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BACKGROUND: PIM serine/threonine kinases are often highly expressed in haematological malignancies. We have shown that PIM
inhibitors reduced the survival and migration of leukaemic cells. Here, we investigated PIM kinases in diffuse large B-cell lymphoma
(DLBCL) biopsy samples and DLBCL cell lines.
METHODS: Immunohistochemical staining for PIM kinases and CXCR4 was performed on tissue microarrays from a cohort of
101 DLBCL cases, and the effects of PIM inhibitors on the survival and migration of DLBCL cell lines were determined.
RESULTS: PIM1 expression significantly correlated with the activation of signal transducer and activator of transcription (STAT) 3 and 5,
P-glycoprotein expression, CXCR4-S339 phosphorylation, and cell proliferation. Whereas most cases exhibited cytoplasmic or
cytoplasmic and nuclear PIM1 and PIM2 expression, 12 cases (10 of the non-germinal centre DLBCL type) expressed
PIM1 predominately in the nucleus. Interestingly, nuclear expression of PIM1 significantly correlated with disease stage. Exposure of
DLBCL cell lines to PIM inhibitors modestly impaired cellular proliferation and CXCR4-mediated migration.
CONCLUSION: This work demonstrates that PIM expression in DLBCL is associated with activation of the JAK/STAT signalling pathway
and with the proliferative activity. The correlation of nuclear PIM1 expression with disease stage and the modest response to small-
molecule inhibitors suggests that PIM kinases are progression markers rather than primary therapeutic targets in DLBCL.
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The proto-oncogene serine/threonine-protein kinase (PIM) family
comprises PIM1, PIM2 and PIM3. In the last decade, several PIM
kinase-regulated signalling pathways and downstream targets have
been identified (Brault et al, 2010; Nawijn et al, 2011). PIM1 was
found to be an important effector of the signal transducer and
activator of transcription (STAT) 3 and 5 transcription factors
(Yip-Schneider et al, 1995). Interestingly, both tumour suppressors
and oncogenes have been identified as potential PIM kinase
substrates. However, all PIM kinases can act as survival factors,
preventing cells from undergoing apoptosis by activating BCL2
(Lilly et al, 1999) and inactivating the pro-apoptotic proteins BAD
(Aho et al, 2004) and ASK1 (Gu et al, 2009). PIM1 was also shown
to phosphorylate the tumour suppressor p27KIP1, leading to its
proteasomal degradation (Morishita et al, 2008). Although PIM
kinases were first discovered in murine B- and T-cell lymphomas
(Cuypers et al, 1984), their role in human malignancies has been
best investigated in prostate cancer (Valdman et al, 2004) and
different forms of leukaemias (Brault et al, 2010; Nawijn et al,
2011). In lymphomas, Epstein–Barr virus infection resulted
in the upregulation of PIM kinases, enhancing the activity of
EBNA2 (Rainio et al, 2005). PIM1 was found to be upregulated
and to interact with STAT3 in mantle-cell lymphomas that are

associated with poor prognosis (Zhu et al, 2002; Hsi et al, 2008).
Interestingly, a functional collaboration between PIM1 and
the c-MYC oncogene seems to be essential for promoting STAT3-
mediated cell cycle progression in vitro (Shirogane et al, 1999).

In diffuse large B-cell lymphoma (DLBCL), PIM1 has been
shown to be a target for aberrant hypermutation, particularly in
extra-nodal cases (Deutsch et al, 2007), and it has recently been
reported to be highly expressed in up to 50% of all studied cases at
the protein level (Gomez-Abad et al, 2011; Schatz et al, 2011).
A subgroup of the activated B-cell (ABC) type of DLBCL
demonstrated increased PIM1 mRNA levels, which correlated with
poor prognosis (Alizadeh et al, 2000; Sivertsen et al, 2006). In
addition, PIM2 was reported to be upregulated during the
progression of several B-cell malignancies, including chronic
lymphocytic leukaemia, DLBCL, mantle-cell lymphoma and
plasma-cell myeloma (Cohen et al, 2004). PIM2 seems to promote
lymphoid cell survival, probably through activation of the NF-kB
signalling pathway (Hammerman et al, 2004).

