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Purpose: To develop a new visual field simulation model that can recreate real-world
longitudinal results at a point-wise level from a clinical glaucoma cohort.

Methods: A cohort of 367 glaucoma eyes from 265 participants seen over 10.1 6 2.5
years were included to obtain estimates of ‘‘true’’ longitudinal visual field point-wise
sensitivity and estimates of measurement variability. These two components were
then combined to reconstruct visual field results in a manner that accounted for
correlated measurement error. To determine how accurately the simulated results
reflected the clinical cohort, longitudinal variability estimates of mean deviation (MD)
were determined by calculating the SD of the residuals from linear regression models
fitted to the MD values over time for each eye in the simulated and clinical cohorts.
The new model was compared to a previous model that does not account for spatially
correlated errors.

Results: The SD of all the residuals for the clinical and simulated cohorts was 1.1 dB
(95% confidence interval [CI]: 1.1–1.2 dB) and 1.1 dB (95% CI: 1.1–1.1 dB), respectively,
whereas it was 0.4 dB (95% CI: 0.4–0.4 dB) using the previous simulation model that
did not account for correlated errors.

Conclusions: A new simulation model accounting for correlated measurement errors
between visual field locations performed better than a previous model in estimating
visual field variability in glaucoma.

Translational Relevance: This model can provide a powerful framework to better
understand use of visual field testing in clinical practice and trials and to evaluate new
methods for detecting progression.

Introduction

Visual field testing is an invaluable tool in the
clinical management of glaucoma by allowing both
the nature and extent of vision loss to be characterized
and monitored over time. The information gained
from this test can provide crucial insights into the
current level and future risk of functional disability
experienced by an individual with this condition.1,2 It
also remains an important outcome measure for
clinical trials in glaucoma, as it represents a clinically
relevant endpoint.3–5 However, detecting progressive

visual field loss remains a challenging task due to the
extent and complexity of its measurement variability6

and nature of change over time7 in eyes with visual
field damage.

There have been several attempts to develop
improved methods for the detection of visual field
progression. However, studies investigating these
methods are limited by the lack of an independent
reference standard to which the performance of a new
method can be compared. For example, in order to
evaluate the specificity of a newly proposed algo-
rithm, one needs to test it against a population of
patients with stable disease. The accurate detection of
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truly stable eyes is crucial since clinical management
decisions—such as the intensification or initiation of
glaucoma treatment or the mere diagnosis of the
condition—can have negative consequences for indi-
viduals.8,9 However, how does one define stability in
studies testing a new visual field algorithm? Recent
studies have used short-term test-retest data to
evaluate specificity since progression can be assumed
to be absent over such a time frame.10–16 However,
this approach may insufficiently capture the full
extent of measurement variability present in real-
world visual field tests over a long-term period,
making it hard to accurately determine the true
potential performance of these new methods in
clinical practice.

As such, the ability to characterize and accurately
recreate real-world visual field results over time can
provide a powerful framework for the development of
improved methods to detect visual field progression.
It can also provide substantial insights into both
clinical practice and trials, such as the impact of
different clinical testing frequencies17 or paradigms18

on the ability to detect progression or sample size
requirements in a clinical trial using a visual field
endpoint.19 Previous studies have simulated visual
field results (primarily to evaluate different thresh-
olding algorithms) using models of an individual’s
responses to different stimulus intensities (i.e., psy-
chometric functions),20–31 often with estimates ob-
tained from an experimental, rather than a clinical,
setting.32

Instead, Russell and colleagues33 recently simulat-
ed visual field results using parameters obtained from
a large longitudinal cohort of glaucoma patients
under routine clinical care. Such an approach is
highly advantageous because allows visual field
results to be reconstructed in a manner that closely
reflects those expected clinically. However, two
important methodological refinements are required
to ensure that such simulations better represent real-
world results. First, the correlations between the
estimates of measurement variability should be
accounted for, since real-world visual fields contain
such correlations at the individual level, evident from
a previous study demonstrating how accounting for
such correlations provided a better fit of longitudinal
visual field data.34 Second, the assumption of linearity
held for changes in point-wise visual field sensitivity
over time is unlikely to remain valid over a long
follow-up duration, with nonlinear models better
capturing such changes.7

This study, therefore, developed a new visual field

simulation model after including such refinements,
demonstrated how it better reflected real-world
results, and provided an example of an application
of this model for improving our understanding of
visual field testing in clinical practice.

