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Abstract

Background: Factorial Mendelian randomization is the use of genetic variants to answer

questions about interactions. Although the approach has been used in applied investiga-

tions, little methodological advice is available on how to design or perform a factorial

Mendelian randomization analysis. Previous analyses have employed a 2� 2 approach,

using dichotomized genetic scores to divide the population into four subgroups as in a

factorial randomized trial.

Methods: We describe two distinct contexts for factorial Mendelian randomization: in-

vestigating interactions between risk factors, and investigating interactions between

pharmacological interventions on risk factors. We propose two-stage least squares meth-

ods using all available genetic variants and their interactions as instrumental variables,

and using continuous genetic scores as instrumental variables rather than dichotomized

scores. We illustrate our methods using data from UK Biobank to investigate the interac-

tion between body mass index and alcohol consumption on systolic blood pressure.

Results: Simulated and real data show that efficiency is maximized using the full set of

interactions between genetic variants as instruments. In the applied example, between

4- and 10-fold improvement in efficiency is demonstrated over the 2�2 approach.

Analyses using continuous genetic scores are more efficient than those using dichoto-

mized scores. Efficiency is improved by finding genetic variants that divide the popula-

tion at a natural break in the distribution of the risk factor, or else divide the population

into more equal-sized groups.

Conclusions: Previous factorial Mendelian randomization analyses may have been un-

derpowered. Efficiency can be improved by using all genetic variants and their interac-

tions as instrumental variables, rather than the 2� 2 approach.
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Introduction

Mendelian randomization is the use of genetic variants as

proxies for interventions on risk factors to answer questions

of cause and effect using observational data.1,2 Formally,

Mendelian randomization can be viewed as instrumental var-

iable (IV) analysis using genetic variants as IVs.3,4 Factorial

Mendelian randomization is the use of genetic variants to an-

swer questions about interactions. It does this by proposing a

statistical model for the outcome as a function of the risk fac-

tors (or their genetic predictors) and a product term.

A statistical interaction is observed when the coefficient for

the product term in the model is non-zero. A statistical interac-

tion in the causal model for the outcome may represent a

causal interaction, meaning that the effect of one risk factor

on the outcome is dependent upon the value of the other risk

factor.5,6 This may arise due to a functional or biological inter-

action, in which there is a mechanistic connection between the

two risk factors in how they influence the outcome. However,

a statistical interaction may also arise due to non-linearity in

the effect of a risk factor, or due to effect modification, in

which the effect of one risk factor varies in strata of the other.

Hereafter, we take the word ‘interaction’ to mean a statistical

interaction in the causal model for the outcome, without im-

plying a functional interaction between the risk factors.

Factorial Mendelian randomization was proposed in

the seminal paper on Mendelian randomization by Davey

Smith and Ebrahim in 2003.1 The term is credited by the

authors to Sheila Bird (https://en.wikipedia.org/wiki/

Sheila_Bird). However, the idea was not readily taken up

in applied practice. The concept was raised again by Davey

Smith and Hemani in a 2014 review,7 who suggested that

genetic predictors of obesity and alcohol consumption

could be used to investigate the interaction between the

two risk factors on risk of liver disease. This question was

investigated for markers of liver function using data from

the Copenhagen General Population Study in 2018;8 no ev-

idence for an interaction was found.

In parallel to this, the term factorial Mendelian randomiza-

tion has been used for analyses employing genetic variants as

proxies for pharmacological interventions. Ference et al. per-

formed factorial Mendelian randomization to compare the ef-

fect of lowering low density lipoprotein (LDL) cholesterol

levels on the risk of coronary heart disease (CHD) with two

different LDL-cholesterol lowering agents (ezetimibe and

statin), and with a combination of both.9 Genetic variants as-

sociated with LDL-cholesterol were identified in the NPC1L1

gene (proxies for ezetimibe), and the HMGCR gene (proxies

for statins), and combined into separate gene scores. To mimic

a 2� 2 factorial randomized trial, the two gene scores were

dichotomized to create a 2� 2 contingency table. The gene

scores were dichotomized at their median values so that the

numbers of participants were balanced across the four groups.

Ference has conducted similar analyses for PCSK9 inhibitors

and statins,10 and for CETP inhibitors and statins.11 A similar

2� 2 approach was used in each case, as well as in the analy-

sis of obesity and alcohol mentioned above.8

In this paper, we consider various aspects relating to the

conceptualization, design, analysis and interpretation of a

factorial Mendelian randomization investigation. First, we

demonstrate the analogy between factorial Mendelian ran-

domization and a factorial randomized trial, we make a con-

nection with multivariable Mendelian randomization, and

we describe two contexts in which factorial Mendelian ran-

domization may have utility: for investigating interactions be-

tween risk factors, and for investigating interactions between

pharmacological interventions on risk factors. We present

simulated data demonstrating that the 2� 2 approach to

analysis, while being conceptually appealing, is inefficient for

detecting interactions. The same conclusion is reached in an

applied investigation considering interactions between body

mass index (BMI) and alcohol consumption on blood pres-

sure using data from UK Biobank. Finally, we discuss the

implications of our work for applied factorial Mendelian ran-

domization investigations.

Key Messages

• Factorial Mendelian randomization is an extension of the Mendelian randomization paradigm to answer questions

about interactions.

