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Abstract

Purpose: Variations in the breathing characteristics, both on short term (intrafraction) and long term (interfraction) time scales, may
adversely affect the radiation therapy process at all stages when treating lung tumors. Prone position has been shown to improve
consistency (ie, reduced intrafraction variability) and reproducibility (ie, reduced interfraction variability) of the respiratory pattern with
respect to breathing amplitude and period as a result of natural abdominal compression, with no active involvement required from the
patient. The next natural step in investigating breathing-induced changes is to evaluate motion amplitude changes between prone and
supine targets or organs at risk, which is the purpose of the present study.

Methods and Materials: Patients with lung cancer received repeat helical 4-dimensional computed tomography scans, one prone and
one supine, during the same radiation therapy simulation session. In the maximum-inhale and maximum-exhale phases, all thoracic
structures were delineated by an expert radiation oncologist. Geometric centroid trajectories of delineated structures were compared
between patient orientations. Motion amplitude was measured as the magnitude of difference in structure centroid position between
inhale and exhale.

Results: Amplitude of organ motion was larger when the patient was in the prone position compared with supine for all structures
except the lower left lobe and left lung as a whole. Across all 12 patients, significant differences in mean motion amplitude between
orientations were identified for the right lung (3.0 mm, P = .01), T2 (0.5 mm, P = .01) and T12 (2.1 mm, P < .001) vertebrae, the
middle third of the esophagus (4.0 mm, P = .03), and the lung tumor (1.7 mm, P = .02).

Conclusions: Respiration-induced thoracic organ motion was quantified in the prone position and compared with that of the supine
position for 12 patients with thoracic lesions. The prone position induced larger organ motion compared with supine, particularly for the
lung tumor, likely requiring increases in planning margins compared with supine.

© 2020 The Authors. Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Placing a patient in the prone position for radiation ther-
apy, as opposed to the standard supine position, induces
anatomic changes that may also affect the patient’s
physiology. The heart and great vessels are displaced
anteriorly, causing a much larger area of the heart to have
contact with the chest wall and reducing respiration-
induced heart movement.”” The esophagus-to-spinal
cord separation also increases compared with the supine
position.”> The prone position minimizes the volume of
lung tissue between the heart and chest wall, which would
otherwise be subject to greater pressure from the heart and
abdomen.”’ In turn, the lungs become evenly aerated
owing to a more homogeneous distribution of pleural
pressures throughout the lungs.®™’

The utilization of the prone position in radiation
therapy of the chest has been thoroughly investigated
for the treatment of breast cancer. Particularly for large-
breasted patients, the face-down orientation enables
superior lung and chest wall dose sparing.'’*’
Cosmetic outcomes have also been reported to
improve with the prone position compared with patients
treated  supine.'®”**  Some investigations have
demonstrated reduced skin toxicity,”**® whereas others
have reported opposite effects.”*’ For pelvic radiation
therapy, the use of the advantage of the prone position
has been clearly demonstrated for reducing dose to
uninvolved rectum and small bowel.”*” Although
dosimetry may be improved for breast and pelvis
treatments, the prone position results in larger setup
errors, which must be accounted for in target mar-
gins.'**%“? The demonstrated benefit of prone for other
treatment sites in the chest has not been as clear.

Spinal lesions can be treated more accurately and
efficiently with lower organ-at-risk doses when the patient
is in the prone position.””** However, the supine position
has been demonstrated to be more accurate, reproducible,
and comfortable for the patients with better immobiliza-
tion options.”””°  Additionally, respiration-induced
abdominal organ motion increases with the prone posi-
tion” with the exception of kidneys, which are
unaffected.”’