Methods

Participants

This study included participants who were enrolled
in a prospective longitudinal observational study
evaluating structural and functional damage in
glaucoma. The study received institutional review
board approval and was conducted in adherence with
the Declaration of Helsinki and the Health Insurance
Portability and Accountability Act. All participants in
this study provided written informed consent after the
test procedures were explained.

Participants in this study underwent a comprehen-
sive ophthalmologic evaluation that included a review
of their medical history, visual acuity measurements,
visual field testing, slit-lamp biomicroscopy, ophthal-
moscopic examination, gonioscopy, intraocular pres-
sure measurement, and stereoscopic optic disc
photography. This study included only eyes consid-
ered to have glaucoma, based on the masked
evaluation of the optic nerve on stereophotographs.35

This study also included only glaucoma eyes with �10
abnormal visual field tests (defined as having a
pattern standard deviation [PSD] value with P ,

0.05 or Glaucoma Hemifield Test outside normal
limits) over at least 5 years. Participants were also
required to have open angles on gonioscopy and a
best-corrected visual acuity of 20/40 or better, and
they were excluded if they had any other ocular or
systemic disease that could affect the optic nerve or
the visual field.

Visual Field Testing

All visual field tests were performed on the
Humphrey Field Analyzer II-i (Carl Zeiss Meditec,
Inc., Dublin, CA) using the Swedish Interactive
Thresholding Algorithm Standard 24-2 strategy, with
the results being considered unreliable and excluded
from the analyses if they had .33% fixation losses or
false-negative errors (with an exception for false-
negative errors when the visual field mean deviation
[MD] was less than �12 dB) or .15% false-positive
errors. The visual field tests were reviewed for the
presence of artifacts, including fatigue or learning
effects, inattention, inappropriate fixation, eyelid or
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rim artifacts, and evidence that visual field results
were influenced by a disease other than glaucoma
(such as a homonymous hemianopia); tests with such
artifacts were not included in the analyses.36 Visual
fields were then repeated if found to be unreliable or
contained artifacts.

Development of Visual Field Computer
Simulations

To allow reconstruction of a series of real-world
visual field tests from glaucoma eyes, two components
were required in a computer simulation: (1) longitu-
dinal estimates of true visual field sensitivity at each
location (or estimates of the true pattern of visual
field change over time) and (2) estimates of measure-
ment variability (or a noise component). These two
components could then be combined in such a way to
generate series of visual field results from different
individuals (each with a unique pattern of variability
and performance) for a given pattern of visual field
change over time. The details of how each component
was obtained and then combined are outlined below.

To obtain longitudinal estimates of the ‘‘true’’
point-wise visual field sensitivity for each eye included
in this study, a sigmoid regression model was fitted to
the measured threshold sensitivities at each location
over time using a method described previously.7 The

sigmoid model assumes a nonlinear rate of visual field
loss, with natural asymptotes occurring at normal
levels of sensitivity and the perimetric floor. The
model can be expressed as follows: s¼ c / (1þ ea þ bx),
where s denotes the measured sensitivity in decibels, c
indicates the estimate of the initial sensitivity, a
indicates how soon the sigmoid function begins a
steep decline, b indicates the steepness of this decline,
and x indicates the time. This regression model was
fitted using an iterative feasible generalized nonlinear
least squares method (being equivalent to maximum
likelihood estimation), except for locations where at
least two out of the three initial tests had a
measurement of 0 dB, which were fitted with a value
of 0 dB throughout the duration of the follow-up. An
example illustrating four locations that were fitted
with this sigmoid regression model over the entire
perimetric range is shown in Figure 1. The parameters
of the sigmoid model could then be used to estimate
true sensitivities at each location for an eye at any
given time point; these derived sensitivity estimates
were termed the ‘‘sensitivity template.’’

