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Platelets in chronic liver disease, from bench to bedside
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In the last decade, numerous studies revealed physiologic and pathophysiologic roles of platelets
beyond haemostasis, a process to prevent and stop bleeding. These include the activation of the
immune system and the promotion of inflammation, infection and cancer. Hence, the emerging
view on the role of platelets has shifted – platelets are now seen as alert “sentinels” of the immune
compartment, rather than passive bystanders. Herein, we review well-established and newly dis-
covered features of platelets that define their natural role in maintaining blood haemostasis, but
also their functional relationship with other cells of the immune system. We focus on recent
studies underlining functional involvement of platelets in chronic liver diseases and cancer, as
well as the effects of anti-platelet therapy in these contexts. Finally, we illustrate the potential of
platelets as possible diagnostic and therapeutic tools in liver disease based on recently developed
methodologies.
© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction
Beyond the well-known classical role of platelets
in the regulation of blood haemostasis in physio-
logic and pathologic conditions, recent studies
have shed light on potential roles of platelets
that appear to be independent of their main func-
tions, via interactions with the immune system
and tumour cells. In the liver, platelets seem to
interact with different resident cellular popula-
tions and to exert regulatory functions within
the immune system in several chronic liver
diseases including, for example, viral hepatitis,
non-alcoholic steatohepatitis (NASH) and liver
cancer. These novel findings prompted the
hypothesis that a selective modulation of the acti-
vation status of platelets might represent a pro-
mising therapeutic approach in the context of
several chronic liver diseases and even several
liver cancer types.

Considering the active role of the liver in the
life cycle of platelets and the complex network
of interactions developing within the liver par-
enchyma, we provide a brief insight into the
basic aspects of platelet biology.

The origin of platelets and their life cycle
Two types of blood cells originate from a common
hematopoietic progenitor: lymphoid stem cells,
from which most of white blood cells originate,
and myeloid stem cells, from which red blood
cells, platelets and myeloblasts stem. Given their
crucial role in blood coagulation and thrombosis,
platelets are mainly produced by the liver during
foetal life. After birth, the bone marrow becomes
the most important source of platelets, where
they develop from progenitor cells named mega-
karyocytes. In this developmental process, a
megakaryocyte precursor becomes polyploid by
endomitosis and undergoes a maturation phase
that results in massive enlargement and elonga-
tion of the cytoplasm, from which pro-platelets
evaginate and take birth. In detail, mature mega-
karyocytes lie in proximity to vessels, extend
their pseudopods through the vascular endothe-
lium into the lumen of bone marrow vessels and
release platelets through a fission-like remodel-
ling of cytoplasm.1 Platelet production, as well
as megakaryocyte maturation, are tightly regu-
lated by the action of thrombopoietin (TPO), a
hormone produced by the liver and kidney.2

At the end of their lifespan in vessels, or after
accomplishing their main function in the blood-
stream, they can be removed from the circulation
by neutrophils or macrophages and destroyed/
phagocytosed in the spleen and liver. Senescent
platelets also undergo a process of cell death
resembling intrinsic apoptosis.3 During their nor-
mal life cycle, platelets not only decrease in size
but also undergo a process of progressive de-
sialylation that enables their clearance in the
liver via the asialoglycoprotein receptor, which
is present on the vascular face of hepatocytes
and on liver-resident macrophages, Kupffer cells
(KCs).4

General functions of platelets – mechanism of
platelet aggregation and attachment
The natural role of platelets in the circulatory tree
is to maintain primary haemostasis and blood
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Key points

Platelets interact with different resident cellular populations and exert regulatory functions
within the immune system in several chronic liver diseases.

Based on experimental data, anti-platelet therapy might become a therapeutic possibility in the
treatment of chronic liver diseases characterised by immune-mediated hepatocyte damage.

Platelets might represent a valid therapeutic target even in metabolically driven liver diseases,
with the glycoprotein GPIbα seeming to be particularly important.

A better understanding of the cellular and molecular mechanisms of interaction between pla-
telets, cancer cells and immune cells is urgently required to validate the potential efficacy of
an anti-platelet approach to liver cancer treatment.

Platelet transcriptome analysis might become a useful tool for the diagnosis of chronic liver
diseases.
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flow within vessels. The process leading to coagu-
lation is initiated by exposure of the sub-
endothelial matrix to platelets, leading to interac-
tions between platelet-receptors and matrix pro-
teins. Hereby, activation of platelets results in
release of mediators such as ADP, adrenaline, sero-
tonin (5-HT), thrombin and thromboxane A2
(TXA2), that act in an autocrine and paracrineman-
ner. After this activation process, glycoprotein IIb/
IIIa (GPIIb/IIIa) complexes bind fibrinogen enabling
platelet aggregation and consequent constitution
of the thrombus. Therefore, activation and attach-
ment of platelets is the first step in a
closely regulated cascade leading to aggregation
(Fig. 1). The understanding of this process led to
the development of several drugs that block aggre-
gation, as outlined below.5,6

