunsch algorithm for the pairwise alignment of ESS. This
algorithm uses the same objective function as the GA, minimizing the
score of the alignment. The DP algorithm exhibits a similar (Gumbel-
like) distribution as the GA fitness values, suggesting that our approach
is consistent with the previous results described (Figure S2).

3.3. ESS Comparisons Identify Groups of Similar Reactions in Different
Pathways

In order to evaluate the similarity of the metabolic maps for the bac-
terium E. coli K-12, 452 ESS were used to carry out all-against-all
pairwise alignments. Therefore, the GA previously described was
applied based on the objective function (O.F.), with which we evaluated
the entropy per column using a population of 100 chromosomes, a 1%
mutation rate and 90% crossover rate. Mutation is applied per individual
and it means that an individual will be mutated each generation. There-
fore, an individual in the population is a particular possible solution to
the ESS alignment. The algorithm was concluded when 20 generations
were reached with no changes in the objective function. Ten replicates
of the GA were performed, and the best result was chosen. The GA
evaluates the alignment by using a normalized entropy-based function
defined above in Eq. (1) (see the Methods section). Since the fitness
value is a measure of the entropy for each column in the alignment, a
value near 0 corresponds to an alignment with homogeneous columns,
i.e.,, columns containing similar EC numbers. Conversely, values near 1
correspond to alignments with columns that are less homogeneous,
i.e., columns containing dissimilar EC numbers. Therefore, the fitness
value is a measure of how similar two sequences are. Based on similarity
values from the all-against-all comparisons, a matrix that considered
the similarity (fitness) values of 452 vs 452 sequences was constructed.
This matrix was posteriorly analyzed by using the k-medoids algorithm
and identified groups with similar ESS that may share similar catalytic
properties. To determine the number of clusters (k) that could be gener-
ated, the elbow criterion was used. In addition, diverse k values were
used to construct different clusters: k = 21, 27, and 34, as these exhib-
ited the higher peaks in the analysis plot. As a criterion to discriminate
between the clustering at k = 21, 27, and 34, the clusters were
depurated, eliminating any sequence whose mean fitness with the
rest of the sequences of its cluster was above 0.4. After depuration, 93,
71, and 37 sequences were eliminated for k = 21, 27, and 34, respectively.
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In this way, we selected a k value of 34 to minimize the number of
sequences eliminated during depuration.

From this analysis, similar ESS associated with diverse pathways
were clustered together. For instance, the ESS constructed from the
pyruvate map were differentially clustered in nine groups with
sequences belonging to different pathways, including those for the
citrate cycle (TCA cycle), glycolysis/gluconeogenesis, and lysine, glycine,
serine, and threonine metabolism (Fig. 4). This finding correlates with
the fact that pyruvate is the endproduct at which diverse metabolic
pathways converge, including glycolysis, gluconeogenesis, and alanine
metabolism, among others. Based on these results, we suggest that
similar catalytic processes are required to metabolize different com-
pounds, to converge at a compound, probably by diverse recruitment
events, where the catalytic activity is preferentially coupled, as previous-
ly noticed using as the comparative the first two digits associated with
EC numbers [2,8,19]. In addition, some clusters are comprised almost
exclusively of sequences belonging to pyruvate metabolism, such as
clusters 7, 8, 13, and 15, which implies that some ESS have probably
been duplicated to increase this metabolic pathway and its product.

Alternatively, cluster 4 contains sequences from different maps re-
lated to lipid metabolism, including lipopolysaccharide, glycerolipid,
glycerophospholipid, and steroid metabolism, pyrimidine metabolism,
selenium amino acids, the pentose phosphate pathway, and galactose
metabolism. The similar catalytic activities in all these pathways suggest
the phenomenon of recruitment events. Finally, cluster 23 contains ex-
clusively ESS from the glycerolipid and glycerophospholipid metabolic
pathways, suggesting a common origin shared by these two metabolic
pathways. These results correlate with the origin of fatty acid metabo-
lism by gene duplication [8]. Thus, an ancestral pathway catalyzed by
both fatty acid degradation and biosynthesis could have originated in
a first step. The direction of this ancestral pathway would be dependent
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on the acyl carriers and fatty acids available, providing evidence of the
existence of two different pathways [8,15,19].

Similar results were observed in the ESS included in clusters 18, 24,
22, 25, and 30, which included reactions from diverse amino acid me-
tabolism pathways, whereas clusters 2, 11, 17, 21, 23, and 29 included
ESS from carbohydrate metabolism. In particular, clusters 17 and 21
included ESS belonging to galactose, starch, and sucrose metabolic path-
ways; cluster 12 included ESS from glycosphingolipid biosynthesis; and
cluster 21 included ESS from the galactose, pentose, sucrose, mannose,
and glycolysis/gluconeogenesis pathways. All these findings suggest
that the assimilation of these carbon sources involved identical
enzymatic processes that may have arisen from recruitment events,
according to the Patchwork Model of evolution.

