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Decisions bias future choices by modifying
hippocampal associative memories
Lennart Luettgau 1,2✉, Claus Tempelmann3, Luca Franziska Kaiser 1,2 & Gerhard Jocham1,2

Decision-making is guided by memories of option values. However, retrieving items from

memory renders them malleable. Here, we show that merely retrieving values from memory

and making a choice between options is sufficient both to induce changes to stimulus-reward

associations in the hippocampus and to bias future decision-making. After allowing partici-

pants to make repeated choices between reward-conditioned stimuli, in the absence of any

outcome, we observe that participants prefer stimuli they have previously chosen, and

neglect previously unchosen stimuli, over otherwise identical-valued options. Using functional

brain imaging, we show that decisions induce changes to hippocampal representations of

stimulus-outcome associations. These changes are correlated with future decision biases.

Our results indicate that choice-induced preference changes are partially driven by choice-

induced modification of memory representations and suggest that merely making a choice -

even without experiencing any outcomes - induces associative plasticity.
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According to neo-classical economic models of decision-
making, choices are guided by memories of option
values1. This unidirectional view has been challenged by

cognitive accounts of decision-making, suggesting that memory
representations of option values might themselves be subject to
changes induced by an agent’s choices. This suggests a bidirec-
tional relationship between value representations in memory and
decision-making1,2.

Even though real-life decisions often involve memory retrieval
of learned associations between reward-predictive cues and out-
comes, memory mechanisms underlying choice-induced pre-
ference changes have, to the best of our knowledge, never been
systematically studied1,3–5. This might be partially related to the
fact that most studies on choice-induced preference changes
employed direct presentation of the outcomes to be chosen.
However, this approach by design obliterates and confounds
underlying associative learning contributions to the revaluation
process6, and is blind to related memory processes, such as
retrieval competition7.

In naturalistic decision-making scenarios, choices often have to
be made without direct experience of feedback. Instead, decision
makers have to rely on relational knowledge of actions and out-
comes. Likely candidate mechanisms for behavioral adaptation
without direct external feedback are memory retrieval dynamics.
It is well established that retrieval of an item from memory, e.g. a
conditioned stimulus (CS) triggering retrieval of an associated
outcome, leads to improved remembering. However, memory for
competing items, e.g. another CS associated with the same out-
come, is impaired simultaneously7–9. Such retrieval-induced
forgetting8 would predict choice biases towards previously cho-
sen CS based on retrieval-related strengthening of CS–US asso-
ciation. However, the same effect would be predicted for a
previously presented, but unchosen CS, since both chosen and
unchosen CS activate neural populations representing the asso-
ciated outcome10–15. A recent theoretical framework16 suggests
nonmonotonic plasticity during associative memory retrieval:
Inactive memories remain unaltered, moderately activated asso-
ciative memories are weakened, and high activation strengthens
memories16. Translating this idea to memory-based decisions
between two CS, we assume that both CS will moderately activate
neural populations representing the associated outcome (as the
outcome is never presented). However, consistent with the find-
ing that chosen options receive higher attentional weighting than
unchosen options (as reflected in learning rates17,18), we further
assume that choices of a CS will induce additional activation of
the associated outcome, whereas this will not be the case for
unchosen CS, retaining an intermediate activation state of the
associated outcome. Thus, we hypothesize that choosing a CS will
strengthen the related stimulus-outcome association. Conversely,
not choosing a CS will weaken the respective stimulus-outcome
association. We expect that these choice-induced alterations of
the associative memory structure will result in subsequent pre-
ference changes.

We expect choice-induced preference changes to be driven by
modifications of stimulus-outcome associations in the hippo-
campus and lateral orbitofrontal cortex, two key regions for
storing and updating associative representations10,14.

Thus, the goal of the present study is twofold. First, we aim at
investigating how choice-related alterations of associative mem-
ories bias future decision-making. Second, we seek to investigate a
neurobiologically plausible mechanism underlying choice-
induced preference changes. To test our key predictions, we
designed a learning and decision-making paradigm which we use
in three independent behavioral experiments and one functional
magnetic resonance imaging (fMRI) experiment. For the fMRI
study, we exploit repetition suppression (RS) effects10,11,19–21 to

measure associative strength between conditioned (CS) and
unconditioned stimuli (US)10,14. Participants first establish Pav-
lovian associations between CS and differently valued US. Next,
in a choice-induced revaluation, participants make binary choices
between differently valued CS, without observing the associated
US. Finally, in a probe phase, where they make choices between
all possible CS combinations, participants show preference
increases for previously chosen, and preferences decreases for
previously unchosen CS, compared to otherwise equivalent CS.
These choice-induced alterations in decision behavior are
accompanied by corresponding changes in CS–US RS effects in
the hippocampus and lateral orbitofrontal cortex. Our findings
are corroborated by multivariate pattern similarity analyses (a
variant of representational similarity analysis, RSA22). Further-
more, the magnitude of the hippocampal RS effect correlates with
individual probe phase decision biases.

Results
Behavioral experiments. First, we detailed the behavioral choice-
induced revaluation effect in three independent experiments. In
each experiment, participants learnt associations between neu-
trally rated CS23 and three food items24 serving as unconditioned
stimuli (US, Fig. 1a). For each participant, the US were indivi-
dually chosen based on a prior rating of subjective preference,
and a low-value (US–), an intermediate-value (US0), and a high-
value (US+) food item was selected. Next, participants rated kanji
stimuli23 according to their subjective preference. Six of these
kanjis rated in close proximity to neutral were selected as CS for
Pavlovian learning. Two CS each were paired with one US,
resulting in three categories of differently valued CS: CSþA=B,
CS0A=B, and CS�A=B, for high-value, intermediate-value, and low-
value CS.

The Pavlovian learning phase was followed by choice-induced
revaluation. From two value categories, one CS each was selected,
and participants made binary choices between them, interspersed
with lure decisions between non-reward-predictive kanjis
(Fig. 1b). Crucially, no associated US were presented following
choices, excluding the possibility of alterations in strength of
stimulus-outcome associations due to directly experienced out-
comes. The choice-induced revaluation phase was followed by a
decision probe phase in which participants chose repeatedly
between all binary CS combinations to assess preferences (Fig. 1c).
Again, no outcomes were presented. The key comparison was
between CS presented during revaluation and CS from the same
value category that had not been presented.

Decisions are biased by past choices. There was evidence for
value transfer from US to CS across all studies (Fig. 1e–h), as
indicated by significant main effects of CS value on probe
phase choice probabilities (CP, all Fs > 94.99, Ps < 0.001, η2ps >
0.69, 1–βs > 0.99, repeated-measure analyses of variance, rmA-
NOVA). Decision-making during the revaluation phase had
clearly dissociable effects on choices during the probe phase. CS
that were chosen during the revaluation phase were more likely to
be selected during the later probe phase compared to the CS of
equal value that were not presented during choice-induced
revaluation.

In Experiment 1, participants (N= 40) made choices between
the intermediate-value CS0A and the high-value CSþA during the
choice-induced revaluation phase. As we had directed hypotheses
for the choice effects (increased CP for the previously chosen and
decreased CP for the previously unchosen CS), we used one-tailed
post hoc tests. In the probe phase, participants preferred CSþA ,
the previously selected stimulus, compared to CSþB (Z= 3.98,
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P < 0.001, Cohen’s U3= 0.85, Wilcoxon signed-rank test, one-
tailed). This effect was mainly driven by preference for CSþA
in pairwise within-category choice trials between CSþA and CSþB
(Z= 3.43, P < 0.001, Cohen’s U31= 0.69, one-sample Wilcoxon
signed-rank test vs. 0.5, one-tailed; Supplementary Fig. 2e).
Conversely, participants selected CS0A, the previously non-selected
stimulus, compared to CS0B less likely (Z= 1.97, P= 0.025, U3=
0.70, Wilcoxon signed-rank test, one-tailed). Again, this effect
was mainly driven by reduced choice of CS0A in pairwise within-
category choice trials contrasting CS0A and CS0B (Z= 2.05, P=
0.020, U31= 0.68, one-sample Wilcoxon signed-rank test vs. 0.5,
one-tailed; Supplementary Fig. 2e). The observed dissociation in
choice behavior was also evident in a significant interaction effect
of CS value × CS type (A or B): F2, 78= 10.01, P < 0.001, η2p =
0.20, 1–β > 0.99 (rmANOVA, Fig. 1e). Thus, compared to
equivalent CS, participants exhibited a systematic
preference for CS they had previously chosen, whereas they

displayed a diminished preference of CS they had previously not
chosen.

