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ABSTRACT

DNA viruses are important infectious agents known
to mediate a large number of human diseases, includ-
ing cancer. Viral integration into the host genome
and the formation of hybrid transcripts are also as-
sociated with increased pathogenicity. The high vari-
ability of viral genomes, however requires the use
of sensitive ensemble hidden Markov models that
add to the computational complexity, often requir-
ing > 40 CPU-hours per sample. Here, we describe
FastViFi, a fast 2-stage filtering method that reduces
the computational burden. On simulated and cancer
genomic data, FastViFi improved the running time
by 2 orders of magnitude with comparable accuracy
on challenging data sets. Recently published meth-
ods have focused on identification of location of vi-
ral integration into the human host genome using
local assembly, but do not extend to RNA. To iden-
tify human viral hybrid transcripts, we additionally
developed ensemble Hidden Markov Models for the
Epstein Barr virus (EBV) to add to the models for
Hepatitis B (HBV), Hepatitis C (HCV) viruses and the
Human Papillomavirus (HPV), and used FastViFi to
query RNA-seq data from Gastric cancer (EBV) and
liver cancer (HBV/HCV). FastViFi ran in <10 minutes
per sample and identified multiple hybrids that fuse
viral and human genes suggesting new mechanisms
for oncoviral pathogenicity. FastViFi is available at
https://github.com/sara-javadzadeh/FastViFi.

INTRODUCTION

DNA viruses are important infectious agents mediating
a large number of human diseases, cancer in particular.

These include human papillomaviruses (HPV), Epstein-
Barr Virus (EBV), Hepatitis B and C viruses (HBV/HCV)
and other viruses involved in the etiology of various cancers
(1). For example, HPV (mainly HPV-16 and HPV-18) is re-
ported to cause at least 5% of all cancers globally (2), with
high risk HPV reported as the causal agent for almost all
cervical cancers (3–5). Similarly, oropharynx cancer, often
driven by human papillomavirus (HPV) type 16 (6), is now
the second-fastest growing cause of cancer death and the
third-fastest growing in frequency among solid organ can-
cers in the U.S. according to https://progressreport.cancer.
gov/diagnosis/incidence (2020). EBV (HHV-4), known as
the cause of mononucleosis, is also associated with vari-
ous non-malignant, premalignant, and malignant lympho-
proliferative diseases including Burkitt lymphoma, autoim-
mune diseases (e.g. rheumatoid arthritis), Sjögren’s syn-
drome, and multiple sclerosis. In 2010, nearly 200,000 global
cancer cases per year were attributable to EBV (7), and the
rate of infections is continually growing.

Analytic pipelines have been developed to identify vi-
ral sequences from Illumina NGS data (Verse (8), Virus-
Finder (9), ViralFusionSeq (10), and Virus-Clip (11)). De-
spite these advances, there is tremendous variability even
between strains of the same viral subtype, and we cannot
preclude the possibility that novel viral strains are missed in
sequence based searches. Hirose et. al. (12) found an aver-
age of 4.6 per 100bp nucleotide substitutions within HPV-16
genomes in each host. Therefore, identifying the infectious
viral strain remains challenging.

Analyses of viral mediated cancer data has associated
HPV integration into the host genome with increased
DNA instability (12), hybrid virus-human extrachromoso-
mal DNA formation (4,13,14) with dramatically increased
expression of hybrid viral-human transcripts (15). The pres-
ence of hybrid HPV-human transcripts encoding the viral
oncogene E6 are associated with poor pathogenesis (16).
The difficulty of discovering of hybrid host-viral reads (ei-
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ther DNA or RNA) is tightly related to the difficulty of dis-
covering viral reads as the host (e.g human) sequence is not
highly mutated and easy to identify. However, the discovery
of a viral-human hybrid read does not immediately yield
the location of integration into the host genome because
the host read may be drawn from a repetitive region such
as Alu, LINE, or ribosomal RNA genes.

New methods like VIRUSBreakend (17) focus specifi-
cally on improved detection of viral integration locations.
VIRUSBreakend uses a keyword matching approach for the
detection of viruses, followed by a local genome assembly
that allows it to detect integration even in low-complexity
regions of the host genome that are missed by other meth-
ods. Because of its requirement of local assembly (suitable
for DNA, but not RNA), we were unable to systemati-
cally test VIRUSBreakend for identification of diverged vi-
ral reads, or for detection of host-viral hybrid transcripts
using RNA-seq samples (see Results).

From a different side, deep learning tools such as Deep-
VirFinder (18) have reported excellent results on identifying
viral sequences drawn from larger viral families. However,
when training in a host-viral setting, the networks often
end up learning what is ‘not-host,’ which is an easier prob-
lem when the host has well characterized and conserved se-
quence (e.g. human). Unfortunately, in realistic host-viral
settings, the sampled data often includes bacterial and fun-
gal sequences (19,20), which are not known a priori and are
therefore not included in the training set. We tested Deep-
VirFinder in these ‘open-set’ scenarios and observed a sig-
nificant degradation in performance (Results). We had pre-
viously developed ViFi which used an ensemble of Hidden
Markov Models (HMMs) to identify highly variable strains
with high accuracy (15). However, ViFi is slow, requiring
(for example) 52 cpu-hours to identify HPV from human
cancer whole genome sequenced samples with 352 million
reads, and is outperformed by VIRUSBreakend in detecting
sites of integration.

Here, we describe Filter-associated-ViFi (FastViFi),
which uses keyword based filtering to speed up ViFi with-
out losing sensitivity, and focuses specifically on detection
of (diverged) viral reads and hybrid host-viral reads. We
benchmarked FastViFi on a collection of simulated and tu-
mor whole genome data to measure speed, precision, and
recall, and compared our results to DeepVirFinder, Kraken
(21) (a k-mer matching method) and ViFi. we tested the
importance of having two Kraken filters instead of a sin-
gle Kraken filter by comparing the performance of single-
stage vs two-stage Kraken filtering. As VIRUSBreakend
(17) is focused on integration sites and does not work for
sparse, viral-only read data, we compared partially against
it for host-viral integration and identification of hybrid
viral-human transcripts in RNA-seq data. Finally, we tested
the relevance of FastViFi results on three TCGA cancer
datasets with Human Papilloma virus, Hepatitis B virus,
Hepatitis C virus, and Epstein Barr virus infections, focus-
ing specifically on hybrid human viral RNA detection.