• There are two contexts in which factorial Mendelian randomization can be used: for investigating interactions be-

tween risk factors, and interactions between pharmacological interventions on risk factors.

• While most applications of factorial Mendelian randomization have dichotomized the population as in a 2�2 factorial

randomized trial, this approach is generally inefficient for detecting statistical interactions.

• In the first context, efficiency is maximized by including all genetic variants and their cross-terms as instrumental var-

iables for the two risk factors and their product term.

• In the second context, efficiency is maximized by using continuous genetic scores rather than dichotomized scores.
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Methods

Factorial randomized trials and Mendelian

randomization

A factorial randomized trial allows for the simultaneous

assessment of two or more treatments in a single study.12

In its simplest form, a 2� 2 factorial trial investigates the

effect of two binary treatments A and B on a binary out-

come Y. Participants are randomly allocated to one of four

groups: to receive treatment A only; to receive treatment B

only; to receive both treatments A and B; or to receive nei-

ther treatment A nor B. The analogy between Mendelian

randomization and a randomized trial has been made

many times,13,14 and the analogy between factorial

Mendelian randomization and a factorial randomized trial

has also been made previously in the context of multivari-

able Mendelian randomization (Figure 1, adapted from15).

Multivariable Mendelian randomization was motivated

by the problem that some genetic variants are associated

with multiple risk factors, such that it is impossible to find

genetic variants that are specifically associated with a par-

ticular risk factor.15 For illustration, we assume there are

two risk factors (X1 and X2), and fit a model for the out-

come in terms of the risk factors:

EðYjX1;X2Þ ¼ h0 þ h1X1 þ h2X2: (1)

We assume that we have genetic variants G that satisfy

the multivariable IV assumptions for risk factors X1 and

X2.
15 Specifically:

i. Each variant is associated with at least one of the risk

factors.

ii. Each risk factor is associated with at least one of the

genetic variants.

iii. Variants are not confounded in their associations with

the outcome.

iv. Variants are not associated with the outcome condi-

tional on the risk factors and confounders.

If we have at least two genetic variants that are valid

multivariable IVs for X1 and X2, then causal effects h1 and

h2 can be estimated from the two-stage least squares

method by first regressing the risk factors on the genetic

variants, and then regressing the outcome on the fitted val-

ues of the risk factors from the first-stage regressions.16 If

summarized data on the genetic associations with the out-

come (bbY) and the risk factors (bbX1;
bbX2) are available,

then the same estimates can be obtained by weighted linear

regression of the beta-coefficients with the intercept set to

zero:

EðbbY jbbX1;
bbX2Þ ¼ h1

bbX1 þ h2
bbX2; (2)

where weights are the reciprocals of variances of the gene–

outcome associations seðbbYÞ�2.17

In the language of a factorial randomized trial, this is re-

ferred to as an analysis performed ‘at the margins’.18

Estimates represent the average direct effect of each of the

risk factors.19 If there is an interaction between the risk

factors, then these are marginal estimates—they are aver-

aged over the distribution of the other risk factor.

We can extend multivariable Mendelian randomization

by adding a term to the outcome model to estimate an in-

teraction between the risk factors:

EðYjX1;X2Þ ¼ h0 þ h1X1 þ h2X2 þ h12X12 (3)

where X12 is the product X1 �X2, and h12 is the interac-

tion effect on an additive scale. In a factorial randomized

trial, this is referred to as an analysis performed ‘inside

the table’, as in a 2� 2 setting, the interaction can be esti-

mated from the 2� 2 contingency table.20 A factorial

Mendelian randomization analysis is primarily interested

in assessing the presence of, and estimating the interaction

effect h12.

For simplicity, we initially assume that the associations

of the genetic variants with the risk factors are homoge-

neous in the population and do not vary with time, also

that the model relating the risk factors to the outcome is

correctly specified, and the effects of the risk factors (and

their product) on the outcome are also homogeneous in the

population and do not vary with time. We return to the

question of how to interpret estimates in this and in more

realistic scenarios in the Discussion.

Figure 1. Comparison of a factorial randomized clinical trial and a factorial Mendelian randomization investigation with a 2� 2 approach (adapted

from15).
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Two contexts: interactions between risk
factors and interactions between
interventions

Factorial Mendelian randomization study has been consid-

ered in two broad scenarios: (a) to estimate interaction

effects between risk factors by using genetic variants as

predictors of the risk factors; and (b) to identify interac-

tions between interventions by using genetic variants as

proxies for specific treatments. In the first case, the aim is

to identify an interaction in the effect of two distinct risk

factors on the outcome. In the second case, there may not

even be two distinct risk factors (as in the example of two

LDL-cholesterol lowering interventions discussed by

Ference et al.9) and the aim is to identify an interaction in

the associations of the genetic variants with the outcome.

In this case, an interaction is inferred between the interven-

tions for which the genetic variants are proxies. We con-

sider these two scenarios in turn.

Interactions between risk factors

The multivariable IV assumptions imply that there is no ef-

fect of the genetic variants on the outcome except poten-

tially indirectly via one or both of the risk factors. We

divide the genetic variants into three groups: G1 contains

variants that are associated with X1, G2 contains variants

that are associated with X2, and Gc contains shared var-

iants that are associated with X1 and X2 (Figure 2). We

can now perform two-stage least squares by first regressing

the risk factors X1, X2, and the product X12 on the genetic

variants, and then regressing the outcome on the fitted val-

ues of these risk factors. This analysis treats X12 as if it is a

separate risk factor unrelated to X1 and X2.
21 For the

second-stage regression model to be identified, at least

three IVs are required, as three parameters are estimated,

and all risk factors (X1, X2, X12) must be associated with

at least one IV.