Knowing that the prone patient orientation causes
increased consistency in respiration,' the next step of
investigation is to characterize the organ motion to
determine whether the increased consistency of breath-
ing may justify the use of prone position for treatment
of lung tumors. The quantification of respiration-
induced organ motion has thus far been primarily
limited to the supine position for thoracic,”® " abdom-
inal,"**® and pelvic'’ regions of interest. To the best of
the author’s knowledge, 4-dimensional motion of
thoracic organs has not been reported for the prone
patient orientation. The purpose of this study is to
characterize thoracic organ motion (eg, for esophagus,
lung and mediastinum tumors but excluding breast
cancer) in the prone treatment position.

Material and Methods

Patient data

Patients undergoing radiation therapy for lung cancer
for either palliative or curative treatment between 2010
and 2013 were eligible for enrollment on an institu-
tional review board—approved imaging protocol in
which helical 4-dimensional computed tomography
scans were acquired using a Philips CT Big Bore
simulator (Philips North America Corporation, Andover,
MA) and the Varian Real-Time Position Management
system (Varian Medical Systems, Inc, Palo Alto, CA)
in both the prone and supine positions within the same
imaging session. The system used an external marker
block, placed on the patient’s chest for supine and on
the patient’s back for prone, to generate a breathing
trace for phase sorting. Although the motion amplitude
of the block was reduced for supine compared with
prone, a reliable breathing pattern was able to be
extracted in both patient orientations without issue.
Patients were positioned flat on the simulator couch for
supine scans and with a 15-degree wedge cushion for
chest support when prone. No other immobilization
devices were used. Resulting images were free of major
respiration-induced artifacts; therefore, the scans were
of acceptable quality and appropriate for motion
tracking of anatomy.

Twelve patients were selected sequentially for inclu-
sion in this study. Tumor and normal tissue structures
(right lung, left lung, esophagus, heart, T2, T5, and T12)
were contoured by a physician on the end-of-inhale and
end-of-exhale respiratory phases for all images using an
in-house contouring protocol. Individual lung lobes were
delineated, and the esophagus was also evenly divided
into upper, middle, and lower sections based on the total
number of axial slices traversed by the organ for intra-
organ motion analysis. No contrast was used for esoph-
agus visualization.

Motion analysis

Respiration-induced organ motion was analyzed by
taking the position of the geometric centroid of each
delineated organ structure and calculating the magnitude
of displacement of the centroid between inhale and
exhale breathing phases for each patient. Deformable
image registration was performed between the 2 respi-
ratory phases and orientations to qualitatively assess
motion induced by respiration within the thorax by
looking at the deformation vector field and spatial Ja-
cobian images of the resulting transformation. A
multilevel b-spline based parametric image registration
was performed using the elastix registration software
(http://elastix.isi.uu.nl/).***’ The supine inhale phase
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Figure 1 Motion amplitude of organ geometric centroids. Respiration-induced motion amplitude is shown for the prone (blue) and

supine (red) orientations across all 12 patients of the study.

was separately registered to the supine exhale, prone
inhale, and prone exhale phases. Details of the image
registration are described elsewhere.””

Statistical analysis

Differences in motion amplitude between patient ori-
entations and respiratory phases were tested for signifi-
cance using a paired, 2-sided Student 7 test with a
significance level of 0.05. All statistical testing was per-
formed using the open-source statistical package R 3.4.4
for Windows (Microsoft Corporation, Redmond, WA).