The results suggest that FastViFi can accurately identify
diverged viral strains, and host-viral hybrid transcripts. Our
results also identified possible novel mechanisms of cancer
pathology due to hybrid transcript formation in HBV and
EBV mediated cancers.

MATERIAL AND METHODS

FastViFi relies on a filtering strategy to increase speed while
maintaining high sensitivity. The filter aims to rapidly dis-
card a large majority of the (mostly human) reads, while re-
taining most of the true viral or viral-human hybrid reads.
The small number of filtered reads are subsequently an-
alyzed and confirmed using a slower but more accurate
method (ViFi). We characterize the filter by (a) speed and
(b) its sensitivity (or recall) in retaining true viral reads.
However, precision, defined as the fraction of filtered reads
that are truly viral, is not a major concern because the fil-
tered reads are subsequently confirmed using ViFi. Instead,
we characterize the filter by its efficiency–defined as the ratio
of the number of query reads to the number of filtered reads.
High efficiency of the filters decreases the running time of
the overall computation as the slower but accurate ViFi is
deployed only on the filtered reads.

The pipeline implementing the filtering and matching
strategy, called FastViFi, is shown in Figure 1A and de-
scribed in this section. Broadly, for parameters k, t, u, we
filtered a read if at least uk-mers matched a human and
virus reference database, and the fraction of k-mers that
match virus exceeded t. The problem remained challenging
for viruses because of their high variability. Large k-mers
tended to lose sensitivity while smaller values of k lowered
the efficiency. Therefore, we deployed a two stage filter with
the first filter aimed towards removing human reads from
the sample, and the second filter aimed at enriching for vi-
ral reads. We additionally developed a method called FastV-
iFiAnalytics to automatically estimate sensitivity and effi-
ciency of the two-stage filters for any choice of parameters,
and enable the users to optimize the method for their needs.

Finally, we extended the range of oncoviral families sup-
ported by developing new Hidden Markov models for Hu-
man Papilloma Virus (95 models), Hepatitis B (19), Hepati-
tis C (27) Virus and Epstein Barr Virus (5 models); we im-
proved the software to allow for the incorporation of other
viral families, for sub-family classification, and to provide
more flexible controls for a range of sensitivity, and run time
requirements.

The FastViFi method

Formally, consider a data set of sequences D. The objective
is to identify a subset V(D)⊆D of viral sequences. Define a
filterF as a procedure that takes a data set D and returns a
subset F(D)⊆D. A filter is characterized by its (a) running-
time denoted by TF(D); (b) efficiency defined as

efficiency = E = |D|
|F(D)| ;

and, (c) sensitivity or recall, defined by

recall = |F(D) ∩ V(D)|
|V(D)|

A desired filter is fast, efficient and sensitive. Using this
definition, ViFi can be thought of as a filter that out-
puts V(D)⊆D with very high efficiency and recall but slow
running-time TV. We attached a filter with high speed T1,
efficiency E1 and high recall and ran ViFi on the filtered
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Figure 1. Panel A Pipeline describing the FastViFi filter strategy. The viral, human and unmapped k-mers are used to compute the unmapped ratio and score
used for filtering. Panel B Pairwise Skmer distance between reference papillomavirus strains computed using Skmer(22)(k=12), followed by hierarchical
clustering. Known PV families Alpha, Beta and Gamma are labeled along with the marks for the test data sets–HPV-intermediate, HPV-validation, HPV-
difficult and PV-non-human. Cancer associated HPV strains HPV16,18,6,11,31,33, 45, 52, and 58 cluster together in the alpha PV class.

output to improve overall performance. The new overall
running time would be T1(D) + TV(|D|/E1), and governed
by the speed and efficiency of the attached filter. Also, the
recall = |F(D)∩V(D)|

|V(D)| depends critically on the recall of F. Fil-
ters can be composed, so that a filter is deployed on the fil-
tered output of a previous filter. We selected filters by opti-
mizing an efficiency versus recall trade-off.

Keyword match filters. We selected Kraken (21) as the tool
to estimate the k-mer composition of the viral reads. For
the parameter k, a taxonomy tree, and a set of reference se-
quences, Kraken builds an index based on k-mer length k
from the references to rapidly annotate query reads. Specifi-
cally, Kraken reported the detected taxonomy label for each
k-mer in a query read. For k-mers that mapped to multi-
ple nodes in the taxonomy tree, Kraken reported the lowest
common ancestor. Finally, the k-mers that did not map to
any node in the taxonomy tree were reported as unmapped.

Kraken references. To build custom Kraken indices, hu-
man and viral references should be provided. For human
reference, we used the setting in Kraken to download the
reference from the NCBI library. For viral strains, we pro-
vided the reference FASTA files identical to the refer-
ences in ViFi. We augmented the taxonomy tree with all
viruses in the reference as direct descendants of the Viruses
(Rank:superkingdom) node wit taxid:10239.

Level-1 filtering. FastViFi is composed of two filters, with
the goals of discarding human reads first, followed by dis-
carding unknown contaminant reads while retaining target
viral reads later in the second filter. Each filter had 3 param-
eters denoted by k1, u1, t1, and k2, u2, t2, respectively.

For read r, parameter k1 let nv(r, k1) (respectively, nh(r,
k1)) denote the number of k-mers labeled as viral (respec-

tively, human). We defined a v-score for r as:

v-score(r, k1) = nv(r, k1)
nv(r, k1) + nh(r, k1)

A read was classified by the Level-1 filter as non-human (and
retained for the next filter)if and only if

v-score(r, k1) ≥ t1

or

nu(r, k1)
nu(r, k1) + nv(r, k1) + nh(r, k1)

≥ u1

A paired-end read passed this filter if at least one of the
paired-ends passed the filter.