After having established that an intermediate value CS (CS0A)
could be devalued by non-choices, we next asked in Experiment 2,
whether we could induce the exact opposite — increased
preference for CS0A. Therefore, participants (N= 40) were
presented with decisions between intermediate-value CS0A and
low-value CS�A during the choice-induced revaluation phase.
Conceptually replicating the results of Experiment 1, participants
in Experiment 2 favored the previously chosen CS0A over CS0B
(Z= 2.20, P= 0.014, U3= 0.68, Wilcoxon signed-rank test, one-
tailed) during the decision probe, resulting from preference for
CS0A in pairwise within-category choice trials between CS0A and
CS0B (Z= 1.93, P= 0.027, U31= 0.68, one-sample Wilcoxon
signed-rank test vs. 0.5, one-tailed; Supplementary Fig. 2f).
Conversely, participants neglected CS�A compared to CS�B (Z=
1.91, P= 0.028, U3= 0.66, Wilcoxon signed-rank test, one-tailed),
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Fig. 1 Task schematic and behavioral results. a Participants rated subjective desirability of conditioned stimuli (CS, kanjis) and unconditioned stimuli (US,
food items). Kanji images were selected from an online database (https://www.kanjidatabase.com/)23. During Pavlovian conditioning, participants learned
to associate six CS with three US. Each US was associated with two CS. b Choice-induced revaluation: after Pavlovian conditioning, participants made
choices between CSþA versus CS0A (Experiments 1 and 5), CS0A versus CS�A (Experiment 2), CS0A versus either CS�A or CSþA (Experiment 3), and CSþ80 versus
CS080 or CSþ20 versus CS020 (Experiment 4), interleaved with lure decisions. c Decision probe: following choice-induced revaluation, participants made binary
choices between all possible combinations of CS, or CSþ80 versus CSþ20 and CS080 versus CS020 (Experiment 4), to assess preferences. d Attentional control
task performed during fMRI repetition suppression (Experiment 5). e–h Previously chosen CS (blue dots) are selected more often compared to equivalent
CS (black dots) in Experiment 1 (e, N= 40, Z= 3.98, P < 0.001, Cohen’s U3= 0.85, Wilcoxon signed-rank test, one-tailed), Experiment 2 (f, N= 40, Z=
2.20, P= 0.014, U3= 0.68, Wilcoxon signed-rank test, one-tailed), Experiment 5 (h, N= 42, Z= 3.03, P= 0.001, U3= 0.76, Wilcoxon signed-rank test,
one-tailed) and previously unchosen CS (yellow dots) are selected less often compared to equivalent CS (black dots) in Experiment 1 (e, N= 40, Z= 1.97,
P= 0.025, U3= 0.70, Wilcoxon signed-rank test, one-tailed) and Experiment 2 (f, N= 40, Z= 1.91, P= 0.028, U3= 0.66, Wilcoxon signed-rank test, one-
tailed) during decision probe. The effect is not present in Experiment 3 (g, N= 44, Z= 0.41, P= 0.680, U3= 0.55, Wilcoxon signed-rank test, two-tailed),
indicating that the roughly equal proportion of choices and non-choices of CS0A during revaluation had canceled each other out. i Behavioral control
experiment (Experiment 4), orthogonalizing contributions of go and no-go tagging and associative strength between CS and US to choice probabilities.
Previously chosen (go tag) and strongly associated CSþ80 is preferred over previously chosen and weakly associated CSþ20 (blue dots, N= 40, Z= 3.55, P <
0.001, U31= 0.75, 1–β > 0.99, one-sample Wilcoxon signed-rank test, one-tailed), while there is only descriptive evidence for preference of previously
unchosen (no-go tag) and strongly associated CS080 over previously unchosen and weakly associated CS020 (yellow dots, N= 40, Z= 0.61, P= 0.271, U31=
0.61, 1–β= 0.23, one-sample Wilcoxon signed-rank test, one-tailed). Box plot center lines represent sample medians and box bottom/top edges show
25th/75th percentile of the data, respectively. Source data are provided as a Source Data file.
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resulting from descriptively reduced preference for CS�A
in pairwise within-category choice trials between CS�A and CS�B
(Z= 1.41, P= 0.079, U31= 0.63, one-sample Wilcoxon signed-
rank test vs. 0.5, one-tailed; Supplementary Fig. 2f). Again, there
was a significant interaction effect of CS value × CS type (F2, 78=
4.84, P= 0.010, η2p = 0.11, 1–β > 0.99, rmANOVA, Fig. 1f)

indicating clearly dissociable choice behavior during the decision
probe. This pattern of results suggests a value-independent
mechanism of choice-induced revaluation.

These results so far show that choices and non-choices act in
opposite directions. Consequently, we predicted that choice-
induced preference increases and devaluation of CS0A would
cancel out. To test this prediction, in Experiment 3 (N= 44), we
presented an equal number of binary decisions between CS0A and
CS�A as between CS0A and CSþA during choice-induced revaluation.
Since choice-induced revaluation effects for CS0A should cancel
each other out, we did not have directed hypotheses for the choice
effects. We thus used two-tailed post hoc tests. As expected, there
was no evidence for change in preference for CS0A compared to
CS0B (Z= 0.41, P= 0.680, U3= 0.55, Wilcoxon signed-rank test,
two-tailed, Fig. 1g). Consistently, there was no evidence for CS0A
preference changes in pairwise within-category choices between
CS0A and CS0B (Z= 0.12, P= 0.905, U31= 0.57, one-sample
Wilcoxon signed-rank test vs. 0.5, two-tailed; Supplementary
Fig. 2g), suggesting that the effects of choices and non-choices
had indeed canceled each other out (interaction effect of CS
value × CS type: F2, 86= 1.31, P= 0.280, η2p = 0.03, 1–β= 0.71,
rmANOVA).

Importantly, the dissociations observed in choice behavior in
Experiments 1 and 2 rule out alternative accounts for explaining
choice behavior, such as extinction or mere exposure effects. Both
accounts would predict unidirectional preference changes for the
CS presented during choice-induced revaluation, independent of
the choices made (decreases or increases in preference, respec-
tively), which is incompatible with the present results.

However, an alternative explanation for the observed choice
pattern is that participants learned simple choice rules for the two
CS presented during the revaluation phase, akin to go tags for
chosen CS (“choose this stimulus”) and no-go tags for unchosen
CS (“do not choose this stimulus”). Accordingly, the observed
changes in preferences could be attributed to repeating such
choice heuristics acquired during revaluation. An additional
behavioral experiment (Experiment 4, N= 40) was specifically
designed to address this possibility. We orthogonalized contribu-
tions of associative strength and choice rule by letting participants
assign choice-induced go tags to two chosen CS+ that differed in
their associative strength to US+ (80% vs. 20% association) and
no-go tags to two unchosen CS0 that likewise differed in their
associative strength to US0 (80% vs. 20%). According to our
hypothesis (associative account), probe phase decisions are
guided by the learned associations and the strengthening/
weakening of this association during revaluation. Therefore, we
expected significantly increased CP for both highly associated
stimuli: CS080 should be preferred over CS020, and CSþ80 should be
preferred over CSþ20. Contrarily, if choice behavior was instead
exclusively driven by learned go and no-go tags (heuristic
account), both same-value pairwise CP should be at chance level
(CP= 0.50). Due to the directionality of our hypothesis, we used
one-tailed tests.

Importantly, there was no significant difference between
revaluation CP of CSþ80 versus CS080 and CSþ20 versus CS020 (Z=
1.19, P= 0.234, U3= 0.53, Wilcoxon signed-rank test, two-
tailed), ruling out unequal assignment of go and no-go tags
across CS pairs. We observed that participants favored the

previously chosen and strongly associated CSþ80 over the
previously chosen and weakly associated CSþ20 (Z= 3.55,
P < 0.001, U31= 0.75, 1–β > 0.99, one-sample Wilcoxon signed-
rank test, one-tailed). Descriptively, participants also tended to
favor the previously unchosen and strongly associated CS080 over
the previously unchosen and weakly associated CS020 (Z= 0.61,
P= 0.271, U31= 0.61, 1–β= 0.23, one-sample Wilcoxon signed-
rank test, one-tailed, Fig. 1i) during the decision probe phase.
This pattern of results favors an explanation based on associative
strengthening of the memory trace between CS+ and US+, rather
than on merely expressing a go tag. However, there is no definite
evidence against the alternative explanation that participants
learned a no-go tag for the unchosen stimuli. This asymmetric
expression of response tendencies might result from differential
acquisition of go and no-go choice rules, akin to well-described
Pavlovian biases25. Presumably, during high-value (CSþ80 vs. CS

þ
20)

choices, most participants used the learned CS–US associative
strength instead of go response tendencies to guide their
decisions, while this only tended to be the case for
intermediate-value (CS080 vs. CS020) choices (Median CP= 0.60).
Consistent with modeling and empirical evidence for asymmetric
action and inaction learning26, reverting the initially learned
action tendency for CSþ20 could have less of an impeding effect on
re-acquisition of a no-go response during decision probe, than re-
acquisition of a go response for CS080, which was initially learned
with an inaction choice rule.

For each experiment (Experiments 1, 2, 3, and 5), we compared
six reinforcement learning models27 that implemented different
ways by which participants could have learned CS–US associa-
tions—and updated associative strength during choice-induced
revaluation based on fictive reward prediction errors (RPE). The
fictive RPE were based on our reasoning that presentation of
CS during revaluation would lead to retrieval of the associated US
and strengthening/weakening of the chosen/unchosen CS–US
association, respectively. Our behavioral results were best
captured by a model that differentially updated the learned
CS–US associative strengths using fictive RPE elicited by
revaluation phase decisions (see Methods section and Supple-
mentary Table 1). Simulations using the best-fitting parameters
successfully reproduced the observed empirical choice pattern
(with the exception of the observed reduced CP of CS0B in
Experiment 5, Supplementary Fig. 1e–h). Thus, the best fitting
models likely incorporate candidate computational mechanisms
underlying the observed choice biases.

