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introduction

The lung, a very common seeding site for many 
primary tumors (30–60% of cancer patients) [1], is 

probably where local treatments have been most ex-
tensively investigated. Surgery is standard, accord-
ing to findings of large retrospective studies and 
a few prospective trials. In 1997, the “International 

AbstrAct

30–60% of cancer patients develop lung metastases, mostly from primary tumors in the colon-rectum, lung, head and neck 
area, breast and kidney. Nowadays, stereotactic radiotherapy (Srt) is considered the ideal modality for treating pulmonary 
metastases. 

when lung metastases are suspected, complete disease staging includes a total body computed tomography (ct) and/or 
positron emission tomography-computed tomography (Pet-ct) scan. Pet-ct has higher specificity and sensitivity than a 
ct scan when investigating mediastinal lymph nodes, diagnosing a solitary lung lesion and detecting distant metastases. 
For treatment planning, a multi-detector planning ct scan of the entire chest is usually performed, with or without intrave-
nous contrast media or esophageal lumen opacification, especially when central lesions have to be irradiated. respiratory 
management is recommended in lung Srt, taking the breath cycle into account in planning and delivery. For contouring, 
co-registration and/or matching planning ct and diagnostic images (as provided by contrast enhanced ct or Pet-ct) are 
useful, particularly for central tumors. Doses and fractionation schedules are heterogeneous, ranging from 33 to 60 Gy in 3–6 
fractions. independently of fractionation schedule, a BeD10 > 100 Gy is recommended for high local control rates. Single frac-
tion Srt (ranges 15–30 Gy) is occasionally administered, particularly for small lesions. Srt provides tumor control rates of up 
to 91% at 3 years, with limited toxicities.

the present overview focuses on technical and clinical aspects related to treatment planning, dose constraints, outcome and 
toxicity of Srt for lung metastases. 
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Registry on Lung Metastases” reported the results of 
5206 lung metastases treated with surgery [2]. The 
primary tumor was epithelial in 43% of patients, 
sarcoma in 42%, germ cell in 7%, and melanoma in 
6%. Actuarial overall survival, after complete resec-
tion, was 26% at 10 years and 22% at 15 years, with 
a median survival time of 35 months [2].

Due to its ablative effect, stereotactic radio-
therapy (SRT) has recently emerged as a potential 
alternative to surgery in patients with lung oligo-
metastases [3]. In 702 patients with pulmonary 
metastases who were treated with SRT, the primary 
tumor was in the colon-rectum in 25.7%, the lung 
in 16.6%, the head and neck area in 11.4%, the 
breast in 9.2%, the kidney in 8.1%, the skin in 6.5% 
and other areas in 22.1% [4]. 

Nowadays, SRT is considered the ideal modality 
for treating pulmonary metastases as it provided 
high tumor control rates [4–7]. The SABR COMET 
study, a randomized phase 2 multicentric trial, first 
showed that SRT improved overall survival (OS) 
compared with palliative standard of care [8–10]. 
SRT could work in concert with systemic therapy 
and is probably not as costly as surgery in terms of 
toxicity and invasiveness [11].

As appropriate patient selection is a major issue, 
today’s challenge is to determine conditions when 
SRT improves progression-free survival (PFS) and 
OS, thus impacting upon prognosis [12, 13]. Fac-
tors include performance status, disease-free inter-
val of over 12 months, volume and number (usu-
ally under 5) of metastatic lesions in the lung, no 
metastases elsewhere and primary tumor histology. 

The present overview focuses on technical and 
clinical aspects related to treatment planning, dose 
constraints, outcome and toxicity of SRT for lung 
metastases. 

Staging and selection 
of oligometastatic patient 

When lung metastases are suspected on chest 
X-ray evidence during an oncological follow-up, 
complete disease staging includes a total body com-
puted tomography (CT) and/or positron emission 
tomography-computed tomography (PET-CT) 
scan, which, however, are nowadays the imaging 
modalities commonly used for the follow-up. In de-
fining oligometastatic patients PET-CT has higher 
specificity and sensitivity than a CT scan [14–15] 

when investigating mediastinal lymph nodes, diag-
nosing a solitary lung lesion and detecting distant 
metastases [16, 17]. 

