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Abstract
Background: Isolated myelosarcoma of infancy is a rare presentation of acute my-
elogenous leukaemia (AML). Because of its rarity and early onset in infancy underly-
ing genetic predisposition is potentially relevant in disease initiation.
Methods and Results: We report an oncologic emergency in an infant with thoracic 
and intraspinal aleukaemic myeloid sarcoma causing acute myelon compression and 
lower leg palsy. Whole- exome sequencing of the patient's germline DNA identified 
a rare PALB2 (OMIM 610355) variant (p.A1079S), which is located in a domain 
critical for the gene's proper function within the homology- directed repair pathway. 
In line with potential DNA damage repair defects mediated by the PALB2 deregula-
tion, the patient's fibroblasts showed increased sensitivity towards radiation and DNA 
intercalating agents.
Conclusion: Therefore, we suggest PALB2 p.A1079S as a pathogenic variant poten-
tially contributing to the here observed patient phenotype.
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1 |  INTRODUCTION

PALB2 is a tumour suppressor that plays a critical role in 
homologous recombination repair (HR). Mechanistically, 
it mediates the recruitment of BRCA2 and RAD51 to sites 
of DNA damage and functions downstream of BRCA1 
(Hanenberg & Andreassen, 2018; Xia et al., 2006). Apart 
from HR, PALB2 regulates S and G2 DNA damage check-
points and suppresses genome instability by protecting tran-
scriptionally active genes from genotoxic stress (Hanenberg 
& Andreassen, 2018; Menzel et al., 2011).

Bi- allelic inactivating germline mutations in PALB2 
that at least partly truncate the BRCA2- binding C- terminal 
WD40 domain, result in the Fanconi anaemia (FA) subtype 
N. These patients display a severe FA phenotype with a high 
cancer incidence, including acute myeloid leukaemia (AML) 
before the age of 5 years (Reid et al., 2007; Xia et al., 2007).

While AML accounts for about 4% of all malignant diseases 
in childhood, myeloid sarcoma, also called ‘granulocytic sar-
coma’ or ‘chloroma’, is even rarer and can occur as an extramed-
ullary myeloid tumour (EML) in up to one- fifth of paediatric 
AML. Such tumours can develop in 2– 4% of children with AML 
prior to any bone marrow involvement and are therefore often 
a diagnostic challenge (Bisschop et al., 2001; Dusenbery et al., 
2003; Kaatsch & Spix, 2019; Kobayashi et al., 2007; Pramanik 
et al., 2018; Reinhardt & Creutzig, 2002; Stove et al., 2017).

Here, we report an infant with an extended atypic localiza-
tion of myeloid sarcoma as isolated manifestation of an AML 
with a paternally inherited rare PALB2 germline variation.

2 |  RESULTS

2.1 | Case description

A 7- month old male infant was transferred to our clinic in de-
teriorating clinical condition over the last 2 days, with mas-
sive tachydyspnea. The physical examination on admission 
was remarkable for a silent chest, reduced percussion sound 
on the right side and a very mild partial paralysis of both 
lower limbs, while laboratory results were unremarkable 
(Table S1). The ultrasound and chest x- ray revealed a large 
right- sided pleural effusion (Figure S1) with monoblastic 
cells, aberrant expression of CD7 and in part CD56 (Figure 
1a). Consequently, we performed a CT (Figure S2) and MRI 
of the chest (Figure 1b), which showed a tumour involving 
the right pleura with infiltration of the thoracic wall, the me-
diastinum and further ranging through the neural foramina 
to extra- axial intraspinal and growing intra- abdominal along 
the blood vessels. The intraspinal proportion led to a com-
pression of the myelon causing partial palsy of the legs.

Bone marrow morphology revealed normal erythro-
poiesis, myelopoiesis and megakaryopoiesis with 7.5% of 

myelomonocytic blasts. No increased proportion of myeloid 
associated blasts (0.6%) was identified by flow cytometry. 
Cytogenetics verified a chromosome 6q deletion. The trans-
thoracic tumour biopsy revealed a tumour cell population 
with positivity for CD117, partially for CD14 and focally for 
CD45. The Ki67 proliferation index was 80% (Figure 1c). 
In synopsis with the radiological, laboratory, flow cytomet-
ric and histopathological findings, we finally diagnosed an 
isolated extramedullary manifestation of a myelomonocytic 
sarcoma. The family history was unremarkable for neoplasia 
except for a great- grandfather with skin cancer.