Choices modify univariate neural measures of stimulus-
outcome associations. Having established and replicated the
behavioral effect of choice-induced revaluation in three inde-
pendent behavioral samples, we next tested whether decisions
induce changes of neural representations of CS–US associations.
In Experiment 5, we used fMRI and leveraged RS effects10,11,19–21

to measure CS–US associative strength10,14. When a neural
ensemble is activated twice in brief succession (e.g. by rapid
sequential presentation of the same visual stimulus), the second
stimulus causes a diminished response. Accordingly, after learn-
ing the association between CS and US, the CS should elicit a
representation of its associated US. Thus, presentation of the US
itself, following the CS, should induce a diminished neural
response. If the association between CS and US has been wea-
kened by non-choices during revaluation, the CS is no longer
capable of evoking the US representation to the same degree and
should therefore elicit a stronger response (less RS). The same
logic in reverse applies when the association has been strength-
ened by choices during revaluation.
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As in the first three behavioral experiments, participants first
learned the six CS–US associations during Pavlovian learning.
Following Pavlovian learning, we administered two RS blocks,
one immediately before (PRE) and one immediately after (POST)
the choice-induced revaluation phase, where participants (N=
42) made binary choices between CS0A and CSþA . For the RS effects
during POST we had directed hypotheses (increased RS for the
previously chosen, and decreased RS for the previously unchosen
CS). Therefore, we used one-tailed post hoc tests. For the PRE
phase, as well as for the control RS effects of CS�A relative to CS�B ,
there was no such directed hypothesis and we used two-tailed
tests accordingly. Consistent with our hypothesis, we observed
both a decrease in RS for CS0A � US0 relative to CS0B �US0, and
an increase in RS between CSþA � USþ compared to CSþB � USþ

during POST but not during PRE (Z= 2.53, P= 0.006, U3= 0.67,
Wilcoxon signed-rank test, one-tailed) in the left hippocampus
(Fig. 2a). Detailed analyses showed that this effect was driven by
dissociable effects (interaction effect CS value and time (PRE or

POST), F1, 41= 4.51, P= 0.040, η2p = 0.10, 1–β= 0.99, rmA-

NOVA): we found decreased RS for CS0A (Z= 2.26, P= 0.012,
U31= 0.67, one-sample Wilcoxon signed-rank test, one-tailed)
and increased RS for CSþA (Z= 2.26, P= 0.012, U31= 0.69, one-
sample Wilcoxon signed-rank test, one-tailed) during POST,
without any evidence for non-zero differences in PRE (all Zs <
1.05, Ps > 0.296, U31 < 0.62, one-sample Wilcoxon signed-rank
tests, two-tailed) or for the control contrast of either CS�A or CS�B
(all Zs < 0.31, Ps > 0.760, U31 < 0.55, one-sample Wilcoxon
signed-rank tests, two-tailed, Fig. 2d). These effects arose from
(numerically) reduced RS elicited by CS0A and increased RS for
CSþA in separate analyses for CS0A − US0 and CSþA �USþ

(Supplementary Fig. 3, Supplementary Notes 2 and 3). Thus, CS
choices during choice-induced revaluation increased, whereas
non-choices decreased hippocampal CS–US associative strength.
However, while there was evidence for significant PRE–POST
reduction in RS for CS0A (Z= 1.84, P= 0.033, U3= 0.69,
Wilcoxon signed-rank test, one-tailed), the PRE–POST increase
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parameter estimates of the effect in left hippocampus (N= 42), showing an interaction effect of CS value and time (PRE or POST), F1, 41= 4.51, P= 0.040,
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rank tests, two-tailed). e Extracted parameter estimates of the effect in right lOFC (N= 42). The interaction effect of CS value and time (PRE or POST) was
significant, F1, 41= 5.57, P= 0.023, η2p = 0.12, 1–β= 0.99, rmANOVA. We found a significant PRE–POST reduction in repetition suppression for CS0A (Z=
1.77, P= 0.039, U3= 0.55, Wilcoxon signed-rank test, one-tailed), but no evidence of a PRE–POST increase in repetition suppression for CSþA (Z= 0.65,
P= 0.260, U3= 0.50, Wilcoxon signed-rank test, one-tailed). However, we found decreased repetition suppression for CS0A (Z= 1.74, P= 0.040, U31=
0.55, Wilcoxon signed-rank test, one-tailed) and increased repetition suppression for CSþA (Z= 2.68, P= 0.004, U31= 0.67, Wilcoxon signed-rank test,
one-tailed) during POST, without evidence for non-zero differences in PRE (all Zs < 1.77, Ps > 0.077, U31 < 0.62, Wilcoxon signed-rank tests, two-tailed).
Bar plots represent sample means. Error bars indicate standard errors of the means. Asterisks indicate P-values < 0.05, plus signs represent P-values >
0.05 and < 0.10. Color bars indicate Z-values. Source data are provided as a Source Data file.
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in RS for CSþA was not significant (Z= 1.48, P= 0.070, U3= 0.62,
Wilcoxon signed-rank test, one-tailed).

Furthermore, we found decreased RS for CS0A � US0 relative to
CS0B �US0 and increased RS for CSþA � USþ relative to CSþB �
USþ in the right lateral orbitofrontal cortex that survived small-
volume correction (Fig. 2b). Extraction of parameter estimates
from this cluster using an independent region of interest28

revealed that the interaction effect (CS value and time (PRE or
POST), F1, 41= 5.57, P= 0.023, η2p = 0.12, 1–β= 0.99, rmA-
NOVA) was driven by a significant PRE–POST reduction in RS
for CS0A (Fig. 2e, Z= 1.77, P= 0.039, U3= 0.55, Wilcoxon signed-
rank test, one-tailed) but not by a PRE–POST increase in RS CSþA
(Z= 0.65, P= 0.260, U3= 0.50, Wilcoxon signed-rank test, one-
tailed). However, we found decreased RS for CS0A (Z= 1.74, P=
0.040, U31= 0.55, Wilcoxon signed-rank test, one-tailed) and
increased RS for CSþA (Z= 2.68, P= 0.004, U31= 0.67, Wilcoxon
signed-rank test, one-tailed) during POST, without evidence for
non-zero RS in PRE (all Zs < 1.77, Ps > 0.077, U31 < 0.62,
Wilcoxon signed-rank tests, two-tailed).

Exploratory analyses at a lenient, uncorrected threshold (Z >
2.8, uncorrected) yielded clusters in the left ventral tegmental area
(VTA) and the right nucleus accumbens (NAcc, Fig. 2c). Both
effects were driven by significantly reduced RS for CS0A (VTA:
Z= 1.81, P= 0.035, U3= 0.79; NAcc: Z= 2.38, P= 0.009, U3=
0.64, Wilcoxon signed-rank tests, one-tailed), but only NAcc
showed evidence of increased RS for CSþA (VTA: Z= 0.41, P=
0.340, U3= 0.55; NAcc: Z= 1.53, P= 0.064, U3= 0.64, Wilcoxon
signed-rank tests, one-tailed). Overall, these RS results suggest
that decisions during choice-induced revaluation had clearly
dissociable effects on the neural representation of previously
learned CS–US associations: While the previously chosen CS
exhibited increased associative strength to its related US, the exact
opposite effect was true for the previously unchosen CS.
Importantly, the observed dissociation of choice-induced increase
of RS effects for CSþA and decrease of RS effects for CS0A and the
absence of PRE–POST differences of RS effects for the CS�A
relative to CS�B cannot be explained by general extinction effects
resulting from exposition to CS–US associations other than the
initially learned associations. Extinction would imply equidirec-
tional PRE–POST changes of all CS–US associations, which is
incompatible with the observed results.

Choice-induced decrease of multivariate neural pattern simi-
larity. Complementary to the mass-univariate RS-based
approach, we performed multivariate fMRI analyses, employing a
neural pattern similarity analysis22 in the left hippocampus and
right lateral OFC. Using the same logic as for the RS-based
analyses, we reasoned that presentation of a CS would activate
neural ensembles representing the associated US. This mnemonic
pre-activation should not only be present in trials where the CS
was followed by the originally learned US, but also in trials where
the CS was followed by any of the other two possible, but not
associatively linked US. Similarity of neural patterns related to
two CS from the same value category could thus be indicative of
associative memory retrieval of a US representation. According to
the idea of choice-induced weakening of CS0A association with
US0 and strengthening of CSþA association with US+, our
hypothesis therefore was that neural pattern similarity between
same-value stimulus–outcome pairs (CS0A �US�=CS0B � US�

and CS0A �USþ=CS0B � USþ; CSþA �US�=CSþB � US� and
CSþA � US0=CSþB � US0) should decrease from PRE to POST,
indicating less similarity between patterns of interest (i.e. the
weakened/strengthened CS and the respective same-value CS, see
Methods section for a detailed description). Therefore, we used

one-tailed tests accordingly. For the pairs of control stimuli
(CS�A � US0=CS�B �US0 and CS�A �USþ=CS�B � USþ), we did
not expect changes in neural pattern similarity and thus
employed two-tailed tests.

In the left hippocampus ROI, we observed negative PRE–POST
change in neural pattern similarity when averaging across all
patterns of interest (t41= 2.09, P= 0.021, U31= 0.64, 1–β= 0.63,
one-sample t-test, one-tailed) and for CSþA=CS

þ
B pairs (t41= 1.81,

P= 0.039, U31= 0.57, 1–β= 0.53, one-sample t-test, one-tailed),
but only a numerically decreased neural pattern similarity from
PRE to POST for CS0A=CS

0
B pairs (t41= 1.01, P= 0.144, U31=

0.50, 1–β= 0.28, one-sample t-test, one-tailed). Importantly,
change of neural pattern similarity for the control stimulus pairs
CS�A=CS

�
B was positive and not significant (t41= 0.76, P= 0.451,

U31= 0.57, 1–β= 0.12, one-sample t-test, two-tailed, Fig. 3a).
In the right lOFC ROI, we observed qualitatively similar results

as in the left hippocampus: There was significant negative
PRE–POST change in neural pattern similarity when averaging
across all patterns of interest (t41= 1.70, P= 0.049, U31= 0.62,
1–β= 0.40, one-sample t-test, one-tailed). However, there was no
evidence of significant change in pattern similarity for CSþA/CS

þ
B

pairs (t41= 1.23, P= 0.113, U31= 0.64, 1–β= 0.23, one-sample t-
test, one-tailed). There was also no evidence for decreased neural
pattern similarity from PRE to POST for CS0A=CS

0
B pairs (t41=

1.55, P= 0.061, U31= 0.62, 1–β= 0.13, one-sample t-test, one-
tailed). Only descriptively, both CSþA=CS

þ
B pairs and CS0A=CS

0
B

pairs became less similar from PRE to POST. The change of
neural pattern similarity for the control stimulus pairs CS�A=CS

�
B

was positive, but not significantly different from 0 (t41= 0.04,
P= 0.969, U31= 0.43, 1–β= 0.05, one-sample t-test, two-tailed,
Fig. 3b).

Taken together, these multivariate results conceptually confirm
the findings from the mass-univariate RS-based analyses and
further support the interpretation that the observed choice effects
could be explained by choice-induced changes of associative
strength. However, these results should be interpreted with
caution, as power was generally low (1–β < 0.80), most likely
resulting from the reduced number of trials included in the
analyses (40 trials per CS pair in PRE and POST). Additionally,
unlike our RS-based results, changes in neural pattern similarity
do not allow to infer the directionality of the effects (i.e. patterns
may become more dissimilar both due to strengthening or
weakening of the associative trace). Nevertheless, the results from
both sets of analyses provide convergent evidence for our
hypothesis that revaluation choices changed the degree to which
neural US representations were pre-activated by their
associated CS.