Resolution of the structures of the PIM kinases has allowed for
the development of a number of small-molecule inhibitors
(Bullock et al, 2005; Anizon et al, 2010; Morwick, 2010). We
have previously demonstrated the anti-leukaemic activity of
several imidazo-pyridazine small-molecule inhibitors (Fedorov
et al, 2007; Pogacic et al, 2007). Interestingly, blocking PIM kinases
with small-molecule inhibitors was able to impair the mig-
ration of acute myeloid leukaemia cells by downregulating
the CXCR4 chemokine receptor at the cell surface (Grundler
et al, 2009).
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In this study, we aimed to explore the role of PIM kinases
in DLBCL by immunohistochemical analysis of PIM1-3 and
CXCR4 expression in tissue microarrays representing a set of
101 well-characterised cases. We frequently found elevated PIM
kinase expression in DLBCL that was associated with activation of
the JAK/STAT signalling pathway. Interestingly, nuclear PIM1
expression significantly correlated with disease stage and prolif-
erative activity of the tumour cells. Two small-molecule inhibitors
developed by our laboratories only modestly impaired cell survival
and CXCR4-mediated migration. These observations suggest that
PIM kinases represent molecular progression markers rather than
primary therapeutic targets in DLBCL.

MATERIALS AND METHODS

Patients and tissue microarrays

The characteristics of the patients included in this study are
summarised in Supplementary Table S1, and the construction
details of the tissue microarrays have been previously published
(Tzankov et al, 2006). All patients had given general informed
consent for studies to be performed using tissue materials that
remained after diagnostic procedures. Two cores from every
sample were included in the arrays. All cases were classified as
germinal centre (GC) B-cell like or non-GC cases according to
Choi’s algorithm (Choi et al, 2009). If marker information from
Choi’s decision tree was unavailable (i.e., for technical reasons,
such as missing cores on the tissue microarray or poor
immunostaining of the archival material), the cases could not be
properly classified as DLBCL of GC or non-GC origin and were
thus designated as ‘unclassifiable’.

Immunohistochemical staining

For PIM3, CXCR4 and pS339-CXCR4 staining, tissue microarrays
were processed using an automated immunostainer (Nexes,
Ventana, Tucson, AZ, USA), while PIM1 and PIM2 were stained
manually. The streptavidin–biotin peroxidase detection technique
using diaminobenzidine as the chromogen was applied. The
primary antibodies were diluted in a 1% solution of bovine serum
albumin in PBS (pH 7.4) and incubated for 30 min at room
temperature in the automated immunostainer, and either for 2 h at
room temperature (PIM1) or overnight at 4 1C (PIM2) in cases of
manual staining. The dilutions and retrieval conditions for the
primary antibodies used are listed in Supplementary Table S2. The
immunohistochemical staining of CXCR4 and pS339-CXCR4 was
established using paraffin-embedded Jurkat cell pellets known to
express significant levels of CXCR4, which becomes phosphory-
lated on S339 upon phorbol-ester treatment (Grundler et al, 2009).
Twenty percent of all cases were re-evaluated by a second observer
to assess inter-observer agreement. At least 200 cells were assessed
in each tumour core biopsy, and the percentage of positive cells
(i.e., cells with distinct staining) was calculated.

Cell lines

The human GC-type (SU-DHL-4, SU-DHL-6, SU-DHL-7, and
SU-DHL-10) and non-GC-type (HBL-1, U2932, OCI-Ly3, and
OCI-Ly10) DLBCL cell lines were kindly provided by M Thome
of the University of Lausanne (Hailfinger et al, 2009) and were kept
in RPMI-1640 containing glutamine (Invitrogen, Carlsbad, CA, USA)
plus penicillin/streptomycin and 15–20% foetal bovine serum at 37 1C
in a humidified atmosphere containing 5% CO2, with the exception
of OCI-Ly10 cells, which were kept in IMDM containing glut-
amine (Invitrogen) plus penicillin/streptomycin and 20% human
plasma. K-562 (Phþ , blast crisis CML) cells, which are known to
express significant amounts of PIM1 and PIM2, served as positive
controls for protein and mRNA expression levels (Adam et al, 2006).

HEK-293T cells, which are known to express low amounts of PIM1
and PIM2, were used as negative controls.

Quantitative RT–PCR

Messenger RNA expression was determined by quantitative real-
time PCR (RT–PCR) using SYBR Green. One microgram of total
mRNA, which was isolated using the RNeasy kit (Qiagen, Hilden,
Germany), was used for cDNA synthesis using the High Capacity
cDNA Reverse Transcription kit (Applied Biosystems, Foster City,
CA, USA), and 50 ng of cDNA was used for RT–PCR using the
Power SYBR Green PCR Mastermix (Applied Biosystems) on an
ABI Prism 7700 sequence detection system (Applied Biosystems).
Expression levels were normalised to glyceraldehyde-3-phosphate
dehydrogenase mRNA using the 2DDCt-method. See Supplementary
Table S3 for the oligonucleotides PCR primers used.