Level-2 filtering. The level-2 filter used the same criteria
as level-1 but the parameters k2, t2 were chosen to accept
viral sequences and discard contaminants. Specifically, only
the viral k-mer indexes in Kraken reference were chosen for
mapping k-mers.

FastViFi filter parameter grid-search. We performed a
grid-search on k1, k2, u1, t1 and t2 as an experimental opti-
mization of the parameters for the Level-1 and Level-2 com-
posed or FastViFi filters. The grid search on the FastViFi-
filter is performed on the following parameters and values:
k1 ∈ {20, 25, 30}, u1 ∈ {0.2, 0.4, 0.6, 0.8, 0.9, 1.0}, t1 ∈ {0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, k2 ∈ {14, 18, 22, 24, 26, 28},
t2 ∈ {0.2, 0.4, 0.6, 0.8, 0.9, 1.0}.

FastViFi configurations. FastViFi is configured to have ei-
ther high read level sensitivity, where the goal is to maximize
the viral reads detected, or sample level sensitivity, where
the goal is to rapidly label samples as positive or negative
for a viral genome. The parameters for each configuration
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were extracted from the grid search values. The proposed
way to run FastViFi on a dataset with a large number of
samples is to first run FastViFi on sample-level configura-
tion. Then, on the samples where viral reads were detected,
run FastViFi on read-level.

The sample-level configuration was set based on the ex-
periment resulting the maximum combination of recall and
efficiency where recall was at least 0.50 and efficiency was at
least 830. Specifically, k1 = 25, k2 = 22, t1 = 0.4, u1 = 0.8 ·
n(r, k1), t2 = 0.1 · n(r, k2). Similarly, the read-level configu-
ration was set based on the experiment resulting in the max-
imum efficiency when recall was at least 80%, resulting in a
choice of k1 = 25, k2 = 18, t1 = 0.8, u1 = 0.6 · n(r, k1), t2 = 0.2
· n(r, k2). The software distribution includes scripts to find
configurations with any desired minimum recall and effi-
ciency based on experiments on the HPV-validation dataset.

FastViFi input. The input to FastViFi could be either a
pair of FASTQ files containing sequenced paired end reads,
or a BAM file containing those reads aligned to the human
genome. For a given BAM file containing paired end se-
quenced reads aligned to the human genome, an additional
alignment-based filter (script available in the repository) dis-
cards paired end reads where both mates are mapped to the
human genome. The remaining reads are stored as FASTQ
files and processed by FastViFi.

FastViFi output. FastViFi reports the paired-end reads
where both mapped to viral references, or where one mate
is mapped to the human genome and the other is either
mapped to a viral reference or a reference HMM, as well
the hybrid DNA/RNA loci and the supporting reads.

Viral HMMs in ViFi. We created viral references for HPV,
HBV, HCV and EBV based on 337, 73, 111, and 23 strains
respectively. The number of FastViFi HMMs created for
HPV, HBV, HCV and EBV are 95, 19, 27, and 5 HMMs
respectively.

Modifications in Kraken2. In the modified version of
Kraken2 used in the FastViFi pipeline, the computations on
score and thresholds illustrated in Figure 1 are embedded
in the Kraken2 process, avoiding an extra filtering step on
Kraken2 output files. The filtering strategy is configurable
conveniently by input flags to the modified Kraken2 soft-
ware. Based on the input threshold values, as soon as a de-
cision on discarding a read is made, further processes on the
read is interrupted.

Modifications in ViFi. ViFi primarily utilizes HMM align-
ment to target hybrid DNA or hybrid RNA for variant
viral strains. Specifically, the original ViFi software aligns
paired end reads to HMMs if one mate is mapped to the hu-
man genome and one is unmapped. To broaden the scope
of HMM alignment, we modified ViFi to align paired end
reads to HMMs if at least one mate is unmapped. This mod-
ification enables us to extract variant viral strains in cases
with no hybrid DNA or hybrid RNA. Moreover, our mod-
ifications in the read-level configuration avoids considering
a BWA alignment to the human or viral genomes a valid
alignment in case a significant number (80%) of read bases

are soft-clipped. Additionally, we added a feature to report
further details on HMM alignment such as alignment loca-
tion on HMM and the corresponding set of viral references
constructing the HMM.

FastViFiAnalytics for selection of parameters for 2-level fil-
tering.

Let � denote the number of k-mers in a query sequence,
and n denote the number of k-mers in a data set. Let d be
the genomic distance of the query sequence from its near-
est ortholog in the data set. The expected number of k-mer
matches between the query and and the data set is given by

E[# k-mer matches] = λv = �(1 − d)k (1)

The value of d depends upon context. For viral query and
viral data sets, we use d ∈ {0.05, 0.1, 0.15, 0.2} depending
upon the hardness of the data set (See data set construction
below). Similarly, for a human (host) query is mapped to a
human (host) reference, dh = 0.01 (largely due to sequencing
errors), and

λh = �(1 − dh)k

Finally, consider the case of a query that is not from the
same group as the index, and any k-mer match is just by
chance. Let dr denote its genomic distance from the closest
sequence in the index. Here dr is very high (we choose dr =
0.75) but the k-mer may match anywhere in the reference
containing n k-mers. Therefore,

E[# k-mer matches to query] = λr,n = �n(1 − dr )k

As the probability of a single k-mer matching is small, we
assume in each case that the number of matches u are Pois-
son distributed with the parameter � conditioned on there
being at most � matches. Thus, the probability of matching
at most t of the � k-mers is approximated to

∑t
u=0 Poisson(λ, u)

∑�
u=0 Poisson(λ, u)

Level-1 filtering. The goal of level-1 filtering is to remove
all host reads. Specifically, for parameters k1, u1, t1, we re-
tain a read only if no more than u1� k1-mers are matched
(i.e. non-host) OR if t1� or higher number k1-mers match to
virus. The second filtering condition ensures that viral reads
are retained, providing an estimate of sensitivity as:

Sensitivity1 �
∑�

u=t1� Poisson(λv, u)
∑�

u=0 Poisson(λv, u)
(2)

The probability of retaining (not discarding) a host se-
quence is approximated by

Ph �
∑u1�

u=0 Poisson(λh, u)
∑�

u=0 Poisson(λh, u)

Define Pr as the prior probability of a sequence being a con-
taminant sequence in the sample. We estimate Pr � 0.05 , dr
= 0.75. Let n = 3 × 109 and nv = 337 × 7500 represent the
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number of k-mers in the human genome and viral references
respectively.