To obtain estimates of measurement noise, resid-
uals were derived by subtracting the measured values
from those fitted by the sigmoid regression model and
binned according to these fitted values (rounded to
the nearest 1 dB). Residuals were pooled across all

Figure 1. An example illustrating how visual field sensitivity in a glaucoma eye changes across the entire dynamic range. This example
highlights how four locations with different levels of sensitivity at baseline, all �20 dB (indicated by numbers 1 to 4 on the pattern
deviation maps, bottom left), that eventually become scotomatous over a 16-year follow-up exhibit different patterns of change over
time, as shown on the plots labeled with their corresponding numbers (right). A sigmoid regression was fitted to the raw sensitivities at
each location (black lines), and the residuals were obtained by subtracting the measured value (circular markers) from the fitted value.
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locations and eyes to generate residual distributions
for each fitted sensitivity bin, which were termed the
‘‘empirical probability distribution functions’’
(PDFs). The residuals at each location for each test
of each eye were then converted into probabilities
based on the empirical PDFs of its fitted sensitivity
because the distribution of the residuals were not
expected to be the same for different fitted sensitiv-
ities. For instance, a residual of �3 dB would occur
more frequently in regions of visual field damage than
in healthy regions within a single visual field test
independent of the performance of an individual
during a test. These probabilities provide a standard-
ized estimate of the deviation of the individual’s
response from the fitted sensitivity and thus collec-
tively provide a template of patient performance
during a test (in a way similar to joint probabilities)
that accounts for the correlation between the mea-
sured values at each location during a visit (i.e., a
global visit effect, such as from varying levels of
attention between visits). This was termed a ‘‘noise
template.’’ A noise template could then be combined
with a sensitivity template to simulate real-world
visual field results through a process explained further
below. The noise templates from all participants were
then combined to create a database of patient-level
variability that was used in the visual field simulations
through a process also explained below. As a
minimum of 10 visits were included for each eye in
this study, we included only the noise templates from
the first 10 visits from one eye of each participant
(randomly selecting one eye if both eyes were
available) so that each participant contributed equally
to these estimates of variability. To minimize the
likelihood of selecting the same noise template during
the simulations, we increased the number of noise
templates available from each patient through ran-
domizing the probabilities by location within the same
eccentricity for each noise template by 100 times. As a
result, a database of patient-level variability was
generated that contained 1000 different sets of noise
templates (10 tests 3 100 randomized sets) for each
participant, and we refer to each of these participants
as a ‘‘model participant.’’

Sequences of real-world visual field results can
then be simulated for each eye by combining the
longitudinal estimates of true point-wise sensitivity
and estimates of measurement variability. For each
sequence, sensitivity templates were derived at each
time point from the sigmoid regression model, and a
model participant was selected at random from the
database of patient-level variability. A noise template

was subsequently chosen at random for each test in
this sequence from the 1000 available noise templates
from the model participant. Real-world visual field
results were then recreated by using the probabilities
at each location to determine the magnitude of the
residual (or the noise component) to be added to the
sensitivity template (representing the true pattern of
damage) by sampling the residual from the empirical
PDF corresponding to the true fitted level of
sensitivity. An example in Figure 2 illustrates how a
sensitivity template was combined with a noise
template to create a simulated real-world visual field
test result.

Comparison With a Previous Visual Field
Simulation Model

The visual field simulation model developed in
this study was compared with another model
described previously.33 Our methods are in essence
similar to those used previously, but the key
difference is that the previous method does not
account for correlations between test locations for
the estimates of measurement variability, accounted
for by the noise templates with our model. In other
words, visual fields were simulated by taking a
sensitivity template and adding estimates of mea-
surement variability by simply sampling residuals
from the empirical PDF corresponding to the true
fitted level of sensitivity at each location at random.
This difference in methodology can be conceptual-
ized as using an individual-based pattern of mea-
surement variability with our method and a random
selection of measurement variability for the previous
method. To ensure that the primary comparison was
performed between models that did or did not
account for such correlated measurement errors,
the sigmoid regression model was also used in this
model (as opposed to a linear regression model used
previously33) to determine the impact of accounting
for such correlations.

Comparison of the Simulation Models and
the Glaucoma Clinical Cohort

We investigated and compared the longitudinal
variability of visual field MD as derived from the
simulation models described above to those obtained
from the clinical glaucoma cohort followed over
time. As MD is a global index frequently used for
trend-based assessment of progression and estima-
tion of rates of visual field loss, it is important to
determine whether a proposed simulation model
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accurately reflects the variability of this index over
time. For this purpose, we obtained the residuals
from an ordinary least squares linear regression
model fitted to MD values over time for each eye in
the clinical cohort, calculated by subtracting the
measured and fitted MD values. As the linearity of
MD values can diminish as the duration of follow-up
increases, only MD values within the 2- to 4-year
period with the greatest number of tests were
included for this evaluation.