Hippocampal CS–US RS correlates with future choices. We
next investigated whether the observed choice-induced mod-
ifications of hippocampal CS–US RS were correlated with choice
biases during the probe phase. As in Experiments 1 and 2, we had
directed hypotheses for the choice effects and thus used one-tailed
post-hoc tests.

Unlike in Experiment 1, CS0A (unchosen stimulus during
revaluation) was not chosen less likely than CS0B in the decision
probe (Z= 1.01, P= 0.844, U3= 0.55, Wilcoxon signed-rank test,
one-tailed, Fig. 1h) in Experiment 5. Relatedly, there was no
evidence for preference differences in within-category
choice trials directly comparing CS0A and CS0B (Z= 1.07, P=
0.857, U31= 0.62, one-sample Wilcoxon signed-rank test vs. 0.5,
one-tailed; Supplementary Fig. 2h). To assess PRE–POST changes
of associative strength, participants had to be re-exposed to the
initially learned CS–US associations and were explicitly instructed
to judge whether the presented CS–US associations were correct.
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It is well established that restudying of memorized material
reverses retrieval-induced forgetting effects9,29. Thus, the
observed behavioral null effect for CS0A might be due to re-
exposure and restudy of the original CS–US association, allowing
the weakened association between CS0A � US0 to regain its
original associative strength.

However, replicating Experiment 1, we observed a choice-
induced increase in preference for CSþA over CSþB (Z= 3.03, P=
0.001, U3= 0.76, Wilcoxon signed-rank test, one-tailed, Fig. 1h).
This effect was mainly driven by preference for CSþA in within-
category choices contrasting CSþA and CSþB (Z= 1.93, P= 0.027,
U31= 0.62, one-sample Wilcoxon signed-rank test vs. 0.5, one-
tailed; Supplementary Fig. 2h). We therefore focused on this
effect in brain–behavior correlations. We hypothesized a positive
linear relationship between the difference between choice
probabilities of CSþA and CSþB and the magnitude of hippocampal
RS between CSþA � USþ and CSþB � USþ), and thus tested the
Spearman correlation coefficient one-tailed. The difference of
hippocampal RS between CSþA � USþ and CSþB � USþ was
positively correlated with the difference between choice prob-
abilities of CSþA and CSþB (ρ40= 0.31, P= 0.024, one-tailed;
Fig. 4b). The more hippocampal representations of the CSþA �
USþ association had been strengthened by choices during
revaluation, the more likely participants were to select CSþA
compared to its non-revalued partner stimulus CSþB .

Consistently, in a whole-brain analysis we observed a positive
relationship between the difference in choice preference for CSþA
versus CSþB and changes in CS–US RS from PRE to POST in the
left posterior hippocampus, extending to occipito-temporal
complex (Fig. 4c). A similar whole-brain analysis using only the

choices between CSþA and CSþB as behavioral covariate revealed
areas in the bilateral anterior insula and orbitofrontal cortex
(Supplementary Fig. 5b). Neither VTA, NAcc, nor the cluster in
the lateral orbitofrontal cortex showed relationships with probe
phase behavior.

An alternative explanation of our results is based on cached
values, a possibility that we address in the Supplementary
Methods, Supplementary Notes 1 and 4, and Supplementary
Fig. 4.

Discussion
Using a carefully designed paradigm, we show that decisions bias
future choices, even without participants directly experiencing the
outcomes of their decisions. Participants were more likely to
select CS they had previously chosen, and less likely to select CS
they had not chosen, compared to equivalent CS. At the neural
level, we found that choices induced alterations to hippocampal
and orbitofrontal representations of stimulus–outcome associa-
tions that were correlated with future decisions.

The idea that past decisions bias preferences was put forth
decades ago1,4 and evidence for post-decision revaluation has
accumulated since1–3,6 (see ref. 30 for critical discussion). Here,
we present behavioral evidence that reward-predictive CS that
were chosen in the past are more likely to be selected during
future choices, compared to CS of equal value that were not
presented. Conversely, we found decreased preferences for CS
that were not chosen in the past, compared to equivalent CS,
indicating bidirectional effects of choice-induced revaluation.
Most importantly, our behavioral findings are independent of
rewards, as participants never experienced the outcomes of their
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choices. This suggests that the observed effect could arise from
associative memory mechanisms, as also indicated by an addi-
tional control experiment designed to rule out the alternative
explanation that the observed choice biases could result from
learned choice heuristics. Additionally, computational models
implementing differentially updated CS–US associative strength
of chosen and unchosen options based on fictive prediction errors
explained our data best.

Our results are in line with previous reports of choice-induced
preference changes1,3,4,6 and conceptually replicate studies
showing changes in stimulus valuation by cued approach training
(CAT)5,31–33. Similar to the present approach, performance of a
button press (go response) upon presentation of go stimuli during
CAT induces long-term31 non-reinforced changes of desirability
of go stimuli over no-go stimuli. CAT effects are independent of
initial value of the stimuli and rely on integrity33 and activa-
tion5,31 of ventromedial prefrontal cortex, and interactions
between orbitofrontal cortex and ventral striatum31. Importantly,
the results of Experiment 4 suggest that choice-induced reva-
luation effects, at least for previously chosen options, seem to go
beyond a trained action tendency or choice rule (go response), as
observed in CAT.

As most previous studies have presented participants directly
with the choice outcomes and thereby confounded contributions
of memory and choice mechanisms, our study might be the first
to provide evidence for a value-independent associative memory
mechanism driving choice-induced preference changes. Further-
more, although associative memory dynamics are a likely candi-
date mechanism of choice-induced preference changes, the exact

neural mechanisms underlying this phenomenon have remained
unknown. Here, we provide evidence that past choices bias future
decision-making, in part by modifying the strength of neural
stimulus–outcome associations. The present results suggest that,
during decision-making, reactivation of stimulus–outcome asso-
ciations10,11,14,34, and making a choice renders them subject to
nonmonotonic plasticity16, with the association of the chosen
stimulus being strengthened, and the association of the unchosen
stimulus being diminished. Since both chosen and unchosen CS
activate neural populations representing the respective-associated
outcome10–15, we reason that the observed opposing decision
biases are presumably related to additional choice-induced acti-
vation of the chosen CS–US association, and absence of such
choice-induced activation of the unchosen CS–US associations.
Our results suggest that choices can act as self-generated teaching
signals18,35, dynamically altering stimulus–outcome associations
stored in memory. However, it should be noted that we did not
observe behavioral evidence for choice-induced weakening of the
unchosen CS–US association in Experiment 5. This might be due
to re-exposure to the initially learned CS–US associations during
the POST fMRI run, which presumably allowed the weakened
association between CS0A � US0 to regain its original associative
strength, in line with studies showing that restudying of mem-
orized material reverses retrieval-induced forgetting effects9,29.

Even though our data provide evidence for choice-induced
changes to associative strength, the current approach does not
allow to dissociate which exact features of the US contribute to RS
effects. As US value and identity are inextricably linked in our
experiment, the observed effects could be related to changes in
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CS-dependent pre-activation of identity-related or value-related
features of the US. However, both identity-related and value-
related features of the US are learned associatively in the present
study and are therefore likely retrieved in an associative fashion to
guide choices. Alternatively, the observed change in the hippo-
campal RS could be due to choice-induced alterations of CS
representations per se. However, changes of CS representation
cannot explain the specificity of RS signals to presentations of the
learnt CS–US associations, and, perhaps more importantly, can-
not account for the reversed directionality of RS effects depending
on choice during revaluation.

Our results suggest that merely making a choice induces
plasticity of associative representations in the hippocampus and
lateral OFC. In line with the present results, a fronto-
hippocampal network comprising hippocampus and lateral
OFC seems to be critically involved in reward-related updating of
stimulus–outcome associations14,28. Whereas the hippocampus
has been found to support relational learning and memory pro-
cesses, including value spread34 and factorized replay of event
trajectories36, the lateral OFC has been additionally implicated in
the resolution of credit-assignment problems in reinforcement
learning28,37.

Our study has at least three implications for current theories of
decision-making. First, it proposes a memory-based account for
choice-induced revaluation and, more broadly, choice history
bias, two well-known, but still poorly understood decision-
making phenomena. We show that choices are not only guided by
associative representations of value stored in memory, but that
decisions themselves dynamically transform associative mem-
ories. This suggests that relational structures constituting deci-
sion-makers’ cognitive maps38,39 can be distorted through their
very own choice behavior. Second, we provide evidence for
involvement of the hippocampus and lateral OFC in maintaining
and updating of stimulus–outcome associations. This extends
previous findings10,14,28,37 by describing a functional role of the
hippocampus in value-based decision-making that is independent
of experienced reward. Such a role may more closely resemble
naturalistic decision situations where consequences of choices
often unravel at distant future time points, rendering credit
assignment challenging28,37. Third, we provide a mechanism
underlying seemingly irrational choice behavior: Even though
participants chose between equivalent options, they were biased
to prefer chosen, and to neglect non-selected options. The latter
might have important implications for explaining subjective
preferences, especially in consumer choice behavior2 and in
understanding why humans tend to make coherent decisions,
even in conditions characterized by maladaptive choice behavior,
such as substance dependence or obsessive compulsive disorder.

Taken together, both our behavioral and neural results support
the key prediction that past choices bias future decision-making,
partially by altering hippocampal and orbitofrontal representa-
tions of stimulus–outcome associations. Our study provides a
memory-based mechanism for choice-induced preference change
effects1,3,4,6. The present study shows that merely retrieving
stimulus–outcome associations and making a choice is sufficient
to induce plasticity in reward-predictive associations stored in
memory.