Results

Respiration-induced organ motion was evaluated for
12 patients with lung cancer to study the effect of prone
orientation compared with supine. When averaged across
all patients, motion was larger in amplitude for all
investigated thoracic structures except the left lower lobe,
and consequently the left lung as a whole which showed
no difference on average, when in the prone position
compared with the supine orientation. Variance of the
difference in motion amplitude between the 2 patient
orientations was relatively large, demonstrating that some
patients had less motion when prone for particular
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structures. However, the change in motion amplitude was
also not consistent for all organs for a given patient (ie,
some organs increased motion in supine position while,
simultaneously, other structures decreased in motion
amplitude). The differences in motion amplitude for all
organs are shown on a per-patient basis in Figure 1.
Some patterns emerged when the data for the entire
patient cohort were examined. Despite the motion
amplitude being small compared with other delineated
structures, thoracic vertebraec moved more on average in
prone than supine. And across all patients, the motion of
the T12 vertebra increased in prone compared with supine
without exception. The middle third of the esophagus
showed the largest difference in motion between patient
orientations out of all segments of the organ. The mean
motion amplitude for lung tumors was over 2 mm larger
for prone than for supine, with some patients showing
differences of up to 5.8 mm, suggesting that there is a
trade-off between the consistency of breathing (obtained
with prone) and minimizing treatment margins, at least
when the patient is in free breathing without guidance.
Table 1 summarizes the geometric centroid motion
amplitude for all thoracic structures of interest for the
prone and supine positions individually and the difference
in total motion amplitude between the 2 orientations. As
the differences in motion amplitude were calculated as the
total prone motion minus the total supine motion, positive
values correspond to increased motion in the prone po-
sition. The differences in motion amplitude between po-
sitions were statistically significant for the right lung (P
= .01), T2 (P = .01), T12 (P < .001), tumor (P = .02),
and the middle third of the esophagus (P = .03), with the

prone position showing increased motion compared with
supine. For lungs and the esophagus, intrapatient motion
range increased according to the subvolume’s proximity
to the diaphragm (ie, lower lobes and lower esophagus
varied in position more than upper lobes and upper
esophagus) for both supine and prone orientations.

Qualitative assessment of the deformations induced by
change in patient orientation was performed after
deformable image registration. Figure 2 illustrates the
common characteristics observable when changing from
prone to supine. The green deformation vectors indicate
the tissue movement when changing from prone to su-
pine. Anterior heart migration occurs in the prone position
as evident by the increased contact of the heart and chest
wall and the decrease of lung parenchyma separating the 2
structures. Decreased tissue compression in the posterior
lung owing to the weight of the heart is observed as well
when moving from supine to prone. Finally, increased
diaphragm excursion was noticeable for all patients when
in the prone position, as illustrated by the further-inferior
diaphragm position compared with its location while
supine.

Discussion

Most studies that have investigated organ motion in the
thorax have been constrained to supine patient
setups.”®***¥ The supine organ motion reported in these
investigations has been larger in magnitude than the ex-
cursions reported here. Hashimoto et al found esophagus
displacements between 7.9 mm and 12.9 mm, with the

Table 1 Inhale-to-exhale motion amplitude of organ center of mass
Structure Supine motion amplitude Prone motion amplitude Prone and supine difference P value™

(mm) (mm) (mm)

Mean Stdevn Min Max Mean Stdevn Min Max Mean Stdev Min Max
RUL 4.1 2.4 1.2 9.5 5.1 2.8 0.8 9.5 1.0 3.7 —8.0 6.4 .40
RML 6.8 4.7 1.8 18.1 104 3.8 4.0 16.4 3.6 6.9 —13.1 126 .10
RLL 8.2 44 0.0 13.7 10.1 6.8 0.0 262 19 62 —-5.5 155 31
LUL 34 2.2 0.6 8.5 4.6 2.3 0.4 8.7 1.2 35 -3.6 8.1 .28
LLL 8.3 5.0 2.4 19.0 7.8 4.2 1.2 165 —-05 7.7 —17.8 14.1 .82
R lung 4.6 1.8 1.6 7.9 7.6 3.5 3.9 15.7 30 33 —2.1 10.6 .01
L lung 6.0 2.6 2.3 10.7 5.9 3.0 1.8 11.6 0.0 4.0 -7.3 5.0 .97
T2 0.8 0.3 0.2 1.2 14 0.6 0.5 2.2 0.5 0.6 —0.6 1.5 .01
T5 1.2 0.7 0.2 3.0 1.8 0.7 1.2 3.8 0.7 1.1 —1.6 3.1 .06
T12 0.7 04 0.0 1.7 2.8 0.9 1.7 4.5 21 09 1.0 41 <.001
Heart 5.1 2.4 2.3 10.9 7.3 2.1 4.6 12.0 22 38 —6.3 8.1 .07
Lung tumor 44 2.9 1.0 9.0 6.1 2.2 2.0 9.6 1.7 22 -32 5.8 .02
Esophagus 5.8 4.4 1.2 17.2 8.6 5.8 1.7 17.0 277 4.6 —4.8 8.3 .07
Esophagus, upper 2.7 1.8 0.9 74 4.2 2.8 1.6 10.8 1.5 3.7 -50 9.7 20
Esophagus, middle 3.4 2.9 1.3 11.5 7.4 4.5 2.9 16.3 40 56 —-7.6 13.3 .03
Esophagus, lower 8.8 6.2 27 246 109 6.6 33 273 21 43 —4.7 9.6 12