3.4. Multiple Sequence Alignments (MSA) of Similar ESS

In order to maximize the identification of functional similarities
among sequences included in a common cluster, MSAs were performed
using a progressive GA alignment and an objective function based on
entropy. This function considered three main factors, determined
empirically, to evaluate the enzymatic number level (15, 10, or 5). The
progressive GA works as follows: the ESS are sorted according to their
similarity values, and this order is used to guide the sequence align-
ment, considering the more similar pair and adding a third one, and so
on. This algorithm increases column homogeneity among the sequences
aligned and penalizes the insertion of gaps; hence, the fitness function
has to be minimized to obtain better alignments. From this analysis, in
Fig. 5 we show the MSA of cluster 21. Cluster 21 contains 17 ESS from
five different maps related to carbohydrate metabolism: glycolysis/
gluconeogenesis, fructose and mannose metabolism, galactose metabo-
lism, the pentose phosphate pathway, and pentose and glucoronate
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Fig. 4. Distribution of ESS among the 34 identified clusters. Bars represent the number of sequences per cluster.



P. Ortegon et al. / Computational and Structural Biotechnology Journal 13 (2015) 277-285 283

@ 013 - Glycolysis / Gluconeogenesis

015 - Glycolysis / Gluconeogenesis

012 - Glycolysis / Gluconeogenesis

005 - Glycolysis / Gluconeogenesis

017 - Glycolysis / Gluconeogenesis

014 - Glycolysis / Gluconeogenesis

009 - Glycolysis / Gluconeogenesis

007 - Glycolysis / Gluconeogenesis

020 - Glycolysis / Gluconeogenesis

011 - Glycolysis / Gluconeogenesis

056 - Fructose and mannose metabolism
060 - Galactose metabolism

057 - Fructose and mannose metabolism
052 - Fructose and mannose metabolism
d 030 - Pentose phosphate pathway

(2Rep

040 - Pentose and glucuronate interconversions
037 - Pentose and glucuronate interconversions

YV 7 -
3131513 [271 271
- |27 271
313:513 |271

271
273

Fig. 5. MSA of the ESS included in cluster 21.

interconversions. In this cluster, columns 3 and 4 are identical in almost
all the sequences, suggesting a core of enzymatic reactions conserved
among all these pathways and a common metabolic mechanism used
to metabolize these carbohydrates. This core of ESS includes an isomer-
ization (EC 5.3.1) reaction followed by a phosphorylation (EC 2.7.1)
reaction, suggesting that these reactions are ancestral to all these path-
ways or that they were recruited in small catalytic modules [8], whereas
surrounding reactions could be added to increase the other metabolic
pathways.

Nevertheless, it is expected that similar enzymatic steps found in dif-
ferent metabolic maps actually represent different proteins. Therefore,
to examine this phenomenon, five ESS were selected from cluster 21
that represented each of the five metabolic maps, and the information
for protein sequences associated with each EC number was obtained.
Based on this approach, the ESS from the glycolysis/gluconeogenesis,
fructose and mannose metabolism, galactose metabolism, and pentose
and glucoronate metabolism pathways, representing different enzymes,
as shown in Fig. 6, were compared. Sequences representing the pentose
phosphate pathway are a subset of the glycolysis/gluconeogenesis path-
way; this is a consequence of how KEGG organizes and represents
graphically the metabolic maps. Therefore, the proposed method is
able to identify similar ESS assigned to different metabolic contexts.

Based on these data, it was suggested that the similar enzymatic
steps identified by this strategy may share a common origin, i.e., they
have been recruited from different pathways. To evaluate the probable
common origin of these enzymes, their amino acid sequences were
analyzed using the domain identification system based on Superfamily
database assignations [20]. In brief, Superfamily is a database devoted
to identification of structural domains at the level of the Superfamily.
This definition is based on the SCOP database classification [12].
Therefore, two proteins share a common ancestor if they contain
domains belonging to the same Superfamily. In Fig. 6 an illustrative
example is shown, with only the structural domains identified for at
least two enzymes in the alignment of enzymatic steps previously
described. From this analysis, three different structural domains were
identified as repeated in at least two enzymes in the alignment of
cluster 21: the actin-like ATPase domain, the aldolase domain, and
AraD/HMP-PK domain-like. Therefore, the enzymatic steps common
to the pathways included in cluster 21 may have been recruited poste-
rior to an event of gene duplication. In addition, similar enzymatic steps
identified in the glycolysis/gluconeognesis, fructose and mannose
metabolism, and pentose phosphate and glucuronate interconversion
metabolic maps (Glk, FucK, and XilB, respectively) and the different

evolutionary origins for some of their protein sequences suggest an
example of Patchwork Evolution [16], in which the ancestor of these
enzymes might be associated with diverse duplication events with
posterior recruitment to different metabolic pathways. The catalytic
activity associated with EC 2.7.1 was mainly recruited to perform a
link between two isomerization reactions with the EC numbers 5.x.x.