Methods
Participants. Participants were recruited from the local student community of the
Otto von Guericke University Magdeburg and the Heinrich Heine University
Düsseldorf, Germany by public advertisements and via online announcements.
Only participants indicating no history of psychiatric or neurological disorder and
no regular intake of medication known to interact with the central nervous system
were included. Participants in all experiments had normal or corrected-to-normal
vision and did not report experience with Japanese kanjis or Chinese characters. All
participants provided informed written consent before participation and received

monetary compensation for taking part in the study. The study was approved by
the local ethics committee at the medical faculty of the Otto von Guericke Uni-
versity Magdeburg, Germany (February 2, 2018, reference number: 19/18) and
conducted in accordance with the Declaration of Helsinki.

Forty-nine young, healthy volunteers (age: M= 23.93, SD= 2.90 years, 18
males) participated in Experiment 1. Seven participants were excluded from
statistical analyses due to lacking engagement in the cover task during the
Pavlovian conditioning phase that served as an attentional control (<10% responses
in trials that required to indicate the color of the square surrounding the
conditioned stimuli. Two additional participants had to be excluded due to not
passing the manipulation check (high-value option selected <50% during choice-
induced revaluation), thus leaving a total of N= 40 participants for final analyses.

Sixty-four young, healthy volunteers (age: M= 23.47, SD= 3.79 years, 26
males), participated in Experiment 2. Ten participants were excluded from
statistical analyses due to lacking engagement in the cover task during the
Pavlovian conditioning phase, and 13 subjects were excluded due to not passing the
manipulation check (intermediate valued option selected <50% during choice-
induced revaluation), one additional participant had to be excluded due to a
technical error, leaving N= 40 participants for statistical analyses.

Sixty-one young, healthy volunteers (age: M= 23.26, SD= 3.27 years, 23
males), participated in Experiment 3. Ten participants were excluded from
statistical analyses due to lacking engagement in the cover task during the
Pavlovian conditioning phase, and six subjects were excluded due to not passing
the manipulation check (high-value option selected <50% during choice-induced
revaluation), one additional participant had to be excluded due to a technical error
(no data was recorded), leaving N= 44 participants for statistical analyses.

Fifty-two young, healthy volunteers (age: M= 22.06, SD= 3.69 years, 20
males), participated in Experiment 4. Twelve subjects were excluded due to not
passing the manipulation check (high-value option selected <50% during choice-
induced revaluation), leaving N= 40 participants for statistical analyses.

Fifty-eight young, healthy and magnetic resonance imaging (MRI)-compatible
volunteers (age: M= 24.61, SD= 4.01 years, 30 males) participated in Experiment
5 (functional MRI (fMRI) experiment). One participant fell asleep during the
POST revaluation fMRI-RS run, three participants discontinued the MRI
acquisition (one due to claustrophobia, two reported a headache during task
performance). Twelve additional subjects were excluded due to not passing the
manipulation check (high-value option selected <50% during choice-induced
revaluation), leaving N= 42 participants for statistical analyses.

Behavioral task—ratings. Participants received written instructions for the
experiment and were instructed once again on the computer screen. The experiments
were programmed in MATLAB 2012b (MATLAB and Statistics Toolbox Release
2012b, The MathWorks, Inc., Natick, MA, USA, v8.0.0.783), using Psychophysics
Toolbox40 (version 3) and MATLAB 2019a (v9.6.0.1072779). Before the task, parti-
cipants rated 25 different sweet and high-caloric food items selected from an online
database24. Subjects were instructed to indicate the subjective desirability of the food
items by using the “y” and “m” button on a standard German (QWERTZ) computer
keyboard to position a red slider bar on a white visual analog scale (VAS) between 0
(not liked) and 100 (very much liked). The lowest- (Experiment 1: M= 17.5, SD=
20.51; Experiment 2: M= 16.65, SD= 16.29; Experiment 3: M= 18.59, SD= 22.15;
Experiment 5: M= 20.41, SD= 20.44), and highest-rated (Experiment 1: M= 96.55,
SD= 7.10; Experiment 2: M= 94.85, SD= 9.08; Experiment 3: M= 95.21, SD=
14.52; Experiment 4: M= 96.63, SD= 6.62; Experiment 5: M= 97.79, SD= 4.96)
food item as well as a food item rated with the median value of all ratings (Experiment
1: M= 57.43, SD= 11.55; Experiment 2: M= 56.23, SD= 9.80; Experiment 3: M=
57.14, SD= 13.95; Experiment 4: M= 56.48, SD= 9.95; Experiment 5: M= 60.07,
SD= 11.71) were selected for Pavlovian conditioning. We explicitly decided for
clearly differentiable pictures of food items in order to elicit activation of differential
neural ensembles coding for those stimuli and to facilitate learning of vivid memories
of stimulus–outcome associations. Next, subjects rated 20 (11 in Experiment 1)
Japanese kanjis23 according to subjective value/liking by using the “y” and “m” button
on a standard computer keyboard to position a red slider bar on a VAS between 0
(not liked) and 100 (very much liked). The six kanjis rated closest to 50 (equivalent to
neutral) were selected and their order was randomized before being associated with
the food items in Pavlovian conditioning. The subjective values/liking of the six
selected kanjis did not differ significantly from each other in Experiments 1, 3, 4, and
5 (main effects of stimulus: all Fs < 1.14, Ps > 0.344, η2ps < 0.03, rmANOVA). However,

there was a main effect of stimulus in Experiment 2 (F5, 195= 2.65, P= 0.024, η2p =
0.064, rmANOVA), resulting from a significantly higher pre-rating for control sti-
mulus CSþA compared to control stimulus CSþB (t39 = 3.13, P= 0.003, paired-samples
t-test). More importantly, both critical pairs (CS– and CS0) did not differ significantly
(all ts < 0.79, Ps > 0.437, paired-samples t-tests).

Behavioral task—Pavlovian conditioning. Participants learned to associate the
selected kanjis (conditioned stimuli, CS) with differently valued outcomes
(unconditioned stimuli, US) by repeatedly observing one CS (2000 ms), followed by
an inter-stimulus interval (1000 ms) marked by a fixation cross, and presentation of
one US (2000 ms). Each trial was separated by an inter-trial-interval (ITI) marked
by a gray screen. The ITI per trial was drawn from a discretized γ-distribution
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(shape= 5, scale= 0.9) truncated for an effective range of values between 3000 and
8000 ms. Across all CS, CS–US couplings were interleaved with 20% CS–no-US
couplings. This was intended to create an association that would not rapidly
extinguish due to extinction effects related to not being presented with the asso-
ciated US during the subsequent choice phases. Each US was associated with two
different CS, resulting in three pairs of differently valued CS: CSþA=B, CS

0
A=B and

CS�A=B. Participants completed 180 trials (19 of the participants included in
Experiment 1 had performed 240 trials) of Pavlovian conditioning, 30 (40,
respectively) trials per CS–US association. In Experiment 4, participants performed
160 trials and learned associations between four neutrally rated CS and an inter-
mediate value outcome and a high value outcome (40 trials per CS–US association),
resulting in two pairs of differently valued CS: CSþ80, CS

þ
20 and CS080, CS

0
20.

Importantly, one of the two CS in each pair was followed by the outcome with a
probability of 80% (CSþ80 and CS080) while the other CS was followed by the US in
20% (CSþ20 and CS020) of the trials. The participants were presented with a cover
story for the experiment: They were told to imagine themselves in preparation for a
journey to Japan during which they would need to learn kanjis associated with
certain food items to be ready to select their favorite sweets in Japanese shops. As
an attentional control, we introduced a simple binary classification task, presenting
participants with a red or blue square surrounding the CS. Each CS was equally
often presented with a red or blue square and color of the square did not predict US
contingency. Subjects were instructed to react as quickly and as correctly as pos-
sible by pressing “y” upon seeing a blue square and pressing “m” upon seeing a red
square surrounding the CS. Pavlovian conditioning was split up in three blocks of
60 (80, respectively) trials, interleaved with self-paced breaks. In Experiment 5,
both ratings and Pavlovian conditioning were performed outside the MRI scanner.

Due to a coding error in the script creating pseudo-randomized reward
schedules in Experiment 1, 2, and 3 (which we spotted during setup of Experiment
4), CS were not followed by outcomes in exactly 80% of trials equivalently across all
CS. For each experiment, we had set up five different reward schedules, assigning
different outcome probabilities to each CS. In Experiment 1, participants received
the following outcome probabilities on average: CS�A (Probability: M= 0.80,
range= 0.70–0.87), CS�B (M= 0.78, range= 0.73–0.88), CS0A (M= 0.78, range=
0.70–0.87), CS0B (M= 0.78, range= 0.63–0.90), CSþA (M= 0.80, range= 0.70–0.90),
CSþB (M= 0.86, range= 0.73–0.93). In Experiment 2, participants received the
following outcome probabilities on average: CS�A (M= 0.80, range= 0.73–0.87),
CS�B (M= 0.76, range= 0.73–0.83), CS0A (M= 0.78, range= 0.70–0.87), CS0B (M=
0.78, range= 0.63–0.90), CSþA (M= 0.80, range= 0.70–0.90), CSþB (M= 0.88,
range= 0.83–0.93). In Experiment 3, participants received the following outcome
probabilities on average: CS�A (M= 0.80, range= 0.73–0.87), CS�B (M= 0.77,
range= 0.73–0.83), CS0A (M= 0.79, range= 0.70–0.87), CS0B (M= 0.77, range=
0.63–0.90), CSþA (M= 0.79, range= 0.70–0.90), CSþB (M= 0.88, range= 0.83–0.93).
It should be noted that these minor differences in outcome probabilities between CS
cannot account for the observed choice-induced revaluation effects, as the respective
chosen CS on average received less outcomes (CSþA in Experiment 1) than or an
equal number of outcomes (CS0A in Experiment 2) as their same-valued partner
stimuli. Contrarily, the respective unchosen CS on average received more outcomes
(CS�A in Experiment 2) than or an equal number of outcomes (CS0A in Experiment
1) as their same-valued partner stimuli. Thus, the outcome probabilities assigned to
each CS would have worked against the hypothesized effects. Consistently, there
were no significant correlations between the outcome probability during Pavlovian
conditioning and decision probe overall or pairwise within-category choice
probability (ρs < 0.29, Ps > 0.067, Spearman correlations, two-tailed). Importantly,
Experiment 5 was not affected from this error, as reward schedules were created
with a different script in which we correctly coded that each CS would be followed
by an outcome in 80% of the trials.