If we assume that the risk factors X1 and X2 are linear

in the genetic variants:

E½X1jG� ¼ a01 þ
P

a1jG1j þ
P

a1cjGcj and

E½X2jG� ¼ a02 þ
P

a2jG2j þ
P

a2cjGcj;
(4)

then an interaction between the risk factors means that the

statistical model for the outcome includes cross-terms be-

tween the genetic variants (such as G11 �G21).22 This

motivates the use of cross-terms between the genetic var-

iants as separate IVs.

If all the genetic variants and their cross-terms are used

as IVs, then under the homogeneity assumptions, the fitted

values of the risk factors and their product term can be

consistently estimated, and hence the regression model for

the outcome on these fitted values (as in the two-stage least

squares method) will be correctly specified. Thus the ho-

mogeneity assumptions lead to consistent estimates of the

parameters in equation (3).

Simulation study 1: interactions between
risk factors

To investigate the performance of methods for estimating

interactions between risk factors, we conduct a simulation

study. We assume there are 10 genetic variants that are as-

sociated with X1 and 10 genetic variants that are associ-

ated with X2, and vary the number of shared variants that

are associated with both X1 and X2 from 0 (20 distinct ge-

netic variants, each associated with one risk factor) to 10

Figure 2. Causal directed acyclic graph illustrating relationships between variables in a factorial Mendelian randomization framework for two risk fac-

tors (X1 and X2). There are three sets of genetic variants: G1 (affecting X1 only), G2 (affecting X2 only) and Gc (shared variants, affecting X1 and X2). X12

represents the product X1 � X2. The main effects of the risk factors X1 and X2 on the outcome Y are h1 and h2, and the interaction effect of X1 and X2

on Y is h12. U1 and U2 are sets of confounders.
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(all 10 genetic variants associated with both risk factors).

All genetic variants are simulated as independent (i.e. not

in linkage disequilibrium). We compare four methods:

Method 1. Full set of interactions: we consider as IVs

all the genetic variants and all cross-terms—so when

there are 3 shared variants, there are 114 IVs in total:

7þ 7þ3¼ 17 linear terms, 3 quadratic terms (shared

variants only), 3 shared � shared variant cross-terms,

42 shared � non-shared variant cross-terms, and 49

non-shared � non-shared variant cross-terms.

Method 2. Reduced set of interactions: we consider as

IVs all the genetic variants and all cross-terms between

non-shared variants—so when there are 3 shared var-

iants, there are 17 linear terms and 49 cross-terms.

Method 3. Continuous gene scores: we construct weighted

gene scores for each risk factor using external weights,

and take the two gene scores and their product as IVs.

Method 4. Dichotomized gene scores: we dichotomize

both gene scores at their median, and take the two di-

chotomized gene scores and their product as IVs. This is

equivalent to a 2�2 analysis.

The data-generating model for the simulation study is

provided in the Supplementary Material, available as

Supplementary data at IJE online. Data were generated

10 000 times for each set of parameters on 10 000 individ-

uals. Parameters were set such that the set of genetic var-

iants explains around 10% of the variance in each risk

factor. The effect of X1 on the outcome was h1 ¼ 0:3, the

Table 1. Simulation study results for interactions between

risk factors with no shared variants: median estimate, stan-

dard deviation (SD) of estimates, median standard error (SE),

empirical power (%) to reject null at 5% significance, and em-

pirical coverage (%) of 95% confidence interval

Median SD Median SE Power

(%)

Coverage

(%)

Methods 1 and 2—full set of interactions:a

h1 ¼ 0:3 0.3013 0.0917 0.0910 90.2 95.0

h2 ¼ 0:2 0.2022 0.0952 0.0945 57.1 94.9

h12 ¼ 0:1 0.1101 0.0721 0.0718 33.7 94.6

h1 ¼ 0:3 0.3043 0.0918 0.0910 91.0 95.0

h2 ¼ 0:2 0.2034 0.0947 0.0945 57.9 95.5

h12 ¼ 0:3 0.3080 0.0722 0.0718 98.8 95.2

h1 ¼ 0:3 0.3048 0.0911 0.0909 90.7 95.2

h2 ¼ 0:2 0.2050 0.0944 0.0945 58.4 95.2

h12 ¼ 0:5 0.5073 0.0715 0.0718 100.0 95.2

Method 3—continuous gene scores:

h1 ¼ 0:3 0.2993 0.1362 0.1333 61.4 95.4

h2 ¼ 0:2 0.1991 0.1415 0.1386 30.9 95.5

h12 ¼ 0:1 0.1010 0.1113 0.1091 15.4 95.5

h1 ¼ 0:3 0.2998 0.1359 0.1332 61.9 95.6

h2 ¼ 0:2 0.2019 0.1405 0.1387 31.5 95.8

h12 ¼ 0:3 0.3000 0.1106 0.1091 77.5 95.8

h1 ¼ 0:3 0.3004 0.1352 0.1331 61.5 95.4

h2 ¼ 0:2 0.2008 0.1409 0.1385 30.7 95.6

h12 ¼ 0:5 0.4995 0.1107 0.1092 98.7 95.6

Method 4—dichotomized gene scores:

h1 ¼ 0:3 0.2986 0.2155 0.2072 31.0 95.7

h2 ¼ 0:2 0.1989 0.2246 0.2168 15.0 96.2

h12 ¼ 0:1 0.1022 0.1786 0.1720 8.0 95.9

h1 ¼ 0:3 0.3039 0.2145 0.2074 32.1 95.8

h2 ¼ 0:2 0.2047 0.2236 0.2164 15.2 96.2

h12 ¼ 0:3 0.2972 0.1777 0.1722 41.8 96.0

h1 ¼ 0:3 0.3010 0.2148 0.2073 31.4 96.2

h2 ¼ 0:2 0.2002 0.2233 0.2163 15.3 96.1

h12 ¼ 0:5 0.5002 0.1776 0.1718 80.7 96.1

aAs there are no shared variants, methods 1 and 2 are equivalent.

Table 2. Simulation study results for interaction term be-

tween risk factors varying number of shared variants: median

estimate of h12 ¼ 0:3, standard deviation (SD) of estimates,

median standard error (SE), empirical power (%) to reject null

at 5% significance, and empirical coverage (%) of 95% confi-

dence interval

Shared

variants

Total

IVs

Median SD Median

SE

Power

(%)

Coverage

(%)

Method 1—full set of interactions:

0a 120 0.3080 0.0722 0.0718 98.8 95.2

1 119 0.3080 0.0723 0.0719 98.8 95.0

3 114 0.3090 0.0717 0.0716 98.9 95.3

5 105 0.3078 0.0716 0.0707 98.9 94.9

8 84 0.3073 0.0682 0.0687 99.3 95.2

10 65 0.3056 0.0670 0.0673 99.2 95.3

Method 2—reduced set of interactions:

1 100 0.3073 0.0804 0.0794 96.7 94.9

3 66 0.3088 0.1003 0.0997 86.1 95.2

5 40 0.3056 0.1340 0.1334 63.2 95.7

8 16 0.3054 0.2520 0.2471 23.9 97.1

10 10 0.3057 0.3883 0.3891 8.7 99.3

Method 3—continuous gene scores:

0 3 0.3000 0.1106 0.1091 77.5 95.8

1 3 0.3005 0.1111 0.1088 77.8 95.4

3 3 0.2998 0.1051 0.1048 81.0 95.6

5 3 0.3015 0.0997 0.0980 85.6 95.5

8 3 0.3003 0.0857 0.0858 93.0 95.8

10 3 0.2993 32.31 0.1711 42.7 99.2

Method 4—dichotomized gene scores:

0 3 0.2972 0.1777 0.1722 41.8 96.0

1 3 0.3028 0.1757 0.1724 42.2 96.3

3 3 0.3002 0.1818 0.1773 39.8 96.4

5 3 0.3005 0.1948 0.1884 36.6 96.6

8 3 0.3007 0.2474 0.2340 25.7 97.2

10 3 0.2896 133.5 1.3578 0.7 100.0

aWhen there are no shared variants, methods 1 and 2 are equivalent.
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effect of X2 on the outcome was h2 ¼ 0:2, and the interac-

tion effect of X12 on the outcome took values h12 ¼ 0:1,

0.3, and 0.5.

Simulation study 2: interactions between
interventions

We performed a further simulation study to investigate meth-

ods for detecting interactions between interventions. We as-

sume there are 3 independent genetic variants that are

proxies for intervention A, and the same for intervention B.

Fewer variants are considered here as typically variants for

such an analysis will come from a single gene region for each

intervention.9 We compare two approaches.

i. Continuous gene scores: we construct weighted gene

scores for changes in the risk factor corresponding to

each intervention using external weights, and take the

two gene scores and their product as IVs.

ii. Dichotomized gene scores: we dichotomize both gene

scores at their median, and take the two dichotomized

gene scores and their product as IVs. This is equivalent

to a 2 � 2 analysis.

In each case, we regressed the outcome on the IVs, and

estimated an interaction term between the gene scores that

act as proxies for the interventions. As before, the data-

generating model for the simulation study is provided in

the Supplementary Material, available as Supplementary

data at IJE online. Data were generated 10 000 times for

each set of parameters on 10 000 individuals. The interac-

tion effect took values 0.1, 0.3, and 0.5. We varied the mi-

nor allele frequencies of the genetic variants used as

proxies for interventions A and B, drawing from a uniform

distribution between 0.1 and 0.2 (uncommon), or between

0.4 and 0.5 (common), and the proportion of variance

explained by the genetic variants (3, 5 or 7%).