For the simulation models, we simulated 100
sequences of visual field tests for each eye in the
glaucoma clinical cohort at the same visits as those
included within the 2- to 4-year period described
above. Residuals from ordinary least squares linear
regression models fitted to MD values over time for
each sequence of tests were then obtained.

We also compared the cumulative proportion of
eyes detected as having progressed using a global
trend–based analysis of MD for eyes in the
longitudinal clinical cohort and simulated results
from the models described above. Visual field
progression was considered to have occurred when

a statistically significant negative MD slope (P ,

0.05) was present at two consecutive visits. For the
simulation models, we also simulated 100 sequences
of visual field tests for each eye in the glaucoma
clinical cohort at the same visits at which they were
seen clinically.

Statistical Analysis

The SD of the residuals was calculated by using a
random intercepts model—a type of linear mixed
model—to account for the hierarchical nature of the
data (e.g., when multiple tests from one eye were
evaluated). For the clinical glaucoma cohort, the
random intercept model was used with tests nested
within eyes and nested within participants. For the
simulated visual field results where 100 sequences of
visual field tests were generated for each eye, the
random intercept model was used, with tests nested
within sequences, within eyes, and within participants.
All computer simulations and analyses were per-
formed using statistical software (Stata Version 14;
StataCorp, College Station, TX).

Figure 2. Illustration of the process of simulating a single visual field test result (right column), where a sensitivity template
(representing an estimate of the true visual field sensitivity at each location in decibels, left column) is combined with a noise template
(middle column), consisting of probabilities at each location that were then converted into estimates of measurement error based on the
empirical probability distribution function of the corresponding sensitivity bin from each location.
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Results

Participant Characteristics

A total of 367 eyes from 265 participants with
glaucoma were included in this study, and they were
on average 62.7 6 11.3 years old at the first visit
(range, 25–88 years old) and were seen at 15.6 6 5.0
visits (range, 10–39 visits) over 10.1 6 2.5 years
(range, 5–17 years). At the first visit, the median
(interquartile range) MD and PSD of these eyes was
�4.04 dB (�7.86 to�2.17 dB) and 4.38 (2.53–8.59 dB),
respectively, and was �6.37 dB (�11.88 to �3.37 dB)
and 6.55 dB (3.40–10.03 dB), respectively, at the last
visit.

Comparison of Longitudinal Variability of
MD

The longitudinal variability of the visual field MD
values was evaluated by examining the SD of the
residuals, the difference between the actual measured
or simulated MD values and the fitted values from a
linear regression model. These longitudinal residuals
were obtained from a follow-up period between 2 and
4 years in duration that had the greatest number of
visits, and 6.9 6 2.7 visits (range, 5 to 17 visits) were
included over 2.6 6 0.6-year period.

The SD of the residuals for MD for the
longitudinal clinical cohort was 1.1 dB (95%
confidence interval [CI] ¼ 1.1–1.2 dB) and was 1.1
dB (95% CI¼ 1.1–1.1 dB) using the simulated visual
field results from the methods developed in this

study. In contrast, the SD of the residuals was 0.4 dB
(95% CI¼ 0.4–0.4 dB) for the visual fields simulated
using the method that does not account for
correlations between test locations within each test.
Histograms for the distribution of these residuals are
shown in Figure 3.

Comparison of the Cumulative Proportion of
Eyes That Progressed

The cumulative proportion of eyes showing visual
field progression over time was evaluated using trend-
based MD, with progression defined as the presence
of a statistically significant negative slope at two
consecutive visits. At the final visit, 45.8% of eyes
were detected as having progressed in the longitudinal
clinical cohort, whereas an average of 43.4% (95% CI
¼ 40.3%–46.4%) of the eyes progressed using the
simulated visual field results from the methods
developed in this study. In contrast, an average of
58.3% (95% CI¼56.1%–60.5%) of the eyes progressed
by the final visit when using the simulated visual field
results that do not account for correlations between
test locations.