The production and secretion of soluble ligands
is an essential process for the formation of the
thrombus, as they trigger signals in an autocrine
and paracrine manner to sustain activation and
attract further circulating platelets. Three distinct
types of granules have been identified in platelets:
alpha-granules are the most abundant and contain
mainly membrane receptor proteins (integrins and
P-selectins), and soluble cargo proteins (fibrinogen,
von Willebrand factor (vWF), platelet factor 4
(PF4), chemokines and growth factors).7 Dense
granules are less abundant and represent a group
of lysosome-related organelles that contain bioac-
tive amines, adenine nucleotides and calcium
cations. Platelet-lysosomes are the third group of
granules and they contain many proteases like
carboxypeptidases that modulate inflammatory
processes and tissue reactions.8,9 The most well
known and investigated molecular activators are
TXA2, ADP, epinephrine and thrombin as they
enable full activation and interaction with other
extracellular components. They induce increases
Fig. 1. Schematic representation of a platelet in its resting stat
that can bind several ligands resulting in decreased intracellular
soluble proteins retained in the granules are released via ex
membrane proteins retained in the granules are mobilised and p
CCL2, chemokine ligand 2; CCL5, chemokine ligand 5; GPIbα, gly
S1P, sphingosine-1-phosphate; TGF-β, transforming growth facto
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in intracellular Ca2+ levels resulting in changes to
platelet shape, increased protein synthesis and
activation of further adhesion molecules (e.g.
GPIIb/IIIa).10 Platelets possess 2 ADP receptors
(P2Y1 and P2Y12) which are G-coupled protein
receptors, contributing to their initial aggregation
and triggering a decrease of intracellular concen-
trations of cAMP, with consequent changes to pla-
telet shape.11 Similarly, thrombin also represents
one of the key mediators of the coagulation pro-
cess. It also binds to a G-protein coupled class of
receptors defined as protease-activated receptors,
activating a signalling cascade of events that
results in decreased cAMP concentration and
increased Ca2+ concentration. This intracellular
cascade leads to TXA2 production via
cyclooxygenase-1 activation (COX-1), ADP release,
mobilisation of P-selectin and CD40L, integrin acti-
vation and finally platelet aggregation.12

Platelets, dynamic sentinels interacting with
immune and non-immune cells
Platelets have been recognised as key players in
numerous immunological contexts ranging from
e and upon activation. Platelets present membrane G-protein coupled receptors on their surface
cAMP, mobilisation of Ca2+ stores and subsequent changes of cell morphology. Upon activation,
ocytosis, exerting their biological functions in an autocrine or paracrine manner. Similarly,
resented at the cellular surface where they can bind related ligands. 5HT, 5-hydroxytryptamine;
coprotein Ibα; IL-1β, interleukin-1β; PDGF, platelet-derived growth factor; PF4, platelet factor 4;
r-β; TXA2, thromboxane A2; VEGF, vascular endothelial growth factor.
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inflammation, bacterial and viral immune reaction,
to immunity against tumours and tumour metas-
tases. At the platelet surface, several receptors are
able to interact with not only leukocytes, but also
other immune and non-immune cells such as
endothelial cells. Many of these dynamic multiple
interactions commonly occur within the hepatic
microenvironment in the context of liver injury
and repair.13

It was recently shown that platelets express all
toll-like receptor (TLR)-family members, enabling
them to recognise molecular motifs like, for
instance, pathogen-associated molecular patterns.
For instance, TLR-2 and TLR-4 were shown to
have a functional role in responses to bacterial
endotoxins.14,15 This interaction at the site of
infection induces the release of microvesicles con-
taining IL-1β from platelets and the organisation of
neutrophil extracellular traps, which act as an
antibacterial mechanism alongside the inflamma-
tory process taking place in the liver
sinusoids.15–17 Direct platelet-microbe interac-
tions are described as well, leading to platelet
aggregation and sequestration of bacteria, enhan-
cing removal of bacteria by the reticuloendothelial
system.18,19 In the liver, platelets seem to adhere
to blood pathogens sequestered by KCs, emphasis-
ing their supportive role in bacterial clearance.20

Indeed, this interaction mediated by GPIbα on pla-
telets and vWF on KCs was shown to be a very
dynamic and continuous “patrolling” process,
occurring specifically in the hepatic sinusoids.
This is supported by data showing that platelet
depletion and Gp1b-/- knockout mice are more
prone to develop vascular leak damage during
bacterial infection, because of the reduced
clearance of bacteria from the liver.21,22 Elegant
work by Gaertner et al. illustrated that
platelets are able to migrate independently of
the blood stream through a process involving
morphological changes, adhesion via GPIIb/IIIa
and increases in intracellular Ca2+ concentra-
tion.23 Fascinatingly, this process allows plate-
lets to behave as mechano-scavengers,
facilitating the collection and phagocytosis of
bacterial particles by neutrophils along the liver
sinusoids. An interesting recent study by Bur-
zynski et al. provided evidence for a direct link
between the coagulation and immune systems.24

In this study, the authors showed that thrombin
can cleave and activate the production of IL-1α
on platelets and macrophages, therefore contri-
buting to the sustainment of inflammation dur-
ing haemostasis.