Immunoblotting

Harvested cells were disrupted in lysis buffer (10 mmol l� 1 Tris-HCl
(pH 7.4), 150 mmol l� 1 NaCl, 1% Triton X-100, 0.5 mmol l� 1 EDTA,
10% glycerol, 10 mmol l� 1 NaF, 1 mmol l� 1 Na3VO4), supplemented
with protease inhibitor cocktail (Calbiochem, La Jolla, CA, USA) for
20 min on ice followed by centrifugation at 12 000 g for 15 min.
The cleared lysates were assayed for protein concentration using
the Bradford protein assay system (Bio-Rad, Hercules, CA, USA).
A total of 50mg of protein was separated in a 15% SDS–PAGE gel
and transferred onto a PVDF membrane (Macherey-Nagel, Dueren,
Germany). Immunoblotting was performed using the following
antibodies: anti-PIM1 (1 : 500) (12H8; Santa Cruz Biotechnology,
Santa Cruz, CA, USA), anti-PIM2 (1 : 1000) (HPA000285; Sigma,
St Louis, MO, USA), anti-PIM3 (1 : 500) (AP7171a; Abgent, San Diego,
CA, USA), anti-CXCR4 (1 : 1000) (Ab2074; Abcam, Cambridge,
MA, USA) and anti-b-Actin (1 : 5000) (AC-74; Sigma). The bound
primary antibodies were detected using either horseradish peroxidase-
goat anti-rabbit antibodies or horseradish peroxidase-goat anti-mouse
antibodies (Thermo Scientific, Ilkirch, France). Enhanced chemi-
luminescence western blotting detection was performed using the
West Femto SuperSignal reagent (Thermo Scientific).

Cytotoxicity assay

To investigate cell viability effects, either the small-molecule PIM
kinase inhibitor K00486 or Compound 20 (0 to 250 mM in 0.1%
DMSO) was added to the culture medium, and the cultures were
incubated for 48 h (Pogacic et al, 2007; Huber et al, 2012). Cell
viability was assessed using the cell proliferation reagent WST-1
(Roche Diagnostics, Mannheim, Germany) according to the manu-
facturer’s instructions. Cell survival was calculated as a percentage
normalised to control cultures, and the IC50 values were calculated
using Graph Pad Prism (Graph Pad Software, La Jolla, CA, USA).

Cell death measurement

Cells were treated with the PIM inhibitor for 48 h and were
analysed by flow cytometry using both the violet fluorescent dye
PO-PRO-1 (a sensitive indicator of apoptotic cells) and 7-amino-
actinomycin D (an indicator of dead cells) from the Vybrant
Apoptosis Assay Kit #13 (Molecular Probes, Eugene, OR, USA)
according to the manufacturer’s instructions.

Determination of CXCR4 surface expression

Cell surface expression of CXCR4 was analysed by staining with
an APC-conjugated anti-human CD184 (1 : 50) (12G5) antibody
(Pharmingen, Becton-Dickinson, San Jose, CA, USA), and dead cells
were excluded by DAPI staining. Nonspecific binding was assessed
using an APC-conjugated rat IgG2b antibody as an isotype control.
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Two-colour flow cytometric analysis was performed on a CyAn
flow cytometer (Beckman Coulter, Fullerton, CA, USA) using the
405- and 633-nm lasers to acquire DAPI (BP 450/50) and APC
(LP 750), respectively.

Migration assay

A total of 5� 105 cells were allowed to migrate for 4 h toward a
CXCL12 gradient (100 ng ml� 1) in Transwell chambers (5.0 mm
pore size; Costar, Cambridge, MA, USA). The migration index was
calculated as a percentage of input cells. Where indicated, the cells
were pre-treated for 2 h with 10 mM of K00486.

Statistical analysis

Statistical analyses, including data description, were performed
using the Statistical Package of Social Sciences version 19.0 for
Windows (SPSS, Chicago, IL, USA). The degree of agreement
between observers was evaluated by interclass correlation coeffi-
cients using Cronbach’s Alpha reliability analysis; an alpha 40.75
indicated very good reproducibility. The w2 test was used to assess
distribution differences. The Spearman test was used to analyse
relationships between the markers, and only correlations with a
rX0.2 or p� 0.2 were further considered. The ANOVA, Mann–
Whitney and Kruskal–Wallis tests were applied where appropriate
to assess mean differences between groups. The prognostic perfor-
mance of the variables and the determination of optimal cutoff
values for continuous variables were established as described
elsewhere (Tzankov et al, 2010). After these cutoff values had been
applied, survival was analysed using the Kaplan–Meier method
and compared using the log-rank test. Statistical significance was
defined as Po0.05, and two-sided tests were used throughout.