Pr[random-match] �
∑t1�1

u=0 Poisson(λr,nh , u)
∑�1

u=0 Poisson(λr,nh , u)

Pr[pass-filter] = (1 − Pr ) · Ph + Pr · Pr[random-match]

Efficiency1 � 1
Pr[pass-filter]

In the efficiency calculations for the first level of filtering,
we only count for the human reads and contaminant reads,
ignoring the viral reads as the number of viral reads are neg-
ligible when compared to contaminant and human reads.

Level 2. In the second level filtering (parameters k2, t2, we
search only against the viral reference and retain a read if at
least t2� of the k2-mers match. The probability of retaining
a read is related to the prior probability Pv of being a viral
sequence, and the probability of a chance match to a non-
viral sequence.

Pr[match] = (1 − Pv)

∑�
u=t2� Poisson(λr,n, u)

∑�
u=0 Poisson(λr,n, u)

(3)

+ Pv

∑�
u=t2� Poisson(λv, u)

∑�
u=0 Poisson(λv, u)

(4)

Efficiency2 = 1
Pr[match]

(5)

Sensitivity2 =
∑�

u=t2� Poisson(λv, u)
∑�

u=0 Poisson(λv, u)
(6)

The overall efficiency and sensitivity of the composite filter
is the product of the efficiencies and sensitivities of the two
filters, respectively.

Using DeepVirFinder

We compared FastViFi against DeepVirFinder (18) (DVF),
the deep-learning gold standard for HPV detection. DVF
which uses a CNN-based discriminative classifier to classify
human and HPV sequences (18).

We re-trained DeepVirFinder using our training data
HPV-ref and reads from the human genome. We optimized
the model using 500 filters in the convolutional layer, and
100 nodes in the dense layer. We trained for the model until
convergence using 8 GeForce GTX 1080 Ti GPUs. As rec-
ommended by the software, if the loss on the validation set
did not improve for 7 epochs (the ‘patience’ time), we halted
the training.

Benchmark data sets

We collected Human Papillomavirus (HPV) references from
the Papillomavirus Episteme dataset (PaVE). PaVE por-
tal is accessible through https://pave.niaid.nih.gov. We used
all 337 HPV strains recorded prior to October 2017 as the

training/reference data and refer to this dataset as HPV −
ref. All sequences recorded after this date were referred to
as novel

We used Skmer (22) to compute the minimum distance
of every novel sequence to any sequence in HPV-ref. Sup-
plementary Figure S4 shows the distribution of computed
Skmer distances of each novel sequence with respect to
HPV-ref, with the distance ≥0.1. We chose the four test
data sets based on first (HPV-intermediate), 33rd (HPV-
Validation), 66th (HPV-difficult) and last (PV-non-human)
percentile of the distribution. Supplementary Table S11 de-
scribes the strain names for each of the test data sets.

Each test data set consisted of simulated reads (using
ART (23)) from the selected viral genomes, the human
genome (GRCh38 assembly), and contaminant genomes
(bacterial and fungal) (19) as follows:

• 100k paired-end human originated reads simulated from
the human genome (GRCh38 assembly) with coverage of
0.01.

• Around 240 paired-end virus originated reads simulated
from 10 viral strains. For each viral genome, reads were
simulated with coverage of 1. The exact number for
each dataset varied depending on the length of the viral
genomes.

• 5250 paired-end reads sampled from five bacterial and
three fungal strains (Supplementary Table S12) chosen
randomly from the NCBI taxonomy tree. Reads were
simulated from bacterial and fungal genomes and sub-
sampled randomly, resulting in 2625 paired-end bacterial
reads and 2625 paired-end fungal reads.

All simulated data sets include the same human and con-
taminant reads, i.e., only the viral reads are updated for each
test data set, and percentage of human to viral to contami-
nant reads was 100,000:240:5,250.

FastViFi analysis

Using FastViFi for identifying DNA integration and hybrid
transcripts. Hybrid DNA integration and hybrid tran-
scripts are reported after clustering reads within the same
junction and reporting the number of distinct junctions.
Reads are considered to be within the same junction if they
belong to the same sample i.e., same individual, the human
part of the hybrid reads are within 300bp of each other, and
the viral part of the hybrid reads are within 100bp of each
other.

Hybrid transcript expression. We collected normalized
RNA expression values for our HBV samples and EBV
samples from the HCC and STAD studies respectively, from
TCGA. We computed statistics for change in gene expres-
sion for specific genes with recurrent hybrid transcripts. For
each gene of interest, we refer to samples carrying hybrid
transcripts for that gene as positive; samples were labeled
negative for that gene otherwise. We computed the r-statistic
as the ratio of the median expression of the positive and neg-
ative samples. The Wilcoxon Rank Sum test is often used to
estimate the significance of the change in gene expression
values, but was not used due to the small number of positive

https://pave.niaid.nih.gov
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samples. Instead, we performed a rank-permutation test as
follows. For each gene, we computed the rank-sum statistic
s as the sum of the global ranks of the gene in the positive
samples. We ran 10,000 trials with random permutations of
the positive/negative status and computed the p-value as
the fraction of trials in which the permuted rank-sum statis-
tic was more extreme than s.

Software availability

FastViFi is available at https://github.com/sara-
javadzadeh/FastViFi.