Lung metastases are often diagnosed clinically, 
without pathological confirmation. Patients with 
oligo- metastatic or -progressive disease (i.e., dis-
ease progression at a limited number of anatomic 
sites, with continued response or stable disease at 
other sites of disease), who are the best candidates 
for lung SRT, need to satisfy the following criteria: 
•	 disease free interval of over 12 months;
•	 fewer than 5 small metastatic lesions; 
•	 primary tumor control; 
•	 favorable histology;
•	 good patient performance status;
•	 no counter-indications to high-dose RT 

(BED10 > 100 Gy) [16]. 
Although SRT was reported to achieve high lo-

cal control rates [5–7], OS was poor in many se-
ries, demonstrating that eradication of widespread 
microscopic disease is crucial for disease control. 
Consequently, ablative SRT should be integrated 
with systemic treatments, particularly immunologi-
cal therapies. In this setting, circulating biomarkers 
are potentially useful as the presence of specific mi-
croRNA (miRNA) in the peripheral blood of oligo-
metastatic patients seemed to be linked to different 
tumor phenotypes, with diverse biologically aggres-
sive patterns and metastatic potentialities [18].

treatment planning

A multi-detector planning CT scan of the entire 
chest (2–3 mm thick slice) is usually performed 
with the patient in the treatment position. Each 
patient is immobilized in a comfortable, reproduc-
ible position, supine with arms raised above the 
head, in order to prevent arm interference with the 
beams. Some centers use intravenous contrast me-
dia or esophageal lumen opacification, especially 
when central lesions have to be irradiated. Immo-
bilization systems include, for example, a stereotac-
tic body frame, vacuum cushions, thermoplastic 
masks or abdominal compressors. 

Respiratory management is recommended in lung 
SRT, taking the breath cycle into account in planning 
and delivery, in order to lower treatment-related 
toxicity. In fact, the amplitude of lung movements 
during respiration, which is the greatest in the cra-
nio-caudal direction, can exceed 2 cm in some cases 
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[19]. Strategies include 4D-CT, which assess tumor 
motion during the breathing cycle, and procedures 
for breathing control (such as abdominal compres-
sion, Deep Inspiration Breath Hold (DIBH), opti-
cal surface imaging systems, and Active Breathing 
Control (ABC) device). They require active patients’ 
collaboration with some discomfort and longer treat-
ment delivery time [20, 21]. Another strategy for 
organ motion control is tumor tracking, which is 
specific for treatment delivery phase. Main tumor 
localization techniques are fluoroscopic tumor imag-
ing, implanted marker imaging and tumor position 
reconstruction by means of an external surrogate of 
a respiratory movement signal [22–24].

Moreover, also modern Image-Guided Radia-
tion Therapy (IGRT) with cone beam computed 
tomography (CBCT) is crucial for SRT accuracy: 
it can visualize the target immediately before (or 
even during) the SRT session, allow the volumetric 
registration with planning CT with on-line correc-
tion of set-up errors and organ motion. Respirato-
ry-correlated 4D-CT methods should be integrated, 
when available, because they provide complemen-
tary information on the interfraction trajectory of 
the tumor [22, 25, 26].

contouring

The target is outlined on sequential axial CT im-
ages that are reconstructed in 3D, using the lung 
window (1600–400 Hounsfield units). Co-regis-
tration and/or matching planning CT and diag-
nostic images (as provided by contrast enhanced 
CT or PET-CT) are useful, particularly for cen-
tral tumors [27]. Identifying the biological tumor 
volume on PET-CT images by means of diverse, 
non-validated segmentation methods (SUV Max 
uptake or thresholding) should be performed only 
in the clinical trial setting. 