RESULTS

Expression of PIM 1–3 kinases in DLBCL and
clinico-pathological correlations

We first established immunohistochemical staining for the PIM
kinases using formalin-fixed, paraffin-embedded pellets of cell
lines expressing high (K-562) or very low (HEK-293T) PIM levels,
as well as cell pellets of all examined DLBCL cell lines (see ‘cell
lines’) and human tissues (prostate cancer, tonsils, and lymph
nodes) (Adam et al, 2006) (Supplementary Figure S1). Using this
protocol, all 101 cases of DLBCL were evaluable for PIM1 and
PIM2 staining, while only 84 were evaluable for PIM3. As shown in
Figure 1A, the staining for PIM1 and PIM2 was generally more
intensive than that for PIM3. The kappa values for the overall
agreement between observers were 0.8 for PIM1, 0.8 for PIM2,
and 0.95 for PIM3. Diffuse large B-cell lymphoma cases were
considered PIM positive when the percentage of stained cells
per case was above the mean (Figure 1B). Of the 84 cases with
complete data available for all three PIM kinases, 30 cases
expressed all PIM kinases. Except for these 30 cases, 32 cases
were positive for PIM1 either alone or co-expressed with PIM2 or
PIM3, 24 cases were positive for PIM2 alone or in combination
with PIM1 or PIM3 and 17 cases were positive for PIM3 alone or
together with PIM1 or PIM2 (Figure 1C). On the basis of the cell-
of-origin classification (Choi et al, 2009), 79% of the non-GC cases
demonstrated PIM1 positivity compared with 86% GC and all
unclassifiable cases (P¼ 0.942); 71% of the non-GC cases
expressed PIM2 compared with 56% of the GC cases (P¼ 0.115);
and finally, 54% of the non-GC cases expressed PIM3 compared
with 58% of the CG cases and none of the unclassifiable cases
(P¼ 0.810) (Figure 1D). Although co-expression of all three PIM
kinases was more prevalent in the non-GC-derived cases, the
distribution differences between GC- and non-GC cases, as defined
by either the Choi- or the Hans-algorithm (Hans et al, 2004;

Choi et al, 2009), did not reach statistical significance. Similarly to
what has recently been reported (Schatz et al, 2011), we observed a
trend towards lower overall survival in DLBCL cases expressing
high levels of PIM1 and/or PIM2; however, these differences did
not reach statistical significance within our cohort (Figure 1E).

We next determined whether PIM kinase expression levels
might correlate with other molecular markers that we have
previously assessed using the same DLBCL cohort (Tzankov
et al, 2006, 2008; Meier et al, 2009; Nagel et al, 2010). As shown in
Table 1, PIM1 significantly correlated with pSTAT3, pSTAT5 and
with the fraction of actively proliferating cells as detected by high
levels of MIB-1 labelling. Expression of PIM1 but not PIM2 or
PIM3 also correlated with the expression of CD44 (r¼ 0.320,
P¼ 0.002). PIM1 and PIM2 both significantly correlated with the
expression of the permeability glycoprotein (Pgp; r¼ 0.422–0.430,
Pp0.001). By contrast, no significant correlations were found
between PIM expression and the status of the c-MYC, BCL2 and
BCL6 genes, which were previously studied in the same cohort
(Obermann et al, 2009a, b), nor was an association with the
presence of the Epstein–Barr virus in lymphoma cells, as suggested
by EBER staining, observed (data not shown).

In general, signals for PIM1 and PIM2 staining were found in the
cytoplasm and the nucleus of the tumour cells, whereas PIM3
appeared only in the cytoplasm (Figure 2). Interestingly, a distinct
distribution of nuclear and cytoplasmic PIM1 staining was
observed; in most of the cases, PIM1 cytoplasmic staining
exceeded the nuclear signals. Importantly, 10 of 12 DLBCL cases
with predominantly nuclear PIM1 staining were of the non-GC
type. One additional case with nuclear PIM1 staining could not be
categorised (Figure 2). Considering the clinical parameters,
nuclear expression of PIM1 significantly correlated with Ann
Arbor disease stage (r¼ 0.386; Po0.001) but not with any other
prognostic parameters, such as IPI, age, LDH level, B-symptoms,
or extra-nodal disease origin.