Abbreviations: LLL, left lower lobe; LUL, left upper lobe; RML, right middle lobe; RLL, right lower lobe; RUL, right upper lobe; Stdev = standard

deviation.

* Paired, 2-sided Student 7 test at .05 significance level used to test difference in mean amplitudes.
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Figure 2 Deformation from change of patient orientation. Color overlay of the prone (blue) and supine (red) inhale phases for one
patient of the study. Deformation shown in the figure is the result of changing from prone to supine patient orientation and vice
versa. The deformation vector field (arrows) obtained from deformable image registration is shown illustrating the effects of the
change in orientation. The increased dorsal compression posterior to the mediastinum while supine is observed in the axial image,
and anterior heart migration was also evident. Reduced diaphragm excursion while supine can be seen in the sagittal and coronal
views.
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lower esophagus showing the greatest motion compared
with the 2.7- to 8.8-mm range of total motion found in our
supine patient data set.”” Perhaps the most in-depth
investigation of thoracic organ motion was performed
by Weiss et al using 4-dimensional computed tomography
acquisitions of patients with lung cancer, as done in the
present work.*” The motion reported in their study was
comparable to the supine results reported here but limited
to the supine orientation.

Unlike the breast for which motion is reduced when
the patient is prone,”’ most thoracic structures show
significantly greater respiration-induced motion in prone
position. For esophagus primaries, Dieleman et al deter-
mined necessary margins of 5 mm, 6 to 7 mm, and 8 to 9
mm for upper, middle, and lower esophageal lesions,
respectively.”” The mean displacements of the middle and
lower esophagus of 7.9 mm and 10.2 mm, respectively,
exceeded these margins when the patient was prone in the
current data set, although choosing a midrespiratory phase
for treatment planning would likely bring prone motion
within these margins.

This investigation was prompted by the findings that
breathing patterns of patients are more consistent when
the patient is prone than supine, with consistency defined
by the repeatability of breathing cycle amplitude and
period in addition to several other metrics.' By analyzing
the organ motion, this study sought to induce the effect of
prone position on motion amplitude for all structures of
the thorax (excluding breast) and to determine whether
the findings justify further investigation of prone position
for use in radiation therapy treatments of the thorax.
Based on the results reported here, the increased organ
motion observed on average across all patients was not
complementary to the improved patient breathing and
would not justify the use of prone to treat tumors in this
region of the body, although additional dosimetric
investigation would be necessary to definitively assess
this suspicion. Despite the lack of promise prone orien-
tation shows for more conformal radiation therapy treat-
ments due to increased motion, this study was able to
quantify respiratory motion of thoracic structures when
prone and perform direct comparison to the supine
orientation for context.

Conclusions

Respiratory-induced organ motion is of greater
magnitude in the prone position compared with supine.
Owing to the increased tumor motion in the prone posi-
tion, the supine orientation is likely more advantageous
for lung targets in minimizing treatment margins, despite
improved breathing consistency in the prone position. A
future treatment planning study would be necessary to
quantify the dosimetric differences between prone and
supine plans for specific treatment sites within thorax.
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