Based on this analysis we identified that three proteins (FbaB, FbaA,
and GatZ) share a common structural domain, identified by superfamily,
the aldolase domain, and two else (FucA and AraD) the AraD/HMO-PK
domain-like, which catalyze dissimilar reactions. These proteins might
represent two cases of divergent evolution, in which two enzymes
from a common ancestor diverged at different functions. Therefore,
according to our data, it is clear that convergent evolution events are
also frequently associated with enzymes devoted to metabolism; for
instance, four nonhomologous enzymes (Pgi, Fucl, Agal, and XylA)
catalyze the isomerization reaction 5.3.1.x, conserved in all the
sequences of the cluster. This finding correlates with previous reports
that showed that catalytic convergent evolution is a common
phenomenon [13,24,25].

Finally, it is interesting that in the case of the sequences representing
the fructose and mannose metabolism pathways and the pentose and
glucoronate metabolism pathways, the FucK-FucA and XylB-AraD
enzymatic steps are catalyzed by enzymes sharing a common structural
domain, suggesting that the approach described here is able to identify
probable patchwork events as well as duplication and convergent en-
zymes associated with the evolution of a microorganisms's metabolism.

4. Discussion and Conclusions

In general, two main approaches to compare metabolic pathways
have been proposed. In one approach entails methods based on the
alignment of complete or fragmented networks [3,10,18,22,29], that
take into account the structure of the metabolic network and integrate
more information about the system. However, an increase in complex-
ity also increases the computational cost, making it more difficult the
possibility to create multiple alignments. Via the other approach,
entailing methods based on the alignment of linear pathways [7,27];
and that was utilized in this work, the complexity of the comparisons
is reduced, and they can be executed and analyzed relatively easily.

In this regard, sequence alignment is a problem in bioinformatics
where it is important to identify conserved regions in a set of sequences,
and as a consequence, to find the differences between them based on a
criterion to assess the quality of an alignment. Thus, a GA was proposed
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Fig. 6. Structural domain assignment according to the Superfamily database for proteins aligned in cluster 21. In panel A, all of the enzymes in the aignment were mapped in the corre-
sponding metabolic map. Panel B are the results of the Superfamily domain assignations. Only the similar domains are indicated.

in order to optimize the quality criterion of potential alignments consid-
ering maximization of homogeneity and, at the same time, minimiza-
tion of gaps. The proposed GA used a variable binary representation of
individual enzymes (potential alignments) where 1 represents EC
numbers and 0 indicates the gaps.

In the present work, the strategy to transform enzymatic reaction se-
quences from a metabolic pathway allowed us to implement a sequence
alignment method in an efficient and easy fashion, where regions
sharing a similar succession of EC steps were identified, suggesting
common catalysis that is not easy to identify when using traditional
computational tools. The progressive GA proposed method has shown
efficient results, providing good alignments after less than 100 itera-
tions. These results allow us to make comparative studies of metabolic
pathways to elucidate the functions of newly discovered pathways,
increase our understanding of evolutionary traits, and identify potential
missing pathway elements. It is interesting that some of the enzymatic
steps common to various sequences may, indeed, represent the same

reactions, such as the first 10 sequences in Fig. 6, which have a different
representation of the same region of the map of the glycolysis/
gluconeogenesis pathway, although they represent the same reaction
sequence steps. Moreover, these sequences are not identical, and they
differ mainly in the beginnings or in the ends of the sequences. This
implies that the proposed method introduced in this paper may have
the capability to show alternative metabolic pathways not previously
described.

In summary, we consider that the strategy described in this work
allowed us to identify similar ESS from different metabolic maps, as
shown in Figs. 5 and 6. Thus, maps associated with the metabolism of
similar compounds also contain similar ESS, reinforcing the Patchwork
Model for studying the evolution of metabolism in E. coli K-12, where
similar consecutive enzymatic steps may have different origins, in
agreement with biochemical restrictions in enzymatic recruitment
[2,8], an observation that can be expanded to other organisms for
which metabolism information is available.
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