Behavioral task—choice-induced revaluation. After completion of Pavlovian
conditioning, participants were presented with repeated choices (28 trials) between
a CSþA versus a CS0A (Experiments 1 and 5), CS0A versus a CS�A (Experiment 2), a
CS0A versus either a CS�A (14 trials) or a CSþA (14 trials) (Experiment 3), or a CSþ80
versus a CS080 and a CSþ20 versus a CS020 (Experiments 4), interleaved with lure
decisions (28 trials) between four other neutrally rated kanjis that had never been
presented during Pavlovian learning and thus were not associated with any of the
US. The choice-induced revaluation phase served as the crucial manipulation in all
experiments and was systematically varied across studies. Choice probability (CP)
for the high-value CS served as a control for learning and as a manipulation check.
Only participants selecting the higher valued CS more than 50% (CP ≥ 0.50) were
included in the final analysis, as we reasoned that choice-induced revaluation
choices would (1) represent a marker of having learned the true associative values
of the CS, (2) be a measure for learning, independent of the actual decision probe
phase data (avoiding biased and arbitrary decisions for exclusion of participants),
and (3) allow us to exclude decision makers showing random, or arbitrary choice
behavior. Choice options were presented for 1500 ms and the chosen option was
highlighted by a gray square surrounding the chosen CS. If participants did not
respond within the time-window, a time-out message was displayed, and the
respective trial was repeated at the end of the choice-induced revaluation phase.
Order (left/right) of choice options was counterbalanced to avoid simple

response patterns or decision rules (e.g. “always press left”). Participants were
instructed to imagine themselves in a Japanese shop, where they would like to buy
their favorite food items based on the previously learned kanjis (CS). Participants
were told that one of the choice trials would randomly be drawn and their choice
would determine which food item (US) they would receive as a bonus upon
completion of the experiment. Participants selected choice options by pressing the
“y” (left option) or “m” (right option) button (left or right index finger on an MRI-
compatible response box in Experiment 5). Importantly, participants were not
presented with the US related to their chosen or unchosen CS to dissociate the
observed effects from outcome-related relearning of CS–US associations. We
assumed that presentation of a CS would pre-activate neural ensembles coding for
the associated US. Consequently, we expected that choosing a CS would induce
strengthening of the chosen option’s CS–US association, whereas not choosing a
CS would weaken the unchosen option’s CS–US association.

Behavioral task—decision probe. Following choice-induced revaluation, partici-
pants were presented with repeated binary choices (120 trials) between all possible
CS combinations to assess CS preferences. Every CS combination was presented
eight times in pseudo-random order. In Experiment 4, participants made choices
between the two same-value pairs of stimuli that were differently strong associated
to their respective outcomes (CSþ80 versus CS

þ
20 and CS080 versus CS

0
20). Here, every

CS pair was presented 10 times in pseudo-random order. Choice options were
presented for 1500 ms. If participants did not respond within this time-window, a
time-out message was displayed, and the respective trial was repeated at the end of
the decision probe phase. Participants selected choice options by pressing the “y”
(left option) or “m” (right option) button (left or right index finger on MR-
compatible response box in Experiment 5). Order (left/right) of choice options was
counterbalanced. Participants were instructed that their shopping bag was torn,
and they had to return to the shop for buying their favorite food items based on the
previously learned kanjis (CS). Again, participants were told that one of the choice
trials would randomly be drawn and their choice would determine which food item
(US) they would receive as a bonus upon completion of the experiment. Impor-
tantly, participants were again not presented with the US related to their chosen or
unchosen CS.

fMRI-RS task (Experiment 5). After Pavlovian conditioning outside the MRI-
scanner, we administered two fMRI-RS blocks, one immediately before (PRE) and
one immediately after (POST) the revaluation phase to assess choice-induced
effects of fMRI-RS. Every possible combination of CS and US (18 combinations)
was presented 20 times each (360 trials in total). In one-third of the trials, the
originally learned CS–US associations were presented, the remaining two-third of
trials contained incorrect CS–US associations. In every trial, a CS was presented for
700 ms, followed by an interstimulus interval (fixation cross) for 400 ms and a US
for 700 ms. The intertrial interval was drawn from a discretized γ-distribution
(shape= 2.01, scale= 1), truncated for an effective range of values between 2000
and 6000 ms. Order of trials was pseudo-random, between-trial repetition of CS or
US did not occur. Additionally, every batch of 18 trials contained every possible
combination of CS–US association to avoid comparison of temporally distal trials
and between-trial biases in RS introduced by, e.g. fluctuations of attention,
“novelty” or surprise. During both runs of fMRI-RS, participants performed an
attentional control task. After a pseudo-random 20% of trials, participants were
presented with probe trials in which they were asked to indicate whether or not the
previously seen CS–US-association matched the true CS–US-association learned
during Pavlovian conditioning via button presses with their right and left index
fingers on an MRI-compatible response box. Correct responses were rewarded
with 0.05€ and incorrect responses or time-out trials (without a response by
the participant within 2500 ms after onset of the probe trial) resulted in a 0.05€
penalty which would be summed up as a bonus upon completion of the experi-
ment. On average, participants earned a bonus of 5.93€ (SD= 1.05). Performance
during the attentional control task was generally high (overall probability of correct
answers, excluding time-out trials: M= 0.92, SD= 0.06 (t41= 41.54, P < 0.001,
one-sample t-test vs. chance level (0.5)), with no evidence for a difference in
performance between PRE and POST choice-induced revaluation run (PRE: M=
0.92, SD= 0.07; POST: M= 0.92, SD= 0.072; t41= 0.06, P= 0.95, paired-samples
t-test).

fMRI acquisition. Two runs of fMRI were recorded with a 3 Tesla Siemens
PRISMA MR-system (Siemens, Erlangen, Germany), using a 64-channel head coil.
Blood oxygenation level-dependent (BOLD) signals were acquired using a multi-
band accelerated T2*-weighted echo-planar imaging (EPI) sequence (multi-band
acceleration factor 2, repetition time (TR)= 2000 ms, echo time (TE)= 30 ms, flip
angle= 80°, field of view (FoV)= 220 mm, voxel size= 2.2 × 2.2 × 2.2 mm, no
gap). Per volume, 66 slices covering the whole brain, tilted by ~15° in z-direction
relative to the anterior–posterior commissure plane were acquired in interleaved
order. The first five volumes of the functional imaging time series were auto-
matically discarded to allow for T1 saturation. After each run, a B0 magnitude and
phase map was acquired to estimate field maps and B0 field distortion during
preprocessing (TR= 660 ms, TE 1= 4.92 ms, TE 2= 7.38 ms, flip angle= 60°,
FoV= 220 mm). Additionally, before the PRE choice-induced revaluation
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fMRI-RS run, a high-resolution three-dimensional T1-weighted anatomical map
(TR= 2500 ms, TE= 2.82 ms, FoV= 256 mm, flip angle= 7°, voxel size= 1 × 1 ×
1mm, 192 slices) covering the whole brain was obtained using a magnetization-
prepared rapid acquisition gradient echo (MPRAGE) sequence. This scan was used
as anatomical reference to the EPI data during the registration procedure.

Behavioral analyses. Data were analyzed in MATLAB 2012b (v8.0.0.783), 2017a
(v9.2.0.556344), and 2019a (v9.6.0.1072779) (The MathWorks, Inc., Natick, MA,
USA) using custom analysis scripts. For the manipulation check, indicating
learning of the CS–US-associations, average choice probabilities (CPs) for the
higher valued CS were calculated (one average in Experiments 1, 2, and 5, two
averages in Experiments 3 and 4) by summing up choices of the higher-valued CS
and dividing by the number of choice trials with a recorded response. This CP was
compared against the inclusion criterion of CP ≥ 0.50. If participants had chosen
the high-valued CS in more than 50% (or in exactly 50%) of the trials of choice-
induced revaluation, they were included in the final analyses. For the decision
probe phase, we computed an average overall CP per CS per subject including all
binary decisions in which the respective CS was present (count data, 1 representing
selection of the CS, 0 representing selection of the alternative CS). Lacking a non-
parametric alternative to the parametric two-way repeated-measures analysis of
variances (rmANOVA), distributions of mean overall CPs were analyzed at the
group level with a rmANOVA with factors CS valence (3) and stimulus type (2)
and post-hoc Wilcoxon sign-rank tests for paired samples, focusing on the pairwise
comparison of stimulus types within each level of valence. We hypothesized a main
effect of CS valence and an interaction effect of CS valence ⨯CS type (A vs. B),
resulting from higher CPs for previously chosen CS relative to the equivalent
control CS and lower CPs for previously unchosen CS relative to the equivalent
control CS (Experiments 1, 2, and 5). However, we expected absence/no
evidence for such an interaction effect in Experiment 3 in which a CS0A was
chosen and unchosen equally often (resulting in no change of the preference
relative to the control CS). Additionally, we performed one-sample Wilcoxon
sign-rank tests of overall CP against chance level (CP= 0.50). As an alternative
measure of choice preference in addition to overall CP, we also computed
pairwise choice probabilities by comparing choice ratios of the two CS within
each valence category with one-sample Wilcoxon sign-rank against chance level
(CP= 0.50).