Organs at risk (OARs) are healthy lung tissue (i.e. 
lungs minus the gross tumor volume-GTV or inter-
nal target volume — ITV), spinal cord, esophagus, 
heart, trachea and bronchi, the great vessels and 
ribs. Parallel organs need to be contoured in full 
and their constraints are expressed as dose-volume. 
A planning organ at risk volume (PRV) is required 
for serial organs with the reference standard being 
maximum dose to the point [28, 29]. Auto-contour-
ing software is useful because so many OARs need 
to be contoured.

Doses, fractionation and constraints 

Doses and fractionation schedules for treating 
lung metastases are heterogeneous, ranging from 
33 to 60 Gy in 3–6 fractions [28–34], with dose pre-
scription at the isocenter or at an isodose [35]. Sin-
gle fraction SRT ranges from 15 to 30 Gy [8, 36–39], 
especially for small lesions. Although fractionated 
schedules seemed to provide better local control of 
larger lesions than single-dose SRT (maybe because 
of reoxygenation and redistribution processes), Siva 
et al. found no significant difference in outcomes 
[40]. Definitive results in terms of safety are still 
awaited from the ongoing TransTasman Radia-
tion Oncology Group (TROG) randomized phase 
II study comparing single fraction vs fractionated 
treatment for lung metastases [41]. 

In a cohort of over 3700 patients, an alfa/beta 
ratio > 10 Gy for lung metastases was defined [42] 
and, despite differences in schedules, BED10 > 100 
Gy is always crucial for obtaining high local control 
rates [43–45]. In most series, the BED value was 
calculated at the periphery, as the dose prescription 
was usually at the 70 or 80% isodose. This pre-
scription ensured delivery of “ablative doses” at the 
periphery, higher doses at the isocenter and a steep 
dose fall-off outside the target volume. 

Currently, even though there is no consensus on 
normal tissue dose constraints, greater uniformity 
has emerged and American Association of Physi-
cists in Medicine Task Group 101 (AAPMTG101) 
[19] or Navarria et al. [46] are suggested for clinical 
practice (Tab. 1).

table 1. Suggested dose constraints for lung metastases

Total healthy lung 
— PTV V5 < 30%

v10 < 20%

v20 < 10%

Mean dose < 4 Gy

total lungs v5 < 30%

v10 < 20%

v20 < 10%

Mean dose < 4 Gy

Spine D1% < 20 Gy

Heart D1% < 30 Gy

esophagus D1% < 30 Gy

Ptv — planning target volume
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The lesion site, which is associated with risk of 
toxicity, influences decision-making on fraction-
ation schedule and dose constraints. Peripheral 
lesions (with or without chest wall contact) are 
associated with greater risk of rib fractures than 
central tumors which are more often linked to me-
diastinal toxicity, e.g. esophageal stenosis. Dose 
constraints for the trachea and bronchi, the great 
vessels, esophagus and chest wall were defined 
on the basis of toxicity data from several studies 
[47–50]. To prevent stenosis in the trachea, main, 
lobular and segmentary bronchi, maximum doses, 
as expressed in EQ2, are, respectively, 93 Gy, 103 
Gy, 124 Gy and 121 Gy. In the aorta and great 
vessels, a maximum dose of 52.5 Gy in 5 fractions 
was associated with grade 2–5 toxicity in 1.2% of 
patients, while a maximum dose of 45 Gy in 3 frac-
tions was linked to toxicity in 2.3%. Even though 
doses to the upper part of the heart and great ves-
sels (especially the superior vena cava) were associ-
ated with non-cancer related death in a population 
treated with SRT for stage I non-small-cell  lung 
cancer (NSCLC), these data need further valida-
tion [51]. The use of “risk-adapted” protocol and 
specific constraints ensured that treatment of cen-
tral or peripheral tumors was without excessive 
toxicity [52–55].

In 5-fraction schedules D1cc of 32.9 Gy and 50.7 
Gy, and maximum doses of 43.4 Gy and 61.4 Gy 
were associated with 50% probability of developing, 
respectively, grade 2 and 3 esophagitis. It must be 
noted that chemotherapy may increase esophageal 
toxicity.

