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Realtime optimization of 
multidimensional NMR 
spectroscopy on embedded sensing 
devices
Yiqiao Tang   *  & Yi-Qiao Song

The increasingly ubiquitous use of embedded devices calls for autonomous optimizations of sensor 
performance with meager computing resources. Due to the heavy computing needs, such optimization 
is rarely performed, and almost never carried out on-the-fly, resulting in a vast underutilization 
of deployed assets. Aiming at improving the measurement efficiency, we show an OED (Optimal 
Experimental Design) routine where quantities of interest of probable samples are partitioned into 
distinctive classes, with the corresponding sensor signals learned by supervised learning models. The 
trained models, digesting the compressed live data, are subsequently executed at the constrained 
device for continuous classification and optimization of measurements. We demonstrate the closed-
loop method with multidimensional NMR (Nuclear Magnetic Resonance) relaxometry, an analytical 
technique seeing a substantial growth of field applications in recent years, on a wide range of complex 
fluids. The realtime portion of the procedure demands minimal computing load, and is ideally suited for 
instruments that are widely used in remote sensing and IoT networks.

NMR, considered as one of the most potent analytical methods, traditionally requires dedicated personnel and 
delicate equipment thanks to the use of superconducting magnets, sizable electronics, and intricate probe and 
antenna placements1. Only recently, owing to the advancement of permanent-magnet design2, integrated elec-
tronics3,4, and antenna miniaturization5, portable NMR systems6 have emerged as a viable surrogate. Thanks to 
the reductions in footprint, maintenance needs and price tag, the miniaturized sensor assemblies have extended 
their uses beyond conventional NMR laboratories to point-of-care medical diagnostics7,8, subterranean explora-
tions9, flow metering10, fluid authentication11, and artefact preservation12. In those “field” applications, it is highly 
desirable that the machinery operates autonomously and self-optimizes based on properties of the samples under 
investigation.

The needs for optimizing NMR spectroscopy become more pressing when considering that the quantities of 
interest, such as relaxation times (T1 and T2), diffusion coefficient, J-coupling, and chemical shift oftentimes span 
a large numerical range up to several orders of magnitude13. Consequently, a fit-for-all-purpose pulse sequence 
(PS) often does not exist. Misuses of pulse sequence could result in either a prolonged experiment time or a loss 
of measurement accuracy. Previous efforts on measurement optimization have been focusing on samples of sim-
ple compositions (containing single or double fluid species) and/or 1D functional forms of forward models14–16.

Another challenge for autonomous optimization at the embedded sensing devices stems from the limited 
computing infrastructure, where microprocessors of merely tens of MHz CPU clock-rate and fast memories of 
tens of KB to a few MB are available17. The so-called “constrained devices” may connect to a gateway or cloud 
platform of much greater computing throughput, but often the connection is slow and intermittent18,19. In those 
scenarios, realtime optimizations need to be executed in its entirety at the sensory nodes of meager resources.

We wondered whether it would be possible to optimize multidimensional NMR relaxometry that measures 
NMR relaxation times20 of complex fluids, in realtime, on a mobile sensor generally regarded too “dumb” to per-
form such tasks. Instead of optimizing one sequence to all probable samples15,16, we utilized a suite of sequences 
that were individually optimized for samples with distinctive ranges of relaxation properties.

More specifically, we used the inversion-recovery-CPMG (IRCPMG) pulse sequence for T1 − T2 correlation 
spectroscopy. The forward model that describes the signal evolution as a function of experimental parameters is21:
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where  is the experimental noise, θ is a calibration coefficient of the instrument, τ1 and τ2 are prescribed param-
eters that the spectrometer traverses through, with S(τ1, τ2) the corresponding recorded signals. Inversion meth-
ods22 are applied to obtain the sample {T1, T2} correlation spectrum, f(T1, T2). As real-life samples often have 
broadly distributed f(T1, T2), we made no assumptions other than T1 ≥ T2

23 on the mathematical constructs of the 
spectra.