Applied example: the effects of BMI and alcohol

on systolic blood pressure

Increased systolic blood pressure (SBP) is associated with a

range of health conditions, including cardiovascular dis-

ease and diabetes.23,24 Whereas there have been numerous

studies highlighting the adverse effects of increased BMI on

SBP,25,26 and the adverse effects of increased alcohol

Table 3. Simulation study results for interaction between interventions: median estimate, standard deviation (SD) of estimates,

median standard error (SE), and empirical power (%) to reject null at 5% significance. The minor allele frequencies and propor-

tion of variance explained for variants that are proxies for interventions A and B are varied between scenarios

Continuous gene scores Dichotomized gene scores

Median SD Median SE Power Median SD Median SE Power

Scenario 1: (A) common variants, 3%; (B) common variants, 3%

h12¼0.1 0.0583 0.0420 0.0417 29.3 0.0368 0.0423 0.0421 13.5

h12¼0.3 0.0330 0.0080 0.0078 98.7 0.1102 0.0429 0.0423 73.5

h12¼0.5 0.0224 0.0034 0.0032 100.0 0.1846 0.0428 0.0427 98.9

Scenario 2: (A) common variants, 5%; (B) common variants, 5%

h12¼0.1 0.0484 0.0343 0.0343 29.1 0.0372 0.0420 0.0422 13.5

h12¼0.3 0.0304 0.0074 0.0072 98.8 0.1108 0.0424 0.0423 74.3

h12¼0.5 0.0212 0.0033 0.0030 100.0 0.1851 0.0439 0.0427 99.0

Scenario 3: (A) common variants, 3%; (B) common variants, 7%

h12¼0.1 0.0498 0.0350 0.0352 29.2 0.0371 0.0422 0.0422 14.1

h12¼0.3 0.0305 0.0075 0.0072 99.0 0.1106 0.0426 0.0423 74.2

h12¼0.5 0.0213 0.0033 0.0030 100.0 0.1844 0.0430 0.0427 99.1

Scenario 4: (A) uncommon variants, 5%; (B) uncommon variants, 5%

h12¼0.1 0.0824 0.1152 0.1150 10.9 0.0168 0.0435 0.0430 7.0

h12¼0.3 0.1082 0.0519 0.0500 58.8 0.0526 0.0434 0.0430 23.3

h12¼0.5 0.0996 0.0300 0.0278 94.6 0.0879 0.0436 0.0430 53.0

Scenario 5: (A) common variants, 5%; (B) uncommon variants, 5%

h12¼0.1 0.0669 0.0699 0.0685 16.7 0.0246 0.0434 0.0425 9.1

h12¼0.3 0.0618 0.0211 0.0204 85.5 0.0763 0.0433 0.0426 42.8

h12¼0.5 0.0489 0.0109 0.0097 99.9 0.1279 0.0434 0.0428 84.1

Scenario 6: (A) common variants, 3%; (B) uncommon variants, 7%

h12¼0.1 0.0748 0.0756 0.0742 17.8 0.0259 0.0432 0.0426 9.7

h12¼0.3 0.0649 0.0221 0.0215 85.4 0.0758 0.0430 0.0426 42.9

h12¼0.5 0.0510 0.0113 0.0101 99.9 0.1271 0.0435 0.0428 83.9
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consumption,27 there has been little research on the com-

bined effect of BMI and alcohol consumption on SBP. We

illustrate factorial Mendelian randomization by perform-

ing an analysis using individual participant data from UK

Biobank to estimate the interaction effect of BMI and alco-

hol consumption on SBP. UK Biobank is a prospective,

population-based cohort consisting of �500 000 partici-

pants aged from 40 to 69 years at baseline living in the UK.

For the analysis, we considered 291 781 unrelated partici-

pants of European descent who passed data quality control

measures and had genetic data available.

We used the 77 genome-wide significant variants

from a meta-analysis by the Genetic Investigation of

ANthropometric Traits (GIANT) consortium in partici-

pants of European ancestry to act as IVs for BMI.28 For al-

cohol, we identified 10 genetic variants in the ADH1B

gene region that have been shown to be associated with al-

cohol consumption.29 We performed factorial Mendelian

randomization analyses using the full set of interactions,

continuous gene scores, and dichotomized gene scores. We

also performed analyses separately using the lead variant

from the ADH1B gene region (rs1229984) as the sole IV

for alcohol consumption, as was done in the analysis by

Carter et al.8

Results

Simulation study 1: interactions between risk

factors

Results from the simulation study for estimating interactions

between risk factors are displayed in Table 1 (no shared var-

iants) and Table 2 (varying the number of shared variants).

All four approaches provided unbiased estimates of the

interaction effect in all scenarios, with coverage for the 95%

confidence interval close to the nominal 95% level. Power

varied considerably between the methods. With no shared

variants, method 1 (full set of interactions) and method 2

(reduced set of interactions) are equivalent and gave the

most efficient estimates throughout. Method 3 (continuous

gene scores) was less efficient, and method 4 (dichotomized

gene scores) was the least efficient. With shared variants,

method 1 was the most efficient throughout, and its effi-

ciency was not strongly affected by the risk factors having

Table 4. Subgroups defined by genetic predictors of BMI and alcohol consumption: numbers (%) of participants and mean (stan-

dard deviation) of body mass index, alcohol consumption and systolic blood pressure in 2� 2 subgroups when either 10 genetic

variants or the rs1229984 variant used as IVs for alcohol consumption

Mean (SD)

Participants (%) BMI (kg/m2) Alcohol (units/day) SBP (mmHg)

Overall 291, 781 (100.0) 27.1 (4.51) 2.54 (2.58) 140.0 (19.8)

10 variants for alcohol:

Low BMI, low alcohol 73, 003 (25.0) 26.6 (4.25) 2.50 (2.52) 140.6 (20.6)