There is no consensus on chest wall constraints 
as there is no uniform definition of chest wall anat-
omy. Radiation-induced injury ranges from chest 
pain to painful or painless rib fractures, with the 
latter leading to under-estimates of their real inci-
dence. In 4-fraction schedules, D70cc of 16.2 Gy and 
65.1 Gy and D2cc of 43 Gy and 87.9 Gy were associ-
ated with, respectively, grade ≥ 2 toxicity rates of 
10% and 50% [56].

According to Andolino et al. [57] the maximum 
dose to the chest wall and ribs should be under 50 
Gy, and under 5 cc of the chest wall should receive 
doses ≥ 40 Gy. 

Moreover, lung dosimetric constraints for SRT 
in case of multiple lung lesions were recently sug-
gested [58].

Outcomes and follow up protocol

Table 2 summarizes the results of SRT as re-
ported by selected studies. The main clinical pre-
sentation was a single metastasis but synchronous 
lung metastases were 1–2 or 1–3 in number in most 
trials, with some patients having 1-5 lesions [41]. 
Fractionated SRT was delivered in most studies [5, 
6], with a few reports using single fractions [6, 7, 
37, 39]. For single or few lung metastases (< 3–5, 
according to different selection criteria), probability 
of 1-year local control was between 70–95% [4–7, 
28–34, 39]. In Siva’s review, 2-year local control and 
PFS were 91% and 54.5%, respectively [40].

Local control varied with risk factors, i.e., dos-
es, primary histology, metastatic tumor volume, 
preceding chemotherapy and extra-thoracic dis-
ease [5, 16, 59–61]. An analysis of patient registry 
data showed that local control rates were linked to 
BED10 > 100 Gy and tumor volume < 11 cm3 [45]. 
Osti et al. [59] associated lesion volume < 10 cm3 

and primary tumor histology with local control 
rates, showing that NSCLC, colon-rectal and breast 
cancers had better outcomes than melanoma, sar-
coma and kidney disease. 

Different prognostic factors, including the prima-
ry tumor, influenced OS [6, 16, 30, 39, 62, 63]. Me-
dian survival times were 30, 26 and 22 months for 
lung metastases from colon-rectal, breast and lung 
tumors, respectively [64]. Since patient selection 
is crucial for SRT, Tanadini-Lang et al. conducted 
a multi-centre, retrospective study in an attempt to 
integrate patient and disease factors so as to develop 
a nomogram that would predict OS [65]. Significant 
prognostic factors were Karnofsky performance in-
dex, primary tumor and its control, the maximum 
diameter of the largest treated metastasis and the 
number of metastases (not limited to pulmonary 
metastases) (1 vs > 1). All these were included in the 
nomogram to predict 2-year OS in four different 
risk groups. The benefit of SRT was probably higher 
in good-prognosis patients. The nomogram could 
also be used to select a high-risk population that 
might benefit from adding systemic therapy to SRT. 

Follow-up is generally conducted using total 
body or chest only CT scans (according to the pri-
mary tumor). SRT-related toxicity is reported in 
about 25% of patients. On CT images, consolida-
tion, with or without air bronchogram, or fibrosis 
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are frequently observed [65]. Even though the dif-
ferential diagnosis between local relapse or post-ra-
diation therapy alterations may be difficult, a bi-
opsy will distinguish between the two [66]. Use of 
a PET-CT scan is still under debate. Some authors 
reported inflammation at 48 months after the end 
of SRT in 50% of patients [67], thus impacting on 
PET-CT ability to distinguish between tumors and 
radiation-induced injury. 

treatment toxicity

Using risk-adapted schedules and validated OAR 
constraints, the toxicity profile of SRT for lung me-

tastases is generally favorable as SRT is well-toler-
ated [6, 7, 43, 67]. The cumulative rates of toxic-
ity ≥ G3 range from 2% to 10% [16, 40]. Grade 3 
radiation pneumonitis (RP), which is one of the 
major dose-limiting toxicities, is quite infrequent 
and has been reported in about 5% of patients [6, 
16, 62, 67]. RP is usually asymptomatic with only 
radiological findings after SRT. Grade ≥ 2 RP has 
been correlated with some dosimetric factors such 
as mean lung dose (MLD) > 6 Gy and the lung vol-
ume receiving at least 20 Gy (V20) > 10%. Regard-
ing heart toxicity, to date there is no clear correla-
tion between cardiac complications and lung SRT, 
whereas in literature several studies have been pub-

table 2. Selected studies investigating the role of Srt in lung metastases 

Study (year) [ref.] Pts 
(n)

Dose 
and fractionation

Median follow‑up 
(months) Local  control Overall 

survival Toxicity

wulf et al. 