Taken together, our observations suggest that elevated expres-
sion of PIM1 and PIM2 is frequent in DLBCL, that it correlates
with proliferation and JAK/STAT pathway activation, and that
their nuclear expression is more prevalent in non-GC DLBCL and
advanced (high stage) cases.

Effect of small-molecule PIM kinase inhibitors on
proliferation of DLBCL cell lines

To explore the role of PIM kinases as potential therapeutic targets
in DLBCL, we evaluated the effects of two structurally different
small-molecule PIM inhibitors (K00486, Compound 20) in a panel
of well-established human DLBCL cell lines. We first measured
PIM mRNA and protein expression levels in DLBCL cell lines. As
shown in Figure 3, the non-GC-derived DLBCL cell lines HBL-1,
U2932, OCI-Ly3, and OCI-Ly10 expressed higher mRNA and
protein levels of PIM1 and PIM2 than the GC-derived cell lines
SU-DHL-4, SU-DHL-6, SU-DHL-7, and SU-DHL-10. A statistically
significant difference in PIM1 and PIM2 expression (Po0.001) in
GC vs non-GC cell lines confirmed recent observations (Gomez-
Abad et al, 2011). No significant PIM3 expression was detected by
immunoblotting or quantitative RT–PCR. Exposure of the cells to
PIM kinase inhibitors (K00486 and Compound 20) impaired cell
survival in a dose-dependent manner in the low micromolar range
for most of the DLBCL cell lines (Table 2 and Figure 4A). Flow
cytometric assessment of cell death confirmed the impact of the
PIM inhibitors on cell viability as shown by a dose-dependent
decrease in the live cell percentage (Figure 4B and data not shown).
It is worth noting that SU-DHL-7 cells were highly resistant to PIM
kinase inhibitors.

We also evaluated the potential of these PIM inhibitors in
combination with two chemotherapeutic agents: adriamycin and
vinblastine. SU-DHL-6 (a GC-type) and U2932 (a non-GC-type)
cells, which are similar in their sensitivity to the PIM inhibitors,
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were selected for combination treatment (Table 2). The cells were
sequentially exposed to the chemotherapeutic agents and PIM
inhibitors. Upon pre-treatment with the PIM1 inhibitors for 2 h,
we observed a minor sensitisation of the GC type but not the
non-GC-type cell line to adriamycin; a marginal sensitivity to
vinblastine was also observed (Supplementary Figure S2). When
applied simultaneously or after the chemotherapeutic drugs, no
potentiating effects were observed.

CXCR4 and PIM kinases in DLBCL

In addition to its pro-survival function, PIM1 has been reported to
affect the migration of leukaemic cells by regulating CXCR4
surface expression through the phosphorylation of Serine 339 in
the intracellular C-terminal tail domain (Grundler et al, 2009).

Table 1 Correlation between markers and stage

PIM1 PIM2 PIM3

PIM2 0.439 (o0.001)
PIM3 0.313 (0.004)
pSTAT3 0.318 (0.002) 0.285 (0.006) 0.292 (0.009)
pSTAT5 0.305 (0.002) 0.348 (0.001)
CD44 0.320 (0.002)
Pgp 0.430 (o0.001) 0.422 (40.001) 0.343 (0.003)
MIB-1 0.265 (0.013)
Stage 0.386a (o0.001)

Abbreviations: Pgp¼ permeability glycoprotein; PIM¼ proto-oncogene serine/
threonine-protein kinase; STAT¼ signal transducer and activator of transcription.
Numbers indicate correlation coefficients, P-values are indicated in parentheses. aThis
correlation applies only to nuclear PIM1.

PIM1 PIM2 PIM3

Evaluable
cases

101 101 84

Mean (%) 93 80 57

Range (%)

Cases above
mean

76 69 47
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Figure 1 PIM kinase expression in DLBCL cases. (A) Representative cases for PIM1, PIM2 and PIM3: (i) PIM1 negative, (ii) PIM1 positive, (iii) PIM2
negative, (iv) PIM2 positive, (v) PIM3 negative and (vi) PIM3 positive. (B) Quantitative data on PIM expression. (C) Distribution of PIM1-3 in DLBCL cases
(n¼ 84, included are only cases with available data on the expression of all three PIM). (D) Expression of PIM1-3 with respect to DLBCL subtype.
(E) Disease-specific survival of DLBCL cases with respect to PIM1 and/or PIM2 expression shown for all cases (left) and non-GC (centre) and GC cases
(right) according to the Choi algorithm. The survival curves were plotted using the Kaplan–Meier method and compared by the log-rank test.