Three classes of fluids were considered in the sequence design. As shown in Fig. 1, class A contained com-
ponents that were longer than 0.1 s in both T1 and T2 dimensions; class B embodied high T1/T2 ratios, where T1 
had components longer than 0.1 s while T2 spanned [1 ms, 0.1 s]; and class C had relatively short T1 and T2 that 
each spanned [1 ms, 0.1 s]. Accordingly, Table 1 shows the optimal sequences for the respective fluid classes (i.e. 
sequence α for fluid A, β for B, and γ for C). In particular, both sequences α and β had τ1 up to 10 s, capable 
of measuring T1 up to 2 s, while sequence γ had the maximal τ1 of 1 s that sufficed to measure T1 up to 0.2 s. 
Meanwhile, sequence α had the maximal τ2 = Ne × te of 10 s, capable of measuring T2 up to 2 s, in contrast to 
sequences β and γ with the maximal τ2 of 0.6 s. The shorter echo spacing, te, used in sequences β and γ than in 
sequence α could further help resolve fast T2 components (Fig. S1).

PS α β γ

te(μs) 500 200 200

Ne 20,000 3,000 3,000

τ1,min(ms) 1 1 0.5

τ1,max(ms) 10,000 10,000 1,000

WT (s) 10 10 5

N1 20 20 20

t90(μs) 25 25 25

t180(μs) 50 50 50

NA 4 4 4

runtime (s) 1608 964 472

Table 1.  The three optimal pulse sequences. PS is short for pulse sequence, te is echo spacing, Ne is the number 
of echoes, τ1,min is the minimal τ1, τ1,max is the maximal τ1, N1 is the number of τ1, WT is the polarization 
time, and NA is the number of acquisitions. t90 and t180 are respectively 90° and 180° pulse lengths that are 
experimentally determined, and runtime is the total experimental time.

Figure 1.  The three sample classes: (A) have T1 and T2 components that are longer than 0.1 s; (B) have 
components of large T1/T2 ratio; and (C) only have short T1 and T2 components up to 0.1 s. The IRCPMG pulse 
sequence is shown in (D), where te is echo spacing, τ1 is T1 encoding time that includes N1 steps of iteration, τ2 is 
echo time, WT is polarization time, and NA is the number of scans; the vertical bars represent RF pulses and the 
in-between triangles represent echo signals.
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Ideally, sequences shall always be applied to the intended samples under study; but in continuous measure-
ments on samples of changing properties, occasions do arise in which a sequence is suboptimally applied. As 
sensors generally couldn’t foresee temporal progression of sample properties, any combinations of fluid class and 
pulse sequence are practically probable. Here we show applications of each sequence to three exemplary fluids, 
namely dodecane (fluid A), emulsified fluid (fluid B), and glycerol (fluid C), in Fig. 2. In the 3 by 3 panels, the 
diagonal time-domain images were acquired by the respective optimal sequences, while the measurements that 
corresponded to the off-diagonal ones were either inefficient or erroneous (Fig. S1). The key challenge was to 
discern the fluid class from live time-domain images, regardless of the sequences in use, and apply the intended 

Figure 2.  Top: T1 − T2 spectra of dodecane (fluid A), an emulsified fluid (fluid B), and glycerol (fluid C), 
acquired by sequences α, β, and γ respectively, and inverted using the Fast Laplace Inversion algorithm. Bottom: 
9 log-log plots of time-domain patterns of NMR T1 − T2 measurements on the three fluids. Columns are by the 
fluid types, and rows by the applied sequences. Each pattern is normalized by the first acquisition point of the 
longest τ1 time at the top left corner, and contour lines, from bottom to top of darkening colors, represent −0.9, 
−0.5, −0.1, 0.1, 0.5, and 0.9. Measurements are optimal within the yellow envelope, inefficient within the blue, 
and erroneous within the red.
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one in the subsequent runs. In practice, we used three trained ECOC (error-correcting output codes) learners24, a 
class of supervised learning models, for the realtime multiclass classification and inference task.