Experiment 4 was specifically designed to rule out the possibility that
participants did not guide their choices based on (altered) associative strength
between CS and US but had simply learned choice rules for the two CS presented
during the revaluation phase (go tag for chosen CS, no go tag for unchosen CS).
We thus aimed to orthogonalize contributions of associative strength and choice
rule, by assigning go tags to the two chosen CS+ that differed in their associative
strength to US+ and no-go tags to the two unchosen CS0 that differed in their
associative strength to US0. Our hypothesis was that if choice behavior was
exclusively driven by these tags participants had learned, go tags for both
chosen CSþ80 and CSþ20 and no-go tags for both unchosen CS080 and CS020, there
should be no evidence for both same-value pairwise choice probabilities
different from chance level (CP= 0.50). However, if the choices were made
based on the learned associations and the associative strengthening/weakening
of the memory trace between CS and US, there should be a significantly
increased choice probability for CS080=CS

þ
80 that were more strongly associated

with their respective outcomes.
As we had formulated directional hypotheses for the choice effects, we

performed one-tailed (post-hoc) tests. In Experiment 3, there were no directional
hypotheses for the choice effects, therefore, we used two-tailed post-hoc tests. We
report effect sizes η2p for rmANOVAs, Cohen’s U3 for Wilcoxon signed-rank tests
and Cohen’s U31 for one-sample Wilcoxon signed-rank tests (range: 0–1, 0.5
indicating no effect), calculated in the MATLAB-based Measures-of-Effect-Size-
toolbox41. Based on the reported effect sizes η2p we additionally indicate post-hoc
achieved power (1–β) for the hypothesized interaction effects of CS valence ⨯ CS
type in rmANOVAs across behavioral analyses in Experiments 1, 2, 3, and 5. Based
on the means and standard deviations for both choice probabilities, we indicate
post-hoc achieved power for Experiment 4. All power analyses were conducted in
G*Power42,43 (v3.1.9.2).

Univariate fMRI data analysis. We exploited fMRI-RS effects (rapid, repeated
presentation of the same stimulus or pre-activation of a stimulus by associated
stimuli elicits reduced neural responses, as stimuli are represented by overlapping
neural ensembles19,20) to investigate choice-related changes in neural representa-
tions of CS–US associations. As conditioning enhances CS’s ability to pre-activate
neural ensembles coding for US, we expected a change of CS–US associative
strength, as measured by RS after choice-induced revaluation. Strong CS–US
associations should elicit high fMRI-RS effects (i.e. low activation), whereas weak
CS-US associations should elicit low fMRI-RS effects (i.e. high activation). We
expected decreased neural representations of CS–US associations for CSþA and
increased choice-related neural representations of CS–US associations for CS0A after
choice-induced revaluation.

All univariate fMRI analyses steps were performed using tools from the
functional magnetic resonance imaging of the brain (FMRIB) Software Library

(FSL, v6.0)44. Preprocessing included motion correction using rigid-body
registration to the central volume of the functional time series45, correction for
geometric distortions using the field maps and an n-dimensional phase-
unwrapping algorithm (B0 unwarping)46, slice timing correction using Hanning
windowed sinc interpolation, high-pass filtering using a Gaussian-weighted lines
filter of 1/100 Hz. EPI images were registered with the high-resolution brain images
and normalized into standard (MNI) space using affine linear registration
(boundary-based registration) as well as nonlinear registration47,48. Functional data
were spatially smoothed using a Gaussian filter with 6 mm full-width at half
maximum. We applied a conservative independent components analysis (ICA) to
identify and remove obvious artefacts. Independent components were manually
classified as signal or noise based on published guidelines49, and noise components
were removed from the functional time series. General linear models (GLMs) were
fitted into pre-whitened data space to account for local autocorrelations50. The
individual level (first level) GLM design matrix per run and participant included 22
box-car regressors in total. Eighteen regressors coded for onsets and durations of all
18 presented CS–US association trials (each modeled as single events of 1800 ms
duration), one regressor coded for onsets and durations of the three within-run
pauses (each 45 s), one regressor coded for onsets and durations of the attentional
control task probes, two regressors coded onsets and durations of left and right
button presses (delta stick functions on the recorded time of response button
presses) and the six volume-to-volume motion parameters from motion correction
during preprocessing were entered. Regressors were convolved with a
hemodynamic response function (γ-function, mean lag= 6 s, SD= 3 s). Each first
level GLM included five contrasts to estimate individual per run contrasts of
parameter estimates for (1) lower CS0A � US0 RS relative to the other equivalent
CS0B, controlling for all other combinations of CS0 presentations (Eq. (1)), (2)
higher CSþA � USþ RS relative to the other equivalent CSþB , controlling for all other
combinations of CS+ presentations (Eq. (2)), (3) higher CS�A RS relative to the
other equivalent CS�B , controlling for all other combinations of CS− presentations,
(4) Conjunction of (1) and (2), i.e. voxels coding for both decrease of CS0A � US0

RS and increase of CSþA � USþ RS (Eq. (3)), (5) right vs. left button press. Two
separate PRE and POST choice-induced revaluation second level (group level)
GLMs were carried out by submitting individual level parameter estimates to
mixed-effects statistics and ordinary least-squares (OLS) regression for higher-level
contrast of parameter estimates (COPE) estimation. To control for multiple
comparisons, cluster-based correction with an activation threshold of Z > 2.3 using
a cluster-extent threshold of P < 0.05 was applied at the whole-brain level.

The key tests for our hypothesis were focused on the effect of revaluation
choices on CS–US-associations during the POST run. The PRE run served as a
control to rule out potential baseline differences in RS for CS0A or CSþA .

A priori regions-of-interest (ROIs) comprised the lateral orbitofrontal cortex
(lOFC) and the hippocampus, as those regions have been implicated in
representation and adaptive changes of stimulus–outcome associations,
respectively10,14,21,28. We investigated POST choice-induced revaluation
conjunction effects (Eq. (3)) to identify regions involved in processing of choice-
induced changes to CS–US associations. An independent functional mask of a
contrast investigating stimulus–outcome associations from a previous study28

(restricted along the z-direction from –6 to –14 to constrain spatial extent), was
used for small-volume correction (PSVC) of the bilateral lOFC. The small-volume
corrected functional activation mask from the conjunction contrast was used to
extract contrast parameter estimates of the CS0A contrast and the CSþA contrast.
Additionally, an independent anatomical mask of the hippocampus
(Harvard–Oxford Atlas) was used to extract PRE and POST choice-induced
revaluation contrast parameter estimates of the CS0A contrast and the CSþA contrast.
PRE versus POST comparisons of activation were carried out using a repeated-
measures ANOVA and post-hoc Wilcoxon-sign rank tests. As we had formulated
directed hypotheses, and because parameter estimates were extracted from family-
wise error corrected ROIs, we used one-tailed post-hoc tests. We report effect sizes
η2p for rmANOVAs, Cohen’s U3 for Wilcoxon signed-rank tests and Cohen’s U31
for one-sample Wilcoxon signed-rank tests (range: 0–1, 0.5 indicating no effect),
calculated in the MATLAB-based Measures-of-Effect-Size-toolbox41. Based on the
reported effect sizes η2p we additionally indicate post-hoc achieved power (1–β) for
the hypothesized interaction effects of CS valence ⨯ time in rmANOVAs, calculated
with G*Power42,43 (v3.1.9.2). Additionally, we explored functional activation not
surviving whole-brain or small-volume family-wise error corrections by
thresholding activation maps at Z= 2.8 and extracting contrast estimates of the
CS0A contrast and the CSþA contrast for brain–behavioral correlations.

Extracted parameter estimates were additionally used for brain–behavioral
correlations using non-parametric Spearman correlations. For brain–behavior
correlations, we had the directed hypotheses that associative strength, as measured
by RS should be positively related to the difference between overall CP of CSþA and
overall CP CSþB and negatively related to difference between overall CP CS0A and
overall CP CS0B. Additionally, to refine our insights in the relationship of neural and
behavioral results, we also correlated RS with pairwise CP for CSþA versus CSþB ,
again assuming a positive relationship and pairwise CP for CS0A versus CS0B,
predicting a negative relationship. Due to our directed hypotheses, and because
parameter estimates were extracted from family-wise error corrected ROIs, we
performed one-tailed tests on Spearman correlation coefficients.
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Furthermore, whole-brain voxel-wise regressions were applied at the group level
for both PRE and POST run and also a group level analysis on the activation
change from PRE to POST run. We used demeaned individual behavioral
difference regressors of overall CP of CSþA – overall CP CSþB and overall CP
CS0A – overall CP CS0B and demeaned pairwise within-category CP of trials directly
comparing CSþA and CSþB and CS0A and CS0B, respectively.

Multivariate fMRI data analysis. Complementary to the univariate RS-based
approach, we performed confirmatory multivariate fMRI analyses, employing a
neural pattern similarity analysis (a variant of RSA22) in the left hippocampus and
right lateral OFC to further support the hypothesized associative strengthening/
weakening mechanism. As for the RS-based analyses we assumed that presentation
of a CS should induce pre-activation of neural ensembles coding the respective
associated US. This mnemonic pre-activation should not only be present in trials
where the CS was followed by the originally learned US, but also in trials where the
CS was followed by any of the other two possible, but not associatively linked US.
Similarity of neural patterns related to two CS from the same value category could
thus potentially be indicative of associative memory retrieval of a US representa-
tion. According to the idea of choice-induced weakening of the CS0A association
with US0 and strengthening of the CSþA association with US+, our hypothesis was
that neural similarity between same value stimulus–outcome pairs
(CS0A � US�=CS0B � US� and CS0A � USþ=CS0B � USþ; CSþA � US�=CSþB � US�

and CSþA � US0=CSþB � US0) should decrease from PRE to POST, indicating less
similarity between patterns of interest (i.e. the weakened/strengthened stimulus
and the respective partner stimulus). The assumption of decreased neural pattern
similarity for pairs of CSþA and CSþB as a result of choice-induced strengthening of
CSþA is based on two grounds. Firstly, we assumed that both CSþA and CSþB would
equivalently, and partially reinstate the pattern representing US+ during PRE, but
repeated retrieval of US+ and choice of CSþA should selectively strengthen the
association between CSþA and US+ during POST. Since CSþB is not presented during
revaluation and thus not actively rehearsed, the memory trace between CSþB and
US+ should be subject to passive decay, presumably resulting in a slightly wea-
kened association. Secondly, consistent with the literature on retrieval-induced
forgetting7–9, it is plausible to assume that actively retrieving the memory trace
between the target stimulus CSþA and US+ would additionally weaken the memory
trace between the competitor stimulus CSþB and US+. Both of the above
mechanisms would lead to a differentiation of the memory engrams encoding CSþA
and US+, and CSþB and US+ and should be reflected in diminished PRE to POST
similarity. For the pair of control stimuli (CS�A � US0=CS�B � US0 and
CS�A � USþ=CS�B � USþ), we did not expect changes in neural pattern similarity.