PIM kinases in DLBCL

L Brault et al

494

British Journal of Cancer (2012) 107(3), 491 – 500 & 2012 Cancer Research UK

M
o

le
c
u

la
r

D
ia

g
n

o
stic

s



PIM1 PIM2 PIM3

PIM1

Cytoplasmic Nuclear

Evaluable cases 101 101

Mean % 93 21

Range

Cases above mean 76 43

PIM1

Cytoplasmic � nuclear 58 (42)

Cytoplasmic > nuclear 31 (18)

Cytoplasmic < nuclear 12 (10)

20–100 0–100

Figure 2 The nuclear and cytoplasmic PIM1 and PIM2 expression pattern in DLBCL. (A) Tissue microarray data showing (first case) significant nuclear
expression of PIM1, (second case) combined nuclear and cytoplasmic expression of PIM1, (third case case) cytoplasmic expression of PIM1 and (fourth case)
a negative case (� 4). (B) DLBCL case with (i) nuclear expression of PIM1 in 50% of the tumour cells, (ii) nuclear expression of PIM1 in 15% of the tumour
cells, (iii) exclusive cytoplasmic expression of PIM1 in 100% of the tumour cells, and (iv) without expression of PIM1 (note internal positive control). DLBCL
case (v) with nuclear expression of PIM2 in almost all of the tumour cells and (vi) without expression of PIM2. PIM3 in DLBCL cases (vii) with expression in
10% of the tumour cells and (viii) without expression of PIM3 (note internal positive control) (� 400). (C) Quantitative data on PIM expression.
(D) Intracellular microtopographic localisation of PIM1 in DLBCL cases; the non-GC case numbers are indicated in parentheses.
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We therefore analysed CXCR4/pS339-CXCR4 expression in our
DLBCL cohort by immunohistochemical staining. In total, 85 cases
were evaluable for CXCR4 and 99 for pS339-CXCR4 staining.

It is important to note that among the available CXCR4 antibodies,
only the UMB-2 clone (Epitomics, Burlingame, CA, USA) provided
a specific signal when tested on formalin-fixed, paraffin-embedded
biopsy samples. UMB-2 recognises an epitope in the C-terminal
tail (KGKRGGHSSVSTESESSSFHSS) that includes S339 (Fischer
et al, 2008) (Figures 5A and B). CXCR4 and pS339-CXCR4 staining
demonstrated an inverse correlation (r¼ � 0.297, P¼ 0.007) with
29 of 85 cases being positive for pS339-CXCR4 only, 13 of 85 cases
showing positive staining for non-phosphorylated CXCR4, and
3 cases exhibiting signals for both CXCR4 and pS339-CXCR4,
suggesting a concurrent recognition of the same epitope. All other
cases (n¼ 40) expressed either no CXCR4 or pS339-CXCR4, or
they expressed these molecules below the cutoff levels (means)
(Figure 5C). Interestingly, we found that pS339-CXCR4 staining
correlated with pSTAT3 (r¼ 0.427, Po0.001), pSTAT5 (r¼ 0.385,
Po0.001) and with cytoplasmic PIM1 (r¼ 0.202, P¼ 0.048).
pS339-CXCR4 expression levels also correlated with PIM2
(r¼ 0.220, P¼ 0.031) and PIM3 (r¼ 0.255, P¼ 0.02) (Figure 5D).

Previously, we showed that chemical inhibition of PIM1 kinase
decreased surface CXCR4 expression and impaired the migration
of leukaemic cells (Grundler et al, 2009). We therefore also
addressed the impact of PIM kinase inhibitors on the migration of
DLBCL cells. First, we determined CXCR4 expression at the mRNA
and corresponding surface protein levels. As shown in Figure 5E,

Table 2 PIM inhibitor potentials, determined as the half maximal
inhibitory concentration (IC50) for two structurally independent PIM
inhibitors in GC and non-GC-derived DLBCL cell lines

IC50 24 h (lM) IC50 48 h (lM)

Cell line K00486 Compound 20 K00486 Compound 20

SU-DHL-4 14.4 5.27 9.71 3.21
SU-DHL-6 12.1 3.29 8.40 2.35
SU-DHL-7 4100 4100 4100 4100
SU-DHL-10 6.2 2.65 3.77 1.95
HBL-1 33.8 10.6 18.34 9.70
U2932 24.5 8.79 8.62 5.88
OCI-Ly3 10.36 4.80 6.042 2.98
OCI-Ly10 4100 13.2 51.15 11.63