The patient was initially stratified into the intermediate 
risk group of the treatment protocol AML- BFM 2012 and 
therapy was started in an emergency because of myelon 
compression. The palsy of the lower limbs declined during 
the pre- phase with cytarabine and MRI confirmed the rapid 
regression of the spinal cord compression. After the first in-
duction cycle, 16% blasts were detectable in the bone mar-
row cytology, therefore the patient was re- stratified into the 
high- risk group with an indication for allogeneic stem cell 
transplantation (SCT) in the first complete remission. After 
the fourth cycle, he underwent SCT and received PBSCs 
from a matched unrelated donor. As an early complication, 
he developed acute Graft- versus- Host- Disease of the skin 
grade I on day +9 and an early CMV reactivation on day 
+12. He was discharged on day +40, the donor chimerism 
on day +100 was 100% and following MRIs did not show 
any residual signs of the EML now 17 months post- SCT.

2.2 | Germline sequencing identifies a rare 
PALB2 variant (p.A1079S)

Despite a neoplasia unremarkable family history, the com-
bination of a rare presentation of AML and early onset in 
infancy points towards a potential germline predisposition 
as an initiator of the disease. Therefore, TRIO sequencing, 
encompassing whole- exome sequencing of the patient as 
well as his parents, was carried out. By applying the CPSR 
engine (Nakken et al., 2019), no proven pathogenic or likely 
pathogenic variants were found (Figure 2a). Nevertheless, 
a variety of possibly damaging variants of unknown sig-
nificance (VUS) were identified (Table S2). Taking minor 
allele frequency (MAF) as well as potential functional con-
sequences into account, the heterozygous germline variant 
PALB2 c.3235G>T, which was validated in the boy as well 
as his father (Figure 2b), was chosen for further analysis. 
While the missense variant is extremely rare (MAF < 0.01) 
it leads to exchange from alanine to serine in Exon 12 
(p.A1079S), which is located within the fifth WD40- repeats 
region of the protein. This domain was shown to interact 
with RAD51, BRCA2 and POLH and is required for POLH 
DNA synthesis stimulation (Buisson et al., 2014), while the 
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F I G U R E  1  Clinical presentation of isolated myelosarcoma of infancy. (a) Lymphocyte typing of the pleural effusion with a myeloic 
blast population with aberrant expression of CD7 and in part CD56; MFC = multiparameter flow cytometry, LAIP = leukaemia- associated 
immunophenotype. (b) Initial MRI of the chest, coronary axis, at the level of the right ventricle (top) and spinal canal: extensive malignant 
tumour alongside the right- sided pleura with partial infiltration of the thoracic wall, infiltration of the mediastinum and per continuity through the 
neuroforamina into the extra- axial intraspinal compartment and alongside the big vessels to the intra- abdominal compartment. The widespread 
intraspinal portion of the tumour translocated and compressed the myelon. Tumour mass is marked by white arrows (c) Histopathological features of the 
transthoracic tumour biopsy, HE, 20x: Infiltration of the interthoracic muscles by a small, blue and round- cell neoplasia; Immunophenotypic pattern of 
the thoracocentesis, cell block. CD 117, 20x; numerous medium- sized cells with pleomorphic nuclei, prominent nucleoli and plenty apoptosis figures

Pleural effusion
Myeloid population with cross-lineage expression of CD7 
and in part CD56
MFC:
CD2-CD4dimCD5-CD7+CD10-CD11b+CD13+CD14dim/-CD15-

CD33+CD34-CD45dimCD45RA-CD56+/-
CD64+CD117+/++CD123+HLA-DR-cyCD3-cyCD79a-cyMPO-

LAIP:
CD34-CD117+HLA-DR-CD13+CD33+CD7+CD56+/-

(a) (b) (c)

F I G U R E  2  A rare paternally inherited PALB2 p.A1079S germline variant. (a) Obtained variants classified by CPSR; variants of unknown 
significance (VUS) n = 6, likely benign n = 6, benign n = 1. (b) Pedigree of analysed family with the identified heterozygous PALB2 variant 
and Sanger validation of PALB2 p.A1079S within the family. (c) Distribution of mutational frequencies along PALB2. Upper graph: combined 
minor allele frequencies of all PALB2- coding germline variants from the gnomAD non- cancer database represented as LOWESS fit. Lower graph: 
combined and smoothed (LOWESS) occurrences of PALB2 somatic tumour mutations from the COSMIC database. The location of the PALB2 
p.A1079S germline variant within the WD40 repeat region of the gene is indicated as a red lollipop, showing a low occurrence within the healthy 
population, while the position is found to be frequently mutated in cancer samples
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mutation is predicted to be damaging with a CADD score of 
22.9. To assess the pathogenicity of the variant further, we 
correlated mutational frequencies of each PALB2 nucleotide 
by comparing its germline variation in healthy individuals 
(Gnom- AD v2.1.1 non- cancer n  =  118.479) and somatic 
mutations in cancer (COSMIC v91 n  =  37,221). As ex-
pected, PALB2 c.3235G>T and its surrounding nucleotides 
are rarely mutated in the germline of healthy individuals, 
while they show a high frequency within cancer (Figure 2c).