We modified Kraken and ViFi tools to work more ef-
ficiently in FastViFi pipeline. The forked repositories are
available at

https://github.com/sara-javadzadeh/kraken2 and
https://github.com/sara-javadzadeh/ViFi.

RESULTS

Training data

We collected Human Papillomavirus (HPV) references from
the Papillomavirus Episteme data set (PaVE). We chose all
337 HPV strains discovered prior to October 2017 as the
training/reference data and refer to this data set as HPV −
ref.

Estimating complexity/divergence of viral data

We used Skmer (22) to estimate the distance between HPV
genomes based on the number of shared k-mers (k = 12) fol-
lowed by hierarchical distance based clustering (Figure 1B).
Notably, the known Papilloma virus (PV) classes Alpha,
Beta, and Gamma (derived by querying PaVE portal), each
formed their own larger clusters, while the non-human PV
genomes were scattered into smaller clusters or singletons.

Test data

To generate realistic scenarios, we separated the training
and test data by date. Specifically, training data was com-
prised of papilloma viral (PV) strains available on the PaVE
platform earlier than October 2017. Viruses submitted later
than the date were reserved for testing. We separated se-
quences by divergence based on their closest distance to any
viral genome in the training set and created 4 data sets of in-
creasing divergence (Material and Methods). Among these
four, an HPV-validation data set was used in a feedback loop
to fine-tune the parameters learned from HPV-ref in FastV-
iFi. Three other data sets of increasing complexity–HPV-
intermediate, HPV-difficult and PV-non-human– were used
to benchmark and compare algorithms for speed and ac-
curacy (Material and Methods). These data were combined
with human and ‘contaminant reads’, comprising microbial
and fungal reads that are often found to contaminate hu-
man samples to complete the data sets (See Material and
Methods).

In addition to benchmarking test data, we also used
FastViFi to identify viral reads in samples from TCGA, in-
cluding DNA reads from head and neck squamous cell car-
cinomas (HNSC)(24) with HPV infection, RNA reads from

hepatocellular carcinoma with HBV and HCV infections
(HCC)(25), and RNA reads from gastric adenocarcinoma
with EBV infection (STAD)(26).

Some of the HPV-difficult and all of the PV-non-human
sequences were non-human PVs and represented truly dif-
ficult cases, where the reported host on PaVE was non-
human. However, they are useful for benchmarking perfor-
mance on highly variant strains. We note that the known
cancer associated HPVs (HPV16, 18, 6,11, 31, 33, 45, 52,
58) are all Alpha PVs. These form the easiest cases, imply-
ing that the test data sets results represent a harder and more
conservative measure of accuracy.

Efficiency versus recall of two-stage versus single-stage filter-
ing

We used the HPV-training data and the human reference
to identify HPV-related and human keywords, and used a
choice of the 5 parameters for a two-stage filter. We tested
FastViFiAnalytics in predicting the optimal efficiency and
recall for any choice of parameters (Figure 2A) against
empirical results on HPV-Intermediate (blue-line) HPV-
difficult (orange line) and also PV-non-human (Supplemen-
tary Figure S1, red line). The results suggest that FastViFi-
Analytics can be utilized as a faster alternative to predict
parameters without running a grid search.

We compared the efficiency versus recall for single-stage
(labeled as Kraken) filtering versus the two-stage (labeled
as FastViFi) filtering, and found that the two-stage filter-
ing dominated single-stage (Kraken) filtering. For exam-
ple, we observed a high efficiency of 432 at 94% recall
in HPV-intermediate (Supplementary Figure S1B) implies
that only one out of 432 reads passed the filters to the
ViFi step of FastViFi on average, potentially resulting in
a sharp speedup. In contrast, the single-stage Kraken filter
showed an efficiency of 254 at 94% recall (Supplementary
Figure S1B). This behavior was due to the single Kraken
filter either permitting a larger number of non-viral reads
(low efficiency) or losing true viral reads (low recall). The
improved efficiency versus recall curves for the two-stage
FastViFi had a direct impact on the precision versus recall
curves shown later.

For all methods, there was drop in efficiency from HPV-
intermediate to HPV-difficult because fewer reads could be
confidently discarded by the filter without losing sensitivity.

Training FastViFi parameters empirically

We developed the FastViFi pipeline by coupling ViFi to the
output of filters with a user-defined choice of 5 parameters,
and performed a grid-search (Section Material and Meth-
ods:filter parameter grid-search) on the 5 parameters, mea-
suring precision and recall on the HPV-Validation data set
(Green dots in Figure 2B) and also efficiency versus recall
(Supplementary Figure S1). We chose two Pareto optimal
settings. The first identified viral reads with 50% recall and
efficiency of 834. While the per-read recall was low in this
setting, it was sufficient to test if the sample was HPV posi-
tive and provided high efficiency/speed. The second param-
eter achieved read-level sensitivity exceeding 80% with effi-
ciency of 392, as this setting was sufficient to identify most

https://github.com/sara-javadzadeh/kraken2
https://github.com/sara-javadzadeh/ViFi
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Figure 2. FastViFi filtering. Panel A. Efficiency-recall trade-offs for emprical search, FastFastViFiAnalytics predictions and single-stage Kraken on the
test data sets with different parameter-settings (Also see Supplementary Figure S1). Panel B. FastViFi precision versus recall on HPV-validation, along
with chosen settings for FastViFi r (orange) and FastViFi s (red). Panel C. Precision-recall trade-off for all the benchmarked methods. For FastViFi and
Kraken, the lines were obtained by running a grid search on the input parameters and excluding the data points with suboptimal performance. For DVF,
the lines are formed by varying a threshold on the score of each read to classify the read origin. Panel D. FastViFi speedup versus sensitivity compared
to ViFi on the HNSC data set (8 samples). Each sample is represented by a dedicated marker shape. For each sample, the markers representing ViFi
experiments are placed at (1.0, 1.0), and the FastViFi speed-up and sensitivity are described relative to the corresponding ViFi run.

viral human hybrid transcripts. The pipelines correspond-
ing to these parameter settings were denoted as as FastV-
iFi s (sample-level) and FastViFi r (read-level), respectively.
We compared these methods against FastViFi (Filter only
with no ViFi coupling), Kraken(21) (a single level key-
word filtering method optimized for HPV), DVF(18), a re-
cent deep learning based virus finder method, and ViFi(15).
VIRUSBreakend(17) requires an assembly step which failed
in these sparse data-sets that are unsuitable for checking
sites of integration.