Abbreviations: DLBCL¼ diffuse large B-cell lymphoma; GC¼ germinal centre;
IC50¼ half maximal inhibitory concentration; PIM¼ proto-oncogene serine/threo-
nine-protein kinase. The data represent the mean of three independent experiments
performed in quadruplicate.
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steady-state CXCR4 mRNA levels varied between cell lines with
SU-DHL-4, SU-DHL-7 and OCI-Ly10 expressing the highest levels.
The mRNA levels correlated with the surface expression of the
receptor with the exception of OCI-Ly10, which expressed
moderate surface protein but significant mRNA levels
(Figure 5F). As shown in Figure 5G, we found that not only

SU-DHL-4, SU-DHL-6, SU-DHL-7 cells, but also OCI-Ly10 cells,
despite their low-surface receptor expression, were able to migrate
towards the CXCL12 ligand in Transwell migration assays.
Interestingly, a short-term pre-treatment of the cells with a
non-cytotoxic K00486 dose (10 mM) was able to affect migration
of these cells.

?

CXCR4 pCXCR4

Evaluable cases 85 99

Mean (%) 7 37

Range (%) 0–100 0–95

Cases above mean 17 49

pCXCR4

CXCR4 –0.292 (0.007)
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DISCUSSION

We explored the expression of PIM kinases in a well-characterised
cohort of DLBCL cases by immunostaining using a panel of
commercially available isoform-specific antibodies. Taken
together, our observations suggest that upregulation of PIM1 and
PIM2 is a frequent event in advanced stage and highly proliferating
DLBCL and significantly correlates with the activation of STAT3
and STAT5. In addition, we found a high proportion of nuclear
PIM1 in non-GC-type DLBCL cases. We are aware that our
findings might have been influenced by the potential presence of
somatic hypermutations targeting PIM1 (Pasqualucci et al, 2001).
However, the lack of appropriate material did not allow us to
determine the mutational status. Nevertheless, the detectable
PIM protein expression in DLBCL-derived cell lines suggested
that even in the presence of monoallelic mutations, most of the
cells express a normal-sized and presumably wild-type protein
(Figure 3).

During the course of this work, Schatz et al (2011) reported
converging PIM kinase signalling pathways in malignant
lymphoma. By immunohistochemical staining, they reported
PIM1 or PIM2 expression in roughly similar proportions of
DLBCL (48% of their cases expressed PIM1, compared with 43% in
our cohort; 42% of their cases expressed PIM2, compared with
69% in our cohort). Unfortunately, little has been reported on the
specificity and sensitivity of the establishment of their detection
assay and of the PIM subcellular distribution. Another recently
published study indicated that only 23% of DLBCL cases displayed
strong PIM2 expression (Gomez-Abad et al, 2011). Both of these
studies proposed that positive PIM staining correlated with disease
outcome. Although we observed trends towards lower overall
survival for DLBCL cases expressing high levels of PIM1 and/or
PIM2, these differences did not reach statistical significance
(Figure 1E). In addition to differences in detection methods and
cutoff level definitions, the differences between these studies may
also be explained by the lower proportion of anthracyclin-treated
patients and limited follow-up data in one of the studies (Schatz
et al, 2011). As the details of the case composition in the other
study are lacking (Gomez-Abad et al, 2011), we cannot address
the prognostic differences between our cohorts.

In contrast to previous studies, our work revealed for the first
time that significant fractions of DLBCL cases express nuclear and/
or cytoplasmic PIM1 in a mean of 93% (cytoplasmic) and 21%
(nuclear) of tumour cells. Interestingly, PIM1 nuclear localisation
was almost exclusively observed in non-GC DLBCL cells (Figure 2),
and despite a small subset of 12/101 cases, this was highly
correlated with increased proliferation and disease stage (Table 1).
Conversely, only PIM1 cytoplasmic localisation correlated with
pS339-CXCR4 (Figure 5). When compared with nuclear localisa-
tion, only cytoplasmic localisation correlated with Pgp. Several
in vitro studies suggested that nuclear PIM1 seems to regulate cell
cycle progression by direct modification of cell cycle-dependent
kinase inhibitors such as p21WAF1 and p27KIP1 (Zhang et al, 2007;
Morishita et al, 2008). However, we did not observe any significant
correlation between nuclear PIM1 and the subcellular localisation
of p21WAF1 or p27KIP1 (data not shown). Nuclear PIM1 has been
proposed to be more potent in mediating cellular transformation,
at least in vitro, in solid cancer cell lines (Chen et al, 2009; Peltola
et al, 2009). Very little is known about the mechanisms that
regulate cellular localisation of PIM1. Some in vitro experiments
suggested that nuclear localisation of PIM1 may be dependent on
the carboxy-terminal portion of the protein (Ishibashi et al, 2001).
There are indeed several potential target sequences in that region
that could be recognised by one or several upstream protein
kinases, and this possibility is currently under investigation
(Brault et al, 2010).