Supervised learning requires large quantities of labeled datasets for model training. The training sets can con-
sist of either prior measurements on samples of known properties or forward-modeled simulations. We opted for 
the later approach thanks to the well-defined functional form of Eq. 1. Specifically, we approximated probable 
T1 − T2 distributions by a large ensemble of synthetic distributions, each consisting of three components of ran-
domly generated  T T{ , }1 2  pairs. Since the measurement volume was a constant and filled with fluids of similar 
proton density, we assigned each component by a randomly-generated weighting coefficient, μ, that sums to 
unity. The time-domain data, ST, for model training were generated as:
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3 . After calibrating the experimental setup, we set θ to 1.85 and T  to a Gaussian noise with zero 
mean and 0.012 standard deviation.

To generate T T{ , }1 2
   pairs, we stochastically sampled in a two-dimensional space, where each dimension con-

sisted of 100 logarithmically distributed numbers from 1 ms to 2 s and all pairs satisfied the relation T T1 2≥  . In 
total, 30,000 − T T1 2 distributions were created. Subsequently, we sifted the sampled distributions, one by one, 
through a set of classification criteria, and labeled them accordingly (Fig. S3). A given distribution was labeled 
class A if the longest T2 > 0.1 s and its associated weighting coefficient ≥0.05, labeled class B if the longest T2 < 0.1 s, 
its associated T1

 > 0.15 s, and its associated weighting coefficient ≥0.05, and labeled C if the longest T1 < 0.1 s. As a 
result, 11,663 were assigned to class A, 11,835 to B, and 1449 to C.

Figure 3.  Realtime optimizations of continuous NMR T1 − T2 experiments with ECOC classifiers. (A) The 
optimization workflow where S(X,Y) is the raw time-domain pattern from fluid of class X acquired by sequence 
Y and Sc(X,Y) is the pattern after normalization and SVD compression; (B) A photo of the miniaturized NMR 
system; (C) A series of NMR experiments on sequentially displaced fluid samples. Sample 1 to 6 are mixtures of 
glycerol and water with different volume ratios: 0:100 (1), 10:90 (2), 20:80 (3), 50:50 (4), 70:30 (5), and 100:0 (6); 
sample 7 is a well-gelled emulsified fluid. The vertical dashed lines mark the time stamps of sample injection. In 
the upper panel, the crosses signify applied sequences, with the red and blue circles highlighting inaccurate and 
inefficient measurements, respectively. In the lower panel, the circles and crosses signify calculated means of T1 
and T2 times from the obtained 2D datasest; (D) Continuous NMR measurements on an emulsified fluid under 
static conditions, where y axis on the left indicates the sequence in use, and on the right indicates the calculated 
volume fraction of bulk base oil (any components with T2 > 0.1 s). The light gray band highlights the transition 
of optimal sequences. The inset shows the T1 − T2 correlation spectra of the fluid at the two marked time stamps.
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To further reduce the size of training datasets, we exploited the separable structures of the functional form, 
and applied singular value decomposition (SVD) on T1 and T2 kernels independently22. Consequently, for any 
given sample, the size of compressed datasets was 1.57 KB when acquired by sequence α, 1.34 KB when acquired 
by β, and 1.25 KB when acquired by γ. As elaborated in the supplementary information, a near 1000-fold reduc-
tion in memory usage was achieved with the SVD compression.

Subsequently, we trained three ECOC classifiers, an ensemble method for multiclass classification problem24; 
each classifier is used while running the corresponding pulse sequence. The ECOC models encoded the binary 
classification results from three linear support vector machines (SVM) into a coding design matrix25, using the 
“one-versus-one” strategy that distinguished a pair of labeled time-domain patterns in the training set while 
ignoring the third fluid class. For sequences α, β, and γ, the ECOC classifiers had the respective size of 4.7, 4.1 
and 3.8 KB. In total, less than 13 KB of fast memory was required to store the models.