Examples of Simulated Visual Fields

In Figure 4, four series of simulated visual field
results over time are shown in comparison to the
actual measured visual field results from an eye in this
study, demonstrating how the simulated visual field
results resemble the real-world findings.

Figure 3. Histograms showing the longitudinal residuals of visual field MD representing the difference between measured or simulated
MD values from fitted values obtained from a linear regression model. The histograms are shown for the measured visual field results
from the clinical glaucoma cohort (left), simulated visual field results using the methods from this study that account for correlations
between test locations during each visit (middle) and simulated visual field results that did not account for such correlations (right).

6 TVST j 2018 j Vol. 7 j No. 3 j Article 22

Wu and Medeiros



Application in Understanding Variability of
Global Metrics

The visual field simulations were applied to
provide insights into the variability characteristics of
MD and PSD values across a range of different true
levels of damage and patterns of loss. This was done
by simulating 100 different sequences of visual field
tests for each eye included in the clinical cohort and
then calculating the SD of the difference between the
simulated MD and PSD measurements and their true
values for 100 simulated tests for each sequence. In
other words, this is in effect similar to simulating 100
different patients with the same pattern of visual field
loss who underwent 100 visual field tests each. The
median of the SDs for each eye was then taken to
provide a population-averaged estimate of variability
for that pattern of visual field loss.

Figure 5 shows a plot of the SD of the difference
between the simulated values from the true value
against the true value of MD or PSD itself. These
results can be interpreted as the extent to which a
measured value will differ from the true underlying
value. The results demonstrated that the variability of
visual field MD increases with a worsening of MD
and PSD, reaching a peak at an MD of approximately
�18 dB and PSD of approximately 10 dB, where the
SD of the difference between the simulated MD
measurements from the true MD was 1.4 and 1.3 dB,
respectively. For the variability of PSD values, a peak

was reached at approximately 5 dB, where the SD of
the difference between the simulated PSD measure-
ments and the true PSD values was 0.8 dB. When the
true MD and PSD were �3 and 3 dB, respectively
(representing an early level of visual field damage),
the SD of the simulated measurements from their true
values was 0.9 and 0.7 dB, respectively.

Discussion

This study demonstrated that real-world visual
field results could be reconstructed using the new
simulation model developed in this study, with the
magnitude of longitudinal MD variability and cumu-
lative proportion of eyes detected as having pro-
gressed, closely matching those obtained in a clinical
glaucoma cohort. This was contrasted with a previous
model that did not account for such correlated errors,
which underestimated longitudinal MD variability.
To provide an example of its potential application,
this model was used to examine the variability
characteristics of MD and PSD values across different
levels and patterns of visual field damage. This
simulation model could provide a powerful frame-
work for future studies to gain important insights into
various aspects of visual field testing in clinical
practice and clinical trials, and we will discuss such
translational relevance below.

The visual field simulation model developed in this
study was based on the approach first developed by

Figure 4. An example showing the measured visual field results of an eye over time (top row) and four series of simulated visual field
results (bottom rows).
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Russell and colleagues33 but incorporated two im-
portant refinements to ensure that the results accu-
rately represent findings expected in routine clinical
practice. The most important refinement involves
accounting for the correlated measurement errors
between locations in a given test. This resulted in
longitudinal MD variability estimates that were very
similar between the simulated and clinical visual
fields. Without accounting for such correlations, the
estimate of longitudinal variability was reduced to
almost a third of those observed clinically, having a
SD of 0.4 dB for all MD residuals, which falls within
a similar range of 0.2 to 0.7 dB reported by Russell
and colleagues.33 The proportion of eyes detected as
having progressed when such correlations were not
accounted for was over a third higher than when these
correlations were accounted for. When the correla-
tions were accounted for in our proposed simulation
model, the proportion of eyes detected as progressing
was very similar to that found in the longitudinal
clinical cohort. The value of accounting for such
correlations has also recently been observed in a
different context, where accounting for a global visit
effect (i.e., correlated measurement error) resulted in a
better fit of longitudinal visual field data.34 The other
refinement involves using a sigmoid regression model
to capture the nonlinear behavior of visual sensitivity
changes at a point-wise level over the entire perimetric
range, which a recent study demonstrated to provide
the best fit to such data in a large clinical cohort of
glaucoma eyes seen over time.7 Indeed, we observed
that the sigmoid regression model had a lower root
mean square error (RMSE) when compared to a
linear model in 88% of the 19,084 locations evaluated
in this study, having a mean (SD) RMSE of 2.6 (1.9)
and 2.8 (2.0), respectively.