High BMI, low alcohol 72, 889 (25.0) 27.5 (4.65) 2.47 (2.50) 141.2 (20.6)

Low BMI, high alcohol 72, 888 (25.0) 26.7 (4.30) 2.61 (2.68) 140.8 (20.7)

High BMI, high alcohol 73, 001 (25.0) 27.6 (4.71) 2.59 (2.59) 141.3 (20.6)

rs1229984 variant for alcohol:

Low BMI, low alcohol 6, 997 (2.4) 26.3 (4.10) 2.00 (2.04) 139.2 (20.2)

High BMI, low alcohol 6, 863 (2.4) 27.3 (4.50) 1.95 (1.99) 139.7 (20.2)

Low BMI, high alcohol 138, 894 (47.6) 26.7 (4.28) 2.59 (2.59) 140.8 (20.6)

High BMI, high alcohol 139, 027 (47.6) 27.6 (4.69) 2.56 (2.56) 141.3 (20.6)

Table 5. Factorial Mendelian randomization results for ap-

plied example: estimates of interaction between BMI and al-

cohol consumption on systolic blood pressure; estimates are

in mmHg units per 1 kg/m2 change in BMI and 1 unit/day

change in alcohol consumption

Total IVs Estimate Standard

error

P-value

10 variants for alcohol

Method 1: full set of

interactions

857 0.0023 0.0503 0.96

Method 2: continuous

gene scores

3 0.0655 0.3402 0.85

Method 3: binary gene

scores

3 0.1011 0.6411 0.87

rs1229984 variant for alcohol

Method 1: full set of

interactions

149 �0.0170 0.1136 0.88

Method 2: continuous

gene scores

3 0.1917 0.3725 0.61

Method 3: binary gene

scores

3 0.1499 0.4174 0.72
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genetic predictors in common. Between methods 2 and 3,

method 2 was more efficient when most of the variants were

non-shared, whereas method 3 was more efficient when

most of the variants were shared. Again, method 4 was the

least efficient in all scenarios. This suggests that the 2� 2 ap-

proach may be underpowered in practice, and instead

approaches using all genetic variants and their cross-terms

should be considered.

We also varied the strength of the genetic variants due

to potential concerns about weak instruments.30 We con-

sidered scenarios in which the genetic variants explained

1% and 5% of variance in the risk factors. Although sub-

stantial weak instrument bias was observed for the main

effects, no bias was observed for the interaction term, even

when there were 100 IVs in the analysis and F-statistics

and conditional F-statistics31 for the product term were �1

(Supplementary Tables A1 and A2, available as

Supplementary data at IJE online). Similar findings were

observed in a one-sample setting when varying the direc-

tion of confounder effects on the risk factor and outcome

(results not shown). We also performed the simulation

study centering the values of the risk factors to reduce the

impact of collinearity. This changed the mean estimates of

the main effects h1 and h2 and improved precision for the

main effect estimates, but estimates and inferences for the

interaction term h12 were unchanged (Supplementary

Table A3, available as Supplementary data at IJE online).

These additional simulations suggest that factorial

Mendelian randomization should only be used when the

interaction is the main object of interest, and numerical

estimates for the main effects from this model should be

interpreted with caution.

Simulation study 2: interactions between

interventions

Results from the simulation study for estimating interac-

tions between the gene scores that act as proxies for the

interventions are displayed in Table 3. Whereas the numer-

ical values of estimates differed between the two

approaches, a consistent finding was that power to detect

an interaction was greater using continuous gene scores

than using dichotomized gene scores. Varying the propor-

tion of variance explained by the genetic variants had no

discernable effect on the power to detect an interaction.

This can be seen by comparing scenarios 1, 2 and 3, and

scenarios 5 and 6. However, varying the minor allele fre-

quency had a strong effect on power, with greater power

when the minor allele frequency was close to 0.5. This can

be seen by comparing scenarios 2, 4 and 5, and scenarios 3

and 6. This suggests that ensuring comparable size between

subgroups is an important factor for efficient detection of

interactions, and can be more important than ensuring that

the strongest variant is used in the analysis.

Applied example: the effects of BMI and alcohol

on systolic blood pressure

The lead variant (rs1229984) explained 0.24% of the vari-

ance in alcohol consumption, whereas the 10 variants

explained 0.28% of the variance. Although the alcohol-

decreasing allele of the rs1229984 variant is dominant, its

frequency is only 2.5%. Dichotomizing participants based

on this variant led to unequal groups in the population,

whereas dichotomizing based on the 10 variant score led

to equal groups (Table 4). However, the difference in mean

alcohol levels between subgroups was reduced when using

the 10 variant score, as most of the difference is due to the

rs1229984 variant.

Estimates of the interaction between BMI and alcohol

consumption are displayed in Table 5. For the dichoto-

mized gene scores, efficiency is greater when the

rs1229984 variant is used, suggesting the importance of di-

chotomizing the risk factor at a natural break in its distri-

bution (if one exists) rather than ensuring that subgroups

are equal in size. However, efficiency is strikingly im-

proved using the full set of interactions, with the standard

error decreasing over 10-fold using the 10 variants, and

by a factor of 4 using the rs1229984 variant, compared

with the 2� 2 analysis. All estimates are compatible

with the null, suggesting a lack of interaction in the effects

of BMI and alcohol on SBP. There was no evidence of

weak instrument bias, even though up to 857 IVs were

used in the analyses and F-statistics were generally low

(Supplementary Table A4, available as Supplementary data

at IJE online).