Preprocessing steps for multivariate fMRI analyses were identical as for
previously mentioned univariate fMRI analyses, with the only exception that the
functional imaging timeseries were not spatially smoothed. As for univariate fMRI
analyses, we applied a conservative ICA to identify and remove obvious artefacts.
GLMs were fitted into pre-whitened data space to account for local
autocorrelations50. The individual level (first level) GLM design matrix per run and
participant included 22 box-car regressors in total. Eighteen regressors coded for
onsets and durations of all 18 presented CS–US-association trials (each modeled as
single events of 1800ms duration), one regressor coded for onsets and durations of
the three within-run pauses (each 45 s), one regressor coded for onsets and
durations of the attentional control task probes, two regressors coded onsets and
durations of left and right button presses (delta stick functions on the recorded time
of response button presses) and the six volume-to-volume motion parameters from
motion correction during preprocessing were entered. Regressors were convolved
with a hemodynamic response function (γ-function, mean lag= 6 s, SD= 3 s). Each
first level GLM included one contrast to model activation related to each of the 18
presented CS–US-associations versus baseline (18 contrasts in total). The a priori
ROIs were built in MNI space and back-projected into subject native space using
inverse normalization parameters obtained from FSL during preprocessing
procedures. We used these individual ROIs for spatially constrained multivoxel
pattern extraction from the respective contrast t-value maps. Similarity-based
analyses were carried out using the MATLAB-based multivariate pattern analysis
toolbox CoSMoMVPA51. We employed 1−Pearson’s product–moment correlation
coefficient (1−r) as a measure of pairwise dissimilarity between neural patterns of
interest, separately for PRE and POST and the two ROIs. Within-subject pairwise
neural dissimilarity was subtracted from 1 (to create a measure of neural pattern
similarity) and Fisher-Z transformed to closer approximate normally distributed
data. We then calculated the within-subject PRE–POST change between the
resulting pairwise neural pattern similarity measures (POST r – PRE r, ΔPearson’s
r). As we had a directional hypothesis of negative PRE–POST change of both
CS0A=CS

0
B and CSþA=CS

þ
B and to increase the number of trials included in the

inference, we pooled neural pattern similarity measures across all patterns of
interest. Lastly, average neural similarity changes were analyzed at the group
level with one-sample t-tests against 0. Due to the expected negative effects of
neural pattern similarity changes in patterns of interest, we used one-tailed
tests accordingly. As there was no such directional hypothesis for the pairs of
CS�A=CS

�
B , we employed two-tailed tests. We report effect sizes Cohen’s U31 for

one-sample t-tests against 0 (range: 0–1, 0.5 indicating no effect), calculated in the
MATLAB-based Measures-of-Effect-Size-toolbox41. Based on the mean and

standard deviation of pattern similarity measures, we report post-hoc achieved
power of all analyses.

Univariate fMRI contrasts.
CS0A fMRI-RS contrast:

½2´ ðCS0A � US0 � CS0B �US0Þ� � ½ðCS0A � US� � CS0B � US�Þ
þ ðCS0A � USþ � CS0B � USþÞ� ð1Þ

CSþA fMRI-RS contrast:

½2 ´ ðCSþA � USþ � CSþB �USþÞ� � ½ðCSþA �US� � CSþB � US�Þ
þ ðCSþA � US0 � CSþB � US0Þ� ð2Þ

Conjunction fMRI-RS contrast:

½2´ ðCS0A � US0 � CS0B �US0Þ� � ½ðCS0A � US� � CS0B � US�Þ
þ ðCS0A � USþ � CS0B � USþÞ�

and

½2 ´ ðCSþA � USþ � CSþB �USþÞ� � ½ðCSþA �US� � CSþB � US�Þ
þ ðCSþA � US0 � CSþB � US0Þ�: ð3Þ

Computational models. To formally characterize behavior in experiments 1, 2, 3,
and 5, we fit six different variants of a reinforcement learning model using
Rescorla–Wagner-like delta update rules27. For each experiment, we compared the
six models that implemented different ways by which participants could have
learned CS–US associative strength—and updated associative strength during
choice-induced revaluation.

In model 1 (Pavlovian learning only), CS values are exclusively acquired during
Pavlovian learning, without any further update during the choice-induced
revaluation. On each trial, the value of the stimulus currently presented was
updated according to the following rule:

Vtþ1;i ¼ Vt;i þ αLearningðRt � Vt;iÞ ð4Þ
where αLearning is the learning rate, Vt,i is the value of the ith stimulus (1–6 for the
six CS), and Rt is the reward value of the US (0, 0.5, and 1 for low-value,
intermediate-value, and high-value outcome, respectively, and 0 if no outcome was
presented) in the Pavlovian conditioning phase. CS values were initialized at 0.5.
The estimated associative strength for each CS after the learning phase was directly
passed to a softmax choice rule (Eq. (6)), without further modulation of CS
associative strength by choice-induced revaluation.

Model 2 (Pavlovian learning and choice-induced revaluation, chosen CS)
acquired stimulus values during Pavlovian learning exactly like model 1, but
additionally updated CS–US associative strength by fictive reward prediction errors
elicited by decisions in the choice-induced revaluation phase. The fictive reward
prediction errors was based on our reasoning that presentation of CS during
revaluation would lead to retrieval of the associated US and that, consistent with
our hypothesis, stimulus–outcome association of the chosen CS would be
strengthened, whereas the association of the unchosen CS would be weakened,
resulting from nonmonotonic memory plasticity16. As no objective feedback (US)
was presented during choice-induced revaluation, the reward prediction could only
be derived by assuming associative retrieval. This model only updated associative
strength of the chosen, but not the unchosen CS.

Vtþ1;ch ¼ Vt;ch þ αchðRt;ch � Vt;chÞ ð5Þ
where αch is the choice revaluation learning rate scaling the impact of fictive reward
prediction errors elicited by fictive outcomes Rt,ch (1 for chosen CS and −1 for
unchosen CS) elicited by the US associated with each CS.

Model 3 (Pavlovian learning and choice-induced revaluation, chosen, and
unchosen CS) was set up to account for the possibility that updating of both the
chosen and unchosen CS association could occur during the choice-induced
revaluation. It was identical to model 2, with the exception that it performed an
update to the associative strength of the unchosen stimulus, using a separate
learning rate αunch, in addition to updating the chosen CS associative strength.

These same three models were set up as variants (associative value models) that
were identical in all respects except for the outcomes during Pavlovian learning,
which were modeled as 0 (no outcome presented) or 1 (outcome presented) and CS
associative strength values were scaled with the normalized (0–1), individually
rated subjective value of the outcome (pre-rating) at the end of the Pavlovian
learning phase.

The estimated associative strengths for all CS after the choice-induced
revaluation phase were passed to a softmax decision function to generate choice
probabilities for each option on each trial:

PC;t ¼
1

1þ expð�VDt=τÞ
ð6Þ

where PC,t is the model’s probability to select option C on trial t, the choice the
participant actually made on trial t. VDt, is the value difference (or difference in
associative strength) between the chosen and unchosen CS on trial t, and τ is a
temperature parameter that determines the degree of stochasticity in participants’
choice behavior.
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To find the free parameters that best described participants’ behavior, we used a
two-step fitting procedure to minimize the negative log-likelihood estimate
(−LLE):

�LLE ¼ �Σ logðPC;tÞ ð7Þ
First, we ran a grid search on an n-dimensional grid in log space (where n=

number of free parameters for each model), with 30 steps along each dimension.
The grid optimum was then used as initial value and passed to constrained non-
linear optimization using the MATLAB function fmincon. Optimized negative log
likelihoods were compared by means of the sample-size corrected Akaike
Information Criterion (AICc, Eqs. (8) and (9)). The model with the lowest AICc
value was considered to account best for the observed participants’ choice data,
penalized for model complexity and sample size (number of participants).

AIC ¼ 2k� 2 �LLEð Þ ð8Þ
where k is the number of free parameters of the model and −LLE is the negative
log likelihood of the model given the data.

AICC ¼ AICþ 2k2 þ 2k
n� k� 1

ð9Þ

where k is the number of free parameters in the model, and n is the sample size.
Additionally, we performed 10,000 simulations of choice behavior per

participant. After value estimation as described above, using individual parameters
of the best-fitting models at group level, the resulting value estimates for each
stimulus were entered in the exact same sequence of 120 choices that the
participants individually experienced during the decision probe phase. Simulated
overall choice probabilities were averaged per participant across
10,000 simulations.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The raw behavioral data, univariate parameter estimates extracted from regions of
interest, thresholded and unthresholded univariate Z-maps, neural pattern similarity
correlation matrices and brain–behavioral correlation data that support the findings of
this study are publicly available at GitHub (https://github.com/LLuettgau/revaluation).
The neuroimaging raw data that support the findings of this study are available upon
reasonable request from the corresponding author (L.L.). The neuroimaging raw data are
not publicly available due to them containing information that could compromise
research participant privacy/consent. The source data underlying Figs. 1e–i, 2d, e, 3a, b,
4b and Supplementary Figs. 1a–h, 2a–h, 3a, b, and 5a are provided as a Source Data file.
A reporting summary for this article is available as a Supplementary Information
file. Source data are provided with this paper.

Code availability
Custom analysis code for the reported behavioral data analyses, univariate fMRI analyses
on extracted parameters, multivariate fMRI analyses on neural pattern similarity
correlation matrices, brain–behavioral correlational data analyses and computational
modeling/simulations are publicly available at GitHub (https://github.com/LLuettgau/
revaluation). Source data are provided with this paper.
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