In the inference stage of classifying a new 2D NMR dataset, we utilized the loss-weighted decoding scheme26 
to aggregate predictions of the binary learners, in which the weighted “hinge” error functions25 over all binary 
losses were minimized. After running a pulse sequence, the number of floating-point calculations for classifying 
the generated data, after normalization and SVD compression, is fewer than 700. More details of the model train-
ing, validation and inference can be found in the supplementary information.

We performed realtime optimizations of continuous NMR experiments with the trained ECOC classifiers, as 
illustrated in Fig. 3. The mobile NMR sensor27, shown in Fig. 3B, was miniaturized largely due to the use of an 
NMR ASIC (Application Specific Integrated Circuit)3. The NMR probe, embodied in a Halbach-array magnet, 
was made of a solenoid coil wound around a polymer capillary, interrogating fluid samples of 17 μL in volume. 
During operation, the spectrometer executed a selected pulse sequence that was downloaded from the laptop, on 
which the acquired data were input to ECOC classifiers for realtime inference.

Figure 3C shows a series of experiments on sequentially displaced samples. The samples were six water/glyc-
erol mixes of varying volume fractions and one emulsified fluid. As the volume fraction of glycerol increases, 
the relaxation times of the mixtures shorten from T2 = T1 = 2 s of pure water to T2 = T1/2 = 15 ms of pure glyc-
erol; meanwhile, the T1/T2 ratio also inflates thanks to the elevated fluid viscosity. We started with sample 1 of 
pure water while applying sequence γ; the classifier correctly identified the fluid as type A and instructed to use 
sequence α for the subsequent run. Thereafter, sequence α was optimally applied for samples 1, 2 and 3. Sample 4 
had T1/T2 slightly above 1 with T2 = 0.1 s. Consequently, the optimization routine signified the sample as type B. 
Sequence β was properly applied till sample 5 was loaded, which was classified as fluid C. Subsequently, sequence 
γ was applied on sample 5 and 6 of rather short relaxation times. Finally, we displaced glycerol by a well-gelled 
emulsion sample, which the ECOC classifier correctly deduced as a class B fluid; the spectrometer subsequently 
applied sequence β for the rest of the experiments.

In addition to physical displacement, a given sample could also evolve over time. For example, the emul-
sion fluids, which are multiphasic mixes of oil, brine, organoclays, and naturally-mined barite particles, could 
experience phase separation under static conditions. As the emulsion collapsed and solid particles sedimented, 
the emancipated oil exhibited a characteristic T2 time much longer than the original fluid, calling for a different 
optimal sequence.

Experimentally, we performed the optimization routine for continuously monitoring an emulsion sample 
under static conditions. As shown in Fig. 3D, the initial well-gelled emulsion fell in the class B fluid, to which 
sequence β was optimally applied. At about 50,000 s after the experiment commenced, signals of bulk oil started 
to appear with a T2 at ca. 0.5 s. As volume fraction of free oil increased, the fluid gradually morphed to class A, 
with the corresponding optimal sequence α. Notably, A transition window presented at ca. 60,000 s, where the 
free fluid content was still marginal while the inference results hinged partially on noise realizations of each 
measurement.

In practice, it is important to ensure that each sequence has sensitivities over the entire numerical domain of 
T1 − T2 spectra under consideration. Failure to meet the requirement could cause misclassification and thereby 
erroneous results. For example, the maximum τ1 in sequence γ, which is optimized for samples of fast relaxation 
times, should be designed so that the signal decays significantly with the maximal T1. Mathematically, it should 
satisfy 1 − exp(−τ1,max/T1,max) ≫ σ, where σ2 is the variance of the Gaussian noise. The relation is indeed held in 
the work, as τ1,max = 1 s for sequence γ, T1,max = 2 s, and σ2 = 0.0122.

Although we focus on relaxometry, the method can be extended to other types of NMR measurements of 
increasing complexities, such as multidimensional spectroscopy and MRI, at the core of which are forward mod-
els of similar mathematical constructs (exponential, sine and cosine functions). In conjunction with minimal 
requirements on computing resources, the demonstrated approach may further NMR methods to a substantially 
broadened usage in a wide range of field applications.
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