(2005) [36]
27

30 Gy/3

36 Gy/3
13-17

2-yr: 

71%

1-yr: 48%

2-yr: 21%

Grade 3:1 (3.7%)

Grade 5: 1 (3.7%)

Okunieff et al. 

(2006) [33]
50

50 Gy/10 

48 Gy/6

57 Gy/3

18.7
3-yr: 

91%
2-yr: 50%

Grade 2: 6.1%

Grade 3: 2%

Hof et al. 

(2007) [39]
61 12–30 Gy/1 14 3-yr: 63.1% 3-yr: 47.8%

No Grade 4

G3: 3 (5%)

Norihisa et al. 

(2008) [34]
34

48 Gy/4

 60 Gy/5
27

2 yr: 

90%
2-yr: 84%

Grade 2: 4 (12%)

Grade 3: 1 (3%)

Brown et al. 

(2008) [28]
35 60 Gy/4 18 77% (crude) 2 yr: 72.5% Grade 3–4: 1 (2.8%)

rusthoven et al. 

(2009) [5]
38 60 Gy/ 3 15.4

2-yr: 

96%
2-yr 39%

No grade 4

Grade 3: 3 (8%)

ricardi et al. 

(2012) [6]
61

45 Gy/3

 26 Gy/1
20.4

2-yr: 

89%
2-yr: 66.5% Grade 3: 1 (1.6%)

inoue et al. 

(2013) [16]
87

48 Gy/4

 60 Gy/10

 52 Gy/10

50 Gy/5

37
3-yr: 

80%
3-yr: 32%

Grade 4: 1%

Grade 3: 6%

Osti et al. 

(2013) [59]
66

23 Gy/1

30 Gy/1
15 2-yr: 89.1% 2-yr: 31.2% Grade 3: 2 (3%)

Filippi et al. 

(2014) [7]
67 26 Gy/1 24 2-yr: 88.1% 2-yr: 70.5% Grade 2–3 late 

radiological: 8 (12%)

Navarria et al. 

(2014) [46]
78

48 Gy/4

 60 Gy/3

60 Gy/8

20 3-yr: 89% 3-yr: 73% No Grade 2 or more

ricco et al. 

(2017) [44]
447 48-54 Gy/3-5 Nr 3-yr: 58.9% 3-yr: 33.3% Nr

casamassima et al.

(2017) [60]
279

Median Dose: 

33 Gy/1–3 
19 Median: 18 Median: 56 No Grade 3 

Pts — patients; Nr — not reported
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lished on patients affected by lymphoma or breast 
cancer treated with conventional fractionation on 
large volumes with conformal techniques. Based 
on the few available data, the following heart dose 
constraints for 4-fractions SRT have been proposed: 
Dmax < 45 Gy, V40 ≤ 1 cm3, and V20 ≤ 5 cm3 [54]. 
In SRT for centrally located tumors, the esophagus 
is another organ at risk with reported late side ef-
fects ranging from stricture to perforation [68]. It 
has been suggested to keep maximum dose under 
30 Gy depending on the SRT fractionation sched-
ule. Other critical structures in SRT of central le-
sions are the trachea and the proximal bronchial 
tree. The most commonly reported serious adverse 
events included hemoptysis, stenosis, occlusion or 
fistula formation. Other side effects, such as radia-
tion dermatitis, rib fractures and brachial plexopa-
thy, were rarely reported [54, 69, 70].

Together with lesion site (central vs peripheral), 
other factors that might affect toxicity are lesion 
dimension (> 5 cm) and systemic therapy (e.g. gem-
citabine) [7, 16, 40, 71–72].
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