We observed a significant correlation between cytoplasmic PIM1
and PIM2 and the expression of the ABC-transporter Pgp. Previous

studies have proposed that PIM1 might directly regulate drug
resistance through modification of the ATP-binding cassette
transporter breast cancer resistance protein (Xie et al, 2008)
and Pgp-mediated drug resistance by phosphorylation and
protection from degradation (Xie et al, 2010). In addition, PIM1
staining also correlated with CD44 expression. Previous studies
found elevated CD44 expression in DLBCL (Tzankov et al, 2003;
Nagel et al, 2010), thus underlining the association of PIM1
expression and disease progression. Whether PIM1 is able to
directly modulate CD44 expression or signalling remains to
be elucidated.

The strong association with known upstream regulators, such as
pSTAT3 and pSTAT5, confirmed PIM1 and/or PIM2 as down-
stream effectors of the aberrantly activated JAK/STAT signalling in
DLBCL and is potentially relevant for maintenance of the
transformed phenotype. Therefore, we explored the activity of
small-molecule PIM kinase inhibitors in a panel of well-
characterised human DLBCL cell lines (Brault et al, 2010;
Morwick, 2010). We used two structurally different PIM kinase
inhibitors: K00486, an imidazo(1,2-b)pyridazine compound with
low nanomolar in vitro potency (against PIM1 and PIM3) that
significantly impaired growth and survival and surface expression
of the CXCR4 chemokine receptor on myeloid leukaemia cell lines
(Pogacic et al, 2007; Grundler et al, 2009), and Compound 20, a
carboline-derivate that has been identified as a potent PIM kinase
inhibitor (Huber et al, 2012). Both compounds impaired the
proliferation of DLBCL cells (Figure 4). The higher cellular activity
of Compound 20 is presumably the consequence of a lower
selectivity and a higher number of ‘off-targets’ that are inherently
associated with all currently available small-molecule PIM kinase
inhibitors (Huber et al, 2012). For both PIM inhibitors, the modest
potentiation of chemotherapeutic drug activity confirmed
their moderate impact on DLBCL cell survival (Supplementary
Figure S2). These findings suggest that elevated PIM kinase may
not be essential for maintenance of the transformed state of
DLBCL cells. Indeed, transgenic overexpression of PIM1 or PIM2
in the lymphoid compartment leads to formation of lymphomas
after very long latency periods, suggesting that PIM kinases are
oncogenic but not sufficient to drive disease (Berns et al, 1999).
Additionally, PIM kinases expression levels did not predict the
sensitivity of DLBCL cell lines to small-molecule inhibitors and the
most sensitive cell lines expressed low levels of the kinases.
Similarly, DLBCL cell lines expressing low level of PIM have been
shown to be the most sensitive to another PIM kinase inhibitor
(ETP-39010) (Gomez-Abad et al, 2011). These findings indicate
that the sensitivity to PIM inhibitors is not directly correlated with
the expression level of the kinases but might be driven by more
complex drug-resistance associated mechanisms. Indeed, when
compared with myeloid leukaemia cells that are very sensitive to
PIM inhibitors with sub-micromolar IC50 values, we observed
K00486 and Compound 20 activities in the micromolar IC50 range
in most DLBCL cell lines (Table 2). It is likely that DLBCL cell lines
express high levels of drug-resistance mediating pumps and/or
proteins such as Pgp that could antagonise the effects of these PIM
inhibitors. In agreement with this hypothesis, Pgp expression
levels significantly correlated with elevated PIM1 and PIM2
expression in our DLBCL cohort (Table 1).

Taking these findings together, we found that the levels
of expression of the PIM kinases in DLBCL correlated with active
STAT signalling, higher lymphoma proliferative activity, and more
advanced disease stage, indicating that PIM kinases may represent
valuable markers for DLBCL progression. The studied small-
molecule PIM kinase inhibitors moderately impaired proliferation
and CXCR4-mediated migration of DLBCL cells. Their rather
modest activity suggests that such compounds could find a place in
the therapeutic arsenal, although probably only in combination
with compounds blocking functionally cooperative signalling
pathways.
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