The application of the visual field simulation
model for understanding the variability of visual field
MD against various true MD and PSD values (as
shown in Figure 5) showed the same characteristics as
reported by Russell and colleagues.33 Note that the
application of the simulation model in this situation
helps clinicians understand their expected variability
across various disease severities when seeking to
identify true change. We observed that the variability
of MD values peaked at approximately �18 and 10
dB for true MD and PSD, similar to the previous
report of peaks at �20 and 8 dB, respectively,
although the magnitude of the SD at these peaks
were substantially different (see above).33 The mag-
nitude of the residual variability observed using our
simulations is also similar to those from real-world
clinical findings in a previous study where the
variability estimates were obtained with a weighted
moving average regression analysis of longitudinal
visual field data.37 For example, they report that 95%
of the residual differences fell within a 4.5-dB range at
an estimated true MD of �10 dB (and thus having a
SD of approximately 1.1 dB), similar to an SD of
approximately 1.3 dB from our findings. The varia-
tion in MD variability with different levels of visual
field damage has also been reported in previous
studies using short-term test-retest data.11,38 Howev-
er, the magnitude of the variability presented in those
studies appears somewhat smaller than that observed
with our longitudinal data, although a direct com-
parison is difficult due to the limited sample size of
those previous studies. Our simulations also provided
insights into the variability of the PSD measure,
demonstrating how the range of variability can be
especially wide for eyes where PSD values are between
4 and 8 dB.

Figure 5. Illustration of the application of the visual field simulations developed in this study to understand the variability of MD against
(A) the true MD and (B) the true PSD value and (C) the variability PSD against its true value. For each graph, variability is indicated by the
SD of difference of the values of the simulated visual fields from the true value (circular markers). A locally weighted polynomial
regression fit of the data is also shown (black line).
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The ability to simulate visual field results that
closely resemble real-world findings can also allow
numerous other aspects of visual field testing to be
investigated, which has direct translational relevance.
For instance, it provides a framework to evaluate new
or compare current methods for detecting visual field
progression for implementation in clinical practice.
One of the challenges of evaluating new algorithms
for detecting glaucomatous visual field progression is
the difficulty in determining its true specificity due to
the lack of a perfect independent reference standard
that represents true stability. Several approaches have
been used for this, such as collecting test-retest visual
field data over short periods of time10–16 (to ensure
that no true progression is seen), although this
approach is unlikely to truly represent long-term
test-retest variability. Instead, the simulation model
presented in our study provides a powerful method to
estimate the specificity of new algorithms for detect-
ing visual field progression, as results for eyes that are
truly stable can be simulated to examine this. The
simulated results would exhibit variability character-
istics more typical of real-world patients seen in
clinical practice, therefore providing a better evalua-
tion of the actual potential real-world performance of
a method. The simulations could also be used to
examine the impact of testing frequencies17 or
paradigms18 on the ability to detect visual field
progression in clinical practice or sample size require-
ments in glaucoma clinical trials19 using point-wise
methods of analyses.

Some limitations of the study to consider include
the relatively smaller sample size used to create these
visual field simulations when compared to the nearly
10-fold sample size evaluated by Russell and col-
leagues.33 However, there are future opportunities to
perform such analyses in even larger longitudinal
datasets collated from multiple clinical centers (using
the concept of ‘‘big data’’), which can include up to
tens of thousands of patients.39,40 Nonetheless, we
believe the study’s sample size was sufficient and that
including a large sample would only strengthen the
conclusions reached. Another limitation to consider
when interpreting the variability estimates shown in
this study is that they were obtained from participants
seen at approximately biannual intervals, and such
estimates may be slightly higher for patients seen at
annual intervals.

In conclusion, this study presents a new, refined
method for simulating longitudinal visual field results,
closely resembling real-world findings. The findings
underscored the importance of accounting for corre-

lated measurement errors within a test and demon-
strated the application of this visual field simulation
model in understanding the variability characteristics
of visual field MD and PSD measurements.
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