Discussion

In this paper, we have provided a brief review of factorial

Mendelian randomization, an approach that uses genetic

variants as IVs to detect interactions. We have described

two broad scenarios in which factorial Mendelian random-

ization has been implemented: to explore interactions be-

tween risk factors, and to explore interactions between

interventions. Although most (perhaps even all) factorial

Mendelian randomization analyses have been conducted

using a 2� 2 approach in which the sample is divided into

four subgroups, we have shown that this approach is gen-

erally inefficient, particularly for exploring interactions be-

tween risk factors. This has been demonstrated in

simulation studies, and in an applied example in which a

4- to 10-fold improvement in efficiency was observed by
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an analysis using the full set of interactions between the ge-

netic variants as IVs.

Choice of variants

Our findings suggest that factorial Mendelian randomiza-

tion analyses should be conducted using all available ge-

netic variants that are valid instruments, i.e. that satisfy the

multivariable IV assumptions. Analyses should not only in-

clude the genetic variants as main effects, but also all rele-

vant two-way cross-terms. A similar conclusion was made

in a different context by Bollen and Paxton.22 If investiga-

tors want to perform a 2� 2 analysis, this should be done

to illustrate the method rather than being the main analysis

for testing the presence of an interaction. For a 2� 2 analy-

sis, the primary consideration for choosing genetic variants

should be to divide the population at a natural break in the

distribution of the risk factor, in order to maximize the dif-

ference between the mean level of the risk factor in the two

halves of the population. If there is no natural break in the

distribution, then investigators should find a division that

splits the population as far as possible into equal groups.

This may entail selecting genetic variants that explain less

variance in the risk factor, but have minor allele frequency

closer to 50%. There can also be substantial benefit in in-

cluding multiple variants in a single gene region in an

analysis, even if these variants only explain a small addi-

tional proportion of variance in the risk factor.

Weak instrument bias and efficiency

Conventionally, it is discouraged to use large numbers of

genetic variants that are not strongly associated with the

risk factor in a Mendelian randomization analysis due to

weak instrument bias.32 Although we did not detect any

bias from weak instruments on interaction terms in our

simulations, we acknowledge that users of the method may

be reluctant to use hundreds of cross-terms as IVs. We

would therefore encourage the use of continuous gene

score methods as sensitivity analyses. Such analyses esti-

mate fewer parameters, so should be less susceptible to

bias. However, this advice is precautionary; no evidence of

weak instrument bias in interaction estimates was observed

in our simulations.

Summarized data

Whereas multivariable Mendelian randomization can be

performed using summarized data that are typically

reported from genome-wide association studies by large

consortia, this is not possible for factorial Mendelian ran-

domization. If summarized association estimates are

available on genetic associations with the product of the

two risk factors, as well as associations with the risk fac-

tors individually, then the interaction effect can in principle

be estimated by weighted linear regression of the beta-

coefficients as in multivariable Mendelian randomization.

However, if association estimates are only available for ge-

netic variants, then the regression model is not identified

asymptotically due to collinearity, and finite-sample esti-

mates will be biased.33 Association estimates for some

cross-terms of genetic variants are additionally required.

Hence, factorial Mendelian randomization can be per-

formed using summarized data, but only if bespoke sum-

marized data are available on associations of genetic

variants and their cross-terms with the risk factors and

their product.

Interpretation of the interaction effect

If genetic variants each satisfy the assumptions of an IV,

then an interaction between risk factors has a causal inter-

pretation. If the two risk factors are associated with the

outcome then an interaction will exist on at least one of

the additive or multiplicative scales.6 However, there is no

way of distinguishing a purely statistical interaction from a

mechanistic or biological interaction based on observa-

tional data. We therefore advise caution in the interpreta-

tion of interaction findings, as a statistical interaction can

arise due to non-linearity in the effect of a risk factor, or

because of the scale on which the outcome is measured (for

example, an interaction may occur on the original scale,

but not on a log-transformed scale). When considering an

interaction between interventions, researchers can investi-

gate whether there is an interaction between the interven-

tions on the risk factor(s) as well as on the outcome. This

may help reveal where any biological interaction may take

place.

Causal estimates from IV analysis have a clear interpre-

tation in two cases: under the monotonicity assumption,

and under the homogeneity assumption.34 In a randomized

controlled trial in which random allocation is taken as the

IV and the treatment is the risk factor, monotonicity means

that there are no individuals in the population (known as

‘defiers’) who would take the treatment only if they were

randomly allocated to the control group, and not if they

were allocated to the treatment group. Under monotonic-

ity, all individuals are either ‘always-takers’ (they would

always take the treatment whether assigned to or not),

‘never-takers’ (they would never take the treatment

whether assigned to or not), or ‘compliers’ (they would

take the treatment if and only if assigned to do so).35

Under the monotonicity assumption, the IV estimate repre-

sents the complier average causal effect—the average
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causal effect amongst compliers.36 However, these defini-

tions suppose that the IV and risk factor are binary. In

Mendelian randomization, these variables are typically

continuous, and so the straightforward interpretation of an

IV estimate as a single complier average causal effect is

lost—it instead represents a weighted average of complier

average causal effects.37 In contrast, the IV estimate under

the homogeneity assumption represents the average causal

effect. In its simplest form, the homogeneity assumption

states that causal effects are identical in all individuals in

the population. Weaker versions of this assumption have

been proposed.