Precision versus recall

We plotted the precision versus recall trade-off across all
methods (Figure 2C and Supplementary Figure S2) for

HPV-intermediate and HPV-difficult. ViFi had the high-
est precision and recall on HPV-intermediate and HPV-
difficult. On HPV-intermediate, FastViFi r obtained recall
of 0.97 with perfect precision of 1.0. In contrast, Kraken
as an stand-alone tool obtained a recall of 0.86 for preci-
sion 1.0. The recall of FastViFi r decreased to 0.81 for HPV-
difficult data, which is still sufficient to identify most HPV
positive samples, while the recall of Kraken decreased to
0.53 for the highest precision reached at 0.98. To establish a
baseline, we also compared our results to a direct sequence
alignment based method. Specifically, we ran Blastn against
the training databases to identify viral reads in the test data.
Blastn had a precision less than 0.1 across all test sets. The
low value of precision was attributed to the large number
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of diverged viral reads that could only be identified by in-
creasing the E-value cut-offs to where false sequences also
matched.

Our results additionally suggest that an ideal strategy for
running FastViFi on large cancer data sets would be to run
FastViFi s across the whole data set to rapidly infer viral
infection, followed by running FastViFi r on the samples
deemed positive by FastViFi s, with both options available
in the GitHub repository. Across all of our test sets, Deep-
VirFinder achieved less than 20% precision despite retrain-
ing the models (Figure 2C). We attribute this to two key as-
sumptions made by DeepVirFinder: (1) onco-viral genome
data contain only human and viral genomes and no con-
taminants; and, (2) viral genomes are well-represented in
the database so that the test viral genomes are adequately
represented in training. The former assumption specifi-
cally, relates to open-set problems, with the contaminant se-
quences forming the unknown-unknown class (not only un-
seen but also having no side information during training).
Open-set problems are known to be challenging for deep
neural networks (27), and we observe that in our data. The
second assumption does not suitably account for the high
variation in viral strains.

FastViFi rapidly and accurately identifies HPV reads in head
and neck squamous cell carcinomas

We applied FastViFi to WGS data from 29 HPV positive
samples from the Cancer Genome Atlas study of head and
neck cancers (TCGA-HNSC). The original ViFi is very re-
source intensive and therefore we ran it on eight samples
for comparison. For both methods, we discarded reads from
the input BAM file where both mates of the paired-end read
mapped to the human genome prior to analysis. Notably,
FastViFi r was 10 × faster than ViFi (Figure 2D), while
retrieving (on average) 96% of the reads identified by ViFi
(Supplementary Table S1). FastViFi s was 30-120 × faster
with sensitivity loss of 3% when compared to ViFi. The run-
ning time of FastViFi s on the 29 HNSC whole genome
samples ranged from 25 minutes to 9 hours with an aver-
age of 101 minutes per sample (Supplementary Figure S5).
Most runs completed in about 2 hours. The running time
was correlated with the number of unmapped reads up to
108 reads, and was stable after that.

In terms of accuracy on WGS data, FastViFi s detected
HPV at the threshold of ≥1 viral read per million human
reads in all 29 HPV positive sequences, and in 0 of the 15
control sequences (Figure 3A). As this is a relatively ‘easy’
data set, we also tested the single stage filtering strategy. Ap-
plying Kraken as an stand alone tool could not separate the
HPV negative and positive samples, and missed three HPV
positive samples (sensitivity = 0.9) at the threshold of 1 viral
read per million reads (Supplementary Figure S3). More-
over, in FastViFi s we observed a significant margin be-
tween the number of viral reads (per million human reads)
in HPV positive and negative classes. Such a large mar-
gin between the two classes is not observed when running
Kraken. This is likely due to higher level of false positive
reads reported by Kraken on HPV negative samples, com-
pared to FastViFi s. The results confirm that FastViFi s can
be used as a quick and accurate test for detection of HPV se-

quences in human samples. FastViFi s also detected hybrid
DNA in all 19 samples previously reported by ViFi.

VIRUSBreakend does not report viral-only reads but has
shown excellent performance for the detection of integra-
tion locations using local assembly on simulated data (17).
On 22 of HCC samples with HBV, they reported exactly
the same 16 integration sites as ViFi (17). As FastViFi has
a different focus, we only did a partial comparison against
VIRUSBreakend using 2 WGS HNSC samples.

As recommended, GRIDSS2(28) was used for local as-
sembly prior to running VIRUSBreakend. On one sample
bam file, TCGA-CR-5243, FastViFi took 61 cpu-minutes
including 37 minutes of the alignment-based filter (Sec-
tion Material and Methods:pre-processing). VIRUSBreak-
end took 185 minutes using a single thread with most time
devoted to local assembly using GRIDSS2 (173 minutes).
On a second sample (TCGA-CR-6473), VIRUSBreakend
took 187 minutes on a single thread (using 178 minutes
for assembly), while FastViFi took 73 minutes, including
40 minutes of alignment-based filter (Section Material and
Methods:pre-processing).

FastViFi rapidly identifies viral transcripts

Expectedly, the FastViFi running time was much lower on
RNA-seq data for HCC and STAD, with a mean time of 2
minutes for HCC and 9 minutes for STAD (Supplementary
Figure S5). Notably the Epstein Barr Virus (EBV) is signif-
icantly larger than HBV and HPV (170kbp vs. 3kbp and
7kbp), which translates to slower HMM alignments. Nev-
ertheless, the running time on STAD RNA-seq samples was
well below DNA samples in HNSC.