2.3 | PALB2 p.A1079S fibroblasts show 
increased sensitivity towards DNA damage

It has previously been shown that due to its essential function in 
HR, PALB2 loss confers hypersensitivity to ionizing radiation 
and to DNA interstrand crosslinking agents like Mitomycin C 
(Park et al., 2014; Xia et al., 2006). To assess whether PALB2 
p.A1079S hampers the cells’ capacity for DNA double- strand 

break- induced HR, we subjected primary fibroblasts of the pa-
tient, of healthy control and a patient with a known heterozygous 
pathogenic BRCA2 mutation (p.Met1?; rs80358650) as a posi-
tive control to 6 Gy of ionizing irradiation. After 48 h, the cells’ 
response was measured using cell cycle analysis. Consistent 
with a functional effect of the identified PALB2 variant, fibro-
blasts carrying p.A1079S showed a significantly higher percent-
age of cells arrested in G2/M phase compared to the healthy 
control (Figure 3a). Likewise, Mitomycin C treatment showed 
an increased sensitivity in cells harbouring the identified PALB2 
variant compared to the healthy control, with patient cells being 
arrested at S/G2/M to similar levels like fibroblasts carrying the 
pathogenic BRCA2 start lost mutation (Figure 3b).

3 |  DISCUSSION

The diagnosis of a primarily extramedullary manifesta-
tion of an AML can be very complex and, dependent on 

F I G U R E  3  Cells carrying PALB2 p.A1079S show increased sensitivity towards irradiation and mytomycin C. (a) Upper: irradiation of patient 
(TRIO- DD_005), negative control (X107) and positive control (TRIO- DD_021; BRCA p.Met1?) fibroblasts with 6 Gy and subsequent cell cycle 
analysis after 48 h. Fibroblasts from the patient respond with a significant increased G2/M arrest compared to the negative control. Plotted is the 
mean with SD percentage of cells in G2/M phase of three independent biological replicates. Lower: representative flow cytometry histograms of 
the cell cycle analysis, showing an increased G2/M arrest in TRIO- DD_005 and TRIO- DD_021 fibroblasts after irradiation compared to X107. (b) 
Mitomycin C (MMC) treatment of patient and control fibroblasts with 0.1 mg/ml for 5 min and subsequent cell cycle analysis after 24 h. Likewise 
the positive control, fibroblasts from the patient responded with a significantly increased S/G2/M arrest compared to X107. Plotted is the mean 
with SD percentage of cells in S/G2/M phase of independent biological replicates (n = 4TRIO- DD_005 and X107, n = 3TRIO- DD_021). Lower: 
representative flow cytometry histograms of the cell cycle analysis showing an increased S/G2/M arrest in TRIO- DD_005 and TRIO- DD_021 
fibroblasts after MMC treatment compared to X107. P- values are indicated with asterisks and were calculated using Student's t test (ns = not 
significant; *p ≤ .05; **p ≤ .01; ***p ≤ .001; ****p ≤ .0001)
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the localization of the myeloid sarcoma, can even lead to 
an oncological emergency. To our knowledge, this case 
is the first description of an infant with a vast isolated 
extramedullary medio- thoraco- spinal tumour infiltration 
as the first manifestation of an AML. The rarity of pres-
entation and the early onset suggest an underlying genetic 
predisposition.

Carriers of heterozygous germline variants within the 
HR pathway have an increased lifetime risk to develop 
breast, ovarian and other cancers (Antoniou et al., 2014; 
Roy et al., 2011). The identified PALB2 p.A1079S variant 
is located within a highly relevant functional domain, in 
close proximity to the breast cancer- associated functional 
missense mutations p.L939W, p.T1030I and p.L1143P 
and likewise shows increased cellular sensitivity to ioniz-
ing radiation (Park et al., 2014). Moreover, the identified 
variant was previously reported in a breast cancer patient 
(Damiola et al., 2015), further supporting its functional 
consequence in tumour pathogenesis. Nevertheless, since 
PALB2 p.A1079S was inherited from the healthy father, the 
variant either displays incomplete penetrance or requires 
additional genetic or environmental stressors to facilitate 
malignant transformation. In case of additional contribut-
ing variants, the likely benign, maternally inherited POLQ 
p.(L1720F) variant (MAF = 0.002; Table S2) could poten-
tially potentiate the effect of deregulated PALB2, as POLQ 
is an important part of the microhomology- mediated end- 
joining (MMEJ), a back- up double- strand- break repair 
mechanism used in cells with a defective HR pathway 
(Sfeir & Symington, 2015). Likewise, the more com-
monly found maternally inherited FANCC VUS p.(PS26F) 
(MAF = 0.004; Table S2) could act as a synergistic double 
hit in the patient.

Taken together, our case explicates the complexities in-
volved in diagnosing a primarily EML and showcases the on-
cological emergency and complications that can be entailed. 
The identified PALB2 variant and its functional consequence 
in G2/M arrest provide pathogenetic evidence for the early 
onset and rare presentation of the here described extramed-
ullary AML.
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