If there is a non-zero interaction between the risk fac-

tors, then the homogeneity assumption in the multivariable

Mendelian randomization model is violated, and the IV es-

timate only has a clear interpretation under the monotonic-

ity assumption. However, the homogeneity assumption in

the factorial Mendelian randomization model may still

hold, if there is homogeneity in the effects of the two risk

factors and their product on the outcome. Hence under ho-

mogeneity, the interaction effect has an interpretation as

an average causal effect.

A further potential complication arises if genetic associ-

ations with the risk factor or outcome vary over time. As

genetic variants are assigned at conception for all individu-

als and tend to influence risk factor levels throughout the

life-course, Mendelian randomization estimates are natu-

rally interpreted as the impact of a life-long change in the

trajectory of a risk factor.38 Hence the natural interpreta-

tion of an interaction effect is that of a statistical interac-

tion in the relationship between the outcome and the risk

factors that relates to long-term changes in the risk factors.

If genetic associations vary over time, then the interpreta-

tion of the causal estimate from Mendelian randomization

is unclear. This is true for a conventional Mendelian ran-

domization analysis as well as for a factorial Mendelian

randomization analysis. One notable case to consider is if

the risk factors have mutual effects on each other, as in the

case of a feedback mechanism. In this situation, provided

that the associations of the genetic variants with the risk

factors remain linear (which would occur if all relation-

ships between variables are linear), then this would mean

that all genetic variants are associated with both risk fac-

tors. A factorial Mendelian randomization analysis would

still hold for the causal interaction between the risk factors,

as in the examples with shared genetic variants described

earlier in the paper. Hence feedback between the risk fac-

tors does not necessarily lead to a non-zero interaction esti-

mate. However, if the two variables of interest have a

complex longitudinal relationship, and in particular if

there are mutual dependencies that might vary over time,

then extra caution should be taken in interpreting results

from a Mendelian randomization investigation, especially

numerical estimates of causal effects. This advice is also

relevant if the effects of the risk factors on the outcome

may vary over time (for example if there is a critical period

when exposure to the risk factor influences the outcome).

If the associations between variables became non-linear,

then it may be worth considering using the control func-

tion approach, an extension to the two-stage least squares

method that makes stronger assumptions, but can result in

more efficient estimation.39

Comparison with previous work

Previous work investigating interactions using IVs has been

limited. A formal framework for defining interaction

effects in the context of clinical trials was proposed by

Blackwell,40 who used the language of principal stratifica-

tion (compliance classes and monotonicity) to define local

average interaction effects in a similar way to how local av-

erage causal effects (also called complier-averaged causal

effects) are defined for single risk factors.41 However, the

principal stratification framework presupposes that risk

factors are binary (or categorical) to assign compliance

classes, whereas risk factors in Mendelian randomization

are typically continuous. Additionally, the principal strati-

fication framework presupposes a single binary IV,

whereas Mendelian randomization investigations often use

multiple genetic variants. There is therefore little practical

advice in the literature on how to perform a factorial

Mendelian randomization analysis.

Limitations

There are several limitations to this work. We rely on the

assumption that all genetic variants included in our analy-

ses are valid IVs. The IV assumptions may be violated by

including genetic variants that are associated with the out-

come independently of the risk factors. This violation

would result in biased estimates, and could potentially lead

to incorrect inferences on the presence of an interaction ef-

fect. Our recommendations rely on simulated data.

Different choices for the parameters included in the simula-

tion studies may have resulted in different conclusions.

However, our findings were robust to different choices of

parameters considered in this paper, they correspond to

what we know about the theoretical properties of estima-

tors, and similar conclusions were observed from the ap-

plied analysis. We have only considered interactions on an

additive scale, although interactions could be considered

on a multiplicative scale by log-transforming the outcome.

Finally, we have not considered the impact of model mis-

specification on estimates. It would not be possible to
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perform simulation studies corresponding to all possible

ways that model misspecification could occur, meaning

that our recommendations cannot be proven to be optimal

in all settings. We believe that we have chosen parameters

and scenarios that are relevant to modern Mendelian ran-

domization analyses.

Conclusion

Overall, factorial Mendelian randomization is a promising

technique for assessing interactions using genetic variants

as IVs. Our findings suggest that current applications of

factorial Mendelian randomization based on a 2�2 analy-

sis could be improved by better selection of genetic var-

iants, and by better choice of analysis method.

Supplementary data

Supplementary data are available at IJE online.
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Introduction

Have you ever wondered how Mendelian randomization

(MR) studies can estimate a lifetime effect when the expo-

sure is only measured once?1 This is incredible, considering

that other familiar methods2 would require that the expo-

sure (and time-varying covariates) be measured repeatedly

and frequently throughout the life course to estimate the

same effect. MR avoids this by making important assump-

tions about time to estimate effects. For example, the as-

sumption that the relationship between the genetic

variant(s) and the exposure is constant through time3

allows the estimation of a lifetime effect (as defined in

Table 1) even when exposure is only measured once.

Regardless of the methods used to infer causality, it is not
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