We could not match these results on the RNA-seq sam-
ples using VIRUSBreakend, which is not configured for
RNA. On a single sample of aligned reads (Barcode TCGA-
FP-7998-01), the FastViFi pipeline took 40 minutes includ-
ing 27 minutes of the alignment-based filter (pre-processing,
see Material and Methods) using a single CPU-thread on
a server with 126Gb RAM and 24 CPU-threads. VIRUS-
Breakend (with 60Gb heap allocation) ran for 6 days on the
server but failed at the assembly step. Therefore, we did not
run it on all samples.

Hybrid viral-human transcripts are abundant in liver and gas-
tric cancers

We applied FastViFi to a comprehensive RNA-seq data
set with 193 Hepatocellular carcinoma (HCC) cases from
the Cancer Genome Atlas(25). In that study, three sepa-
rate computational methods as well as clinical markers were
used to determine the HBV/HCV status of the patients, re-
sulting in 44 tumors being labeled as HBV positive, and
31 as HCV positive. These positive samples included cases
where clinical evidence confirmed viral infection, but none
of the computational models reported viral infection pos-
sibly due to a response to antiviral therapy, among other
reasons.

FastViFi identified at least 1 viral read per 1 million hu-
man reads in 36 (82%) of the HBV positive samples and
in 1 HBV negative sample (Figure 3B). In contrast, HCV
transcript abundance was much lower. In the HCC cohort,
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Figure 3. FastViFi based identification of genomic integration in HPV-HNSC (panel A), and hybrid transcripts in HBV-HCC (panel B), HCV-HCC
(panel C) and EBV-STAD (panel D). The right side of each panel displays the distribution of viral read abundance for class samples labeled as infected
(orange) and non-infected (blue) in the original study. Each sample is represented by one marker ordered by normalized viral reads (per 1 million human
reads) as detected by FastViFi. The horizontal dashed line at y=1 across panels B,C,D is the accepted threshold for hybrid transcript detection. Each
marker is a cross if hybrid transcripts (or hybrid DNA) was identified, and otherwise denoted by a circle.

only 3 of the 35 HCV positive samples and 1 of the 161
HCV negative samples met the required threshold for de-
tection (Figure 3C) Similar to HBV, FastViFi identified a
high burden of EBV transcripts in all of the 27 samples that
were reported as EBV positive and none of the EBV nega-
tive samples that had RNA-seq data available in the original
study(26) (Figure 3D).

Overall, our results suggest that viral HBV and EBV tran-
script abundance values strongly correlate with infection
status at diagnosis, and point to the applicability of FastV-
iFi in transcript based detection of HBV mediated liver can-
cers and EBV mediated gastric cancers.

Viral-human hybrid RNA. Out of the 37 samples with
HBV-human hybrid RNA reported by the HCC study,
FastViFi detected HBV-human hybrid transcripts in 36,
failing to report hybrid RNA for only one sample while still
labeling the sample as HBV positive (Supplementary Ta-
ble S3). Additionally, FastViFi identified viral-human hy-
brid in one HBV(-) and also one HBV(+) sample where the
hybrid RNA were not detected in the HCC study (Supple-
mentary Tables S4, S5). Similarly, it reported hybrid RNA
in 4 HCV(-) samples not previously reported as carrying

hybrid RNA in the TCGA study(29). Only one of these
samples met the threshold of 1 viral read per 1 million hu-
man RNA reads. Notably, FastViFi identified strong evi-
dence of HBV-human hybrid RNA in one sample (TCGA-
CC-A1HT-01A) which was labeled as HBV(+) in the HCC
study, but no hybrid RNA was reported (Supplementary
Table S4 and Supplementary Figures S6, S7).

We additionally tested FastViFi for detecting EBV from
371 of 440 samples in the gastric cancer (TCGA-STAD)
cohort(26) where RNA-seq was available. EBV integration
into the host genome was generally considered to be infre-
quent in gastric cancer(26,29,30). However, a recent study
identified multiple genomic integration sites through a tar-
geted sequencing approach(31). The TCGA study(26) had
previously confirmed a single EBV-human hybrid transcript
through long-read sequencing. FastViFi confirmed that
transcript identified in the STAD study (barcode TCGA-
FP-7998), but also reported hybrid EBV-human RNA in 9
additional samples representing 38% of EBV positive gas-
tric cancers in the TCGA-STAD cohort (Figure 3D and
Supplementary Table S6). Together, our data suggest that
similar to HPV(15), HBV and EBV mediated cancers fre-
quently carry viral-human hybrid transcripts.



10 NAR Genomics and Bioinformatics, 2022, Vol. 4, No. 2

Figure 4. Hybrid human-viral RNA loci. Panels A, B. The two histograms show the location of the integration sites on HBV and EBV, respectively. The
integration locis is non-random, enriching for HBx gene on HBV (panel A) and the BALF gene cluster on EBV(panel B) EBV. Panels C, D. Illustration of
hybrid transcripts for HBx (NC 003977.2) and EBV(NC 007605.1) fused to MLL4 and BALF5 respectively (GrCH38 coordinates). One paired end read
was chosen to represent each junction. Panel E. Normalized abundance of hybrid isoforms relative to their non-hybrid isoforms. ‘r’ denotes the ratio of
expression means in the two sets. For ease of exposition, the RSEM values were further normalized by the maximum expression of the gene in each panel.
A permutation test on ranks was used to compute p-values(Material and Methods).

HBV and EBV hybrid transcripts mediate tumor development

In the HCC cohort, we identified 793 hybrid transcript junc-
tions after clustering junctions within 100bp (Material and
Methods). On the viral genome, 337(42%) of these 793 junc-
tions originated at the HBx gene (Figure 4A). The product
of HBx is an oncogenic marker known to interact with many
other genes including TP53 and TERT to promote oncoge-
nesis in liver cancer(32). While most hybrid reads matched
directly to an HBV reference, 46 individual reads were dis-
covered through a mapping to HBV HMMs. Interestingly,
these 46 reads all mapped to an HBV locus containing the
S and P genes in overlapping frames (Figure 4A). These re-
sults suggest that HBV-S hybrid transcripts are prevalent
in a non-reference strain of HBV. Integration at the HBV-
S gene locus is incompletely understood. However, integra-
tion of the ESPL-1 gene with HBV-S is associated with hep-
atocellular carcinoma in Chinese populations(33).

The HBV hybrid junctions involved 91 distinct human
genes (Supplementary Table S7) of which 27 (30%) were
cancer associated, in contrast with the 11% of all genes
that are cancer associated (P-value: 0.0001; � 2-test). an-
cer associated genes were derived from the allOnco gene
list accessible through http://www.bushmanlab.org/links/
genelists (2018). Many genes appeared recurrently includ-
ing KMT2B/MLL4 (10 times), TERT (8), SERPINA1 (8)
(Supplementary Table S8). Our results supported previous
publications that reported hybrid TERT and KMT2B tran-
scripts in HCC cell-lines(34).

A gene-set enrichment analysis using DAVID(35) showed
enrichment for blood microparticles (BH q-value: 7.41 ·
10−8) and platelet �-granule lumen proteins (q-value: 1.73
· 10−7). Adhesive proteins found in �-granules mediate di-
rect interactions between tumors and platelets and platelet
adhesion may facilitate tumor metastasis through cloaking

http://www.bushmanlab.org/links/genelists
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tumor cells from immune surveillance and assisting their
egress from circulation(36).

Similarly, FastViFi identified 141 junctions in EBV as-
sociated STAD samples (Supplementary Table S9). Four
of these junctions involved EBV HMM matches while the
rest matched the reference EBV sequences. On the EBV
genome, the junctions enriched (Figure 4B) for a region
contained eight genes (BARF0, BALF3, BALF4, BALF5,
A73, RPMS1, LF2 and LF1) that are highly expressed
in the majority of EBV-positive gastric cancers(37). The
BALF family of genes are involved in the early lytic phase
of the EBV life-cycle(38).

The EBV-hybrid transcripts included 74 human genes,
with B2M(2), CD74(2) and ACTB(2) occurring recurrently
(Supplementary Table S10). Eighteen (24%) of the 74 genes
were cancer associated (p-val: 0.0005). Enrichment analysis
using DAVID(35) revealed that 32 of the 74 genes encoded
components of the extracellular exosome cellular compo-
nent (68 genes; GO:0070062; BH q-value:3.8 · 10−7). Ex-
tracellular vesicles (EVs) have been previously implicated
in EBV pathogenesis(39), and this enrichment suggests a
novel role of EBV hybrid transcripts in extracellular vesi-
cle formation. In thirty of the 91 transcripts integrated with
HBV and 30 of the 74 genes integrated with EBV, the over-
lap was with coding exons (Figure 4C,D) consistent with vi-
ral promoters driving the expression of the viral-human hy-
brid transcript. We tested the impact of this integration on
gene expression relative to the expression of the same gene
in non-integrated samples. In many cases, the hybrid tran-
scripts were significantly over-expressed for both HBV and
EBV with the mean expression of the gene 4 - 278x higher
in a hybrid isoform relative to the non-hybrid isoform. (Fig-
ure 4E).

DISCUSSION

There is tremendous diversity in viral sequences even within
a single family. Accurate detection of viral sequences in a
mix of host and contaminant genomes are not currently
achieved by discriminative deep learning models, even ones
devised and trained specifically for this purpose. Represen-
tational models such as Hidden Markov models show high
sensitivity but only when an ensemble of models is used -
each capturing the diversity in a single clade. This leads to a
computational bottleneck, especially when searching large
data sets of host genomes for presence, absence or integra-
tion of the virus. Our results suggest that a 2-stage filtering
is effective and fast, with the first stage used largely to elim-
inate the bulk of the host sequences, and the second filter
used mainly to retain the viral sequences while discarding
other contaminants. The small number of filtered reads can
then be searched with the HMM ensemble to identify vi-
ral reads. FastViFi can search typical human whole genome
data sets in an average time of 1 hour and RNA-seq data in
<10 minutes.

Methods such as VIRUSBreakend are excellent for de-
tecting locations of viral integration into the host genome,
but require a prior assembly step to ensure extension of
repetitive sequence into unique regions. The GRIDSS2 as-
sembly is necessary for VIRUSBreakend, but may not be a
standard part of the pipeline of other tools, and therefore

running VIRUSBreakend could add significant computa-
tional expense.

We designed FastViFi for a quick identification of viral
reads in WGS, and viral and hybrid transcripts in RNA-
seq data. We ran FastViFi on different oncoviral data sets
including HNSC whole genomes and RNA-seq for HBV,
HCV and EBV. The results suggested interesting differences
in viral pathology mechanisms between HPV versus HBV
and EBV. HPV integration in the human host occurs with-
out preference for particular loci or genes. They act primar-
ily to promote production of viral oncogenes E5/E6. HBV
and EBV showed clear preference for the location of the
viral end at HBx, HBV-S, and EBV-BALF regions. Also,
the human part was often located in a protein coding gene,
sometimes recurrently. The hybrid transcripts were consis-
tent with a translated product supporting the viral gene
fused to a human coding gene and the viral promoters driv-
ing transcription of the fused human genes.

Previous reports have suggested increased pathogenicity
in HBV hybrid transcripts due to activation of LINE ele-
ments(34). Our results point to a role of human oncogenes
in mediating this pathogenicity. Other reports suggest in-
creased genome instability due to HBV integration(40). We
plan to investigate these in future work. Similarly, integra-
tion of EBV in gastric cancers has been associated with
global changes in gene expression(41), and it will be intrigu-
ing to test if some of these hybrid transcripts drive those
changes. In conclusion, FastViFi will add to the toolkit
available to scientists studying viral infections and hybrid
viral-host transcripts.
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