Beside interactions with the innate immune
system, platelets also participate in the humoral
immune response. It was reported that platelets
express specific receptors for protein members of
the complement system enabling them to trigger
the activation of the classical pathway.25 The
adherence of platelets to bacteria, via interactions
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with the opsonising complement factor C3, was
shown to enhance the bactericidal activity of
CD8α+ dendritic cells.26 In their granules, platelets
also contain transforming growth factor (TGF)-β, a
molecule promoting the development of regula-
tory T cells or T-helper 17 cells in the context of
viral infections and the antitumour immune
response.27 Thus, platelets also interfere with ele-
ments of the adaptive immune response. Indeed,
activated platelets were shown to contribute to
the maturation process of dendritic cells and to
enhance CD8+ T cell responses during adenoviral
infection.28 Also, in the liver, this process seems
to be recapitulated during viral infection, as
described in detail later. In fact, platelets’ interac-
tion with cytotoxic T cells was shown to enable
the infiltration of these lymphocytes into the
hepatic parenchyma in a mouse model of viral
hepatitis, a process mediated by hyaluronan-
CD44 binding.29

Finally, a clear implication of platelets in
tumour progression and metastasis formation
was recently corroborated.30 Novel findings illus-
trate that platelets can aggregate and adhere to
tumour cells acting as a “protective shield” from
immune-regulated clearance.31 Platelets also
favour the adhesion of metastatic cells to the
endothelium, entrapping them with other
immune cells (leukocytes/monocytes) mainly via
interactions mediated by selectins.32 Interestingly,
the interaction between platelets and tumour cells
was reported to be essential to avoid detachment-
induced apoptosis (anoikis), a major feature of
metastasis.33 Recently, platelet-derived TXA2
(which is generated by activated COX-1) was
reported to promote a pro-metastatic niche invol-
ving endothelial cells, myeloid cells and tumour
cells.34 In this context, platelets can also produce
pro-angiogenic and growth factors that facilitate
tumour growth and survival, as well as promoting
the metastatic potential of tumour cells. In turn,
cancer cells can influence platelet activation and
shape by releasing growth factors that bind to spe-
cific receptors on their surface (tumour “educa-
tion”). Moreover, the tight communication
between platelets and tumour cells, as well as
their physical interactions, indicate a possible role
for platelets as promising vectors for targeted
drug delivery.35

Therefore, platelets take part in an intricate
interplay with innate and adaptive immune
responses, perpetuating inflammatory and malig-
nant processes via various mechanisms (sum-
marised in Fig. 2).

This brief description of the life cycle and
aggregation of platelets, as well as of their interac-
tions with immune cells, is critical to understand-
ing their interactions with different resident and
non-resident liver cells, their roles in different
liver diseases, and how their modulation can be
applied to therapeutic interventions.
Reports 2019 vol. 1 | 448–459 450



Fig. 2. Schematic representation of interactions of platelets with immune and non-immune cells (endothelium, bacteria, tumour cells). Platelets express a
variety of membrane receptors and ligands enabling them to interact with several immune and non-immune cells. Vice versa soluble proteins or other external
stimuli activate platelets leading to granule release via exocytosis. Furthermore, direct interactions enable platelets to entrap bacteria and clear them via the
reticuloendothelial system. CLEC-2, C-type lectin-like receptor-2; GPIbα, glycoprotein Ibα; HBD-1, human beta defensin 1; HMGB-1, high mobility group box 1;
IL-1β, interleukin-1β; miRNA, microRNA; PF4, platelet factor 4; PSGL1, P-selectin glycoprotein ligand 1; TREM-1, triggering receptor expressed on myeloid cells-
1; TGF-β, transforming growth factor-β; TLR, toll-like-receptor; Th, T helper; Treg, regulatory T.
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Interaction of platelets with liver cells
Platelets and hepatocytes: liver injury and
regeneration
As mentioned, the liver is a central regulator of the
number of circulating platelets, through TPO pro-
duction and clearance of aged platelets. Thrombo-
cytopenia is a common complication of chronic
liver disease, characterised by decreased TPO
synthesis, reduced haematopoiesis and increased
platelet destruction in the spleen. Indeed, a direct
correlation between liver functionality and platelet
count is often reported in patients with chronic
liver disease.36 Conversely, it was also shown that
thrombocytopenia could aggravate liver function-
ality and fibrosis in experimental models of chronic
liver injury, as reported here later. Therefore, con-
sidering the dynamic interactions with immune
cells, the understanding that platelets actively par-
ticipate in pathophysiologic processes in the liver
is clearly strengthening. Upon liver damage, plate-
lets are recruited to the site of injury and contri-
bute to liver repair and regeneration partly
through a direct effect on hepatocyte proliferation.
Platelet-derived serotonin was shown to initiate
and promote liver regeneration in mouse models
of partial hepatectomy and ischaemia-reperfusion
injury.37 Interestingly, this phenotype was
reversed by administration of serotonin agonists,
indicating that platelet-derived serotonin plays a
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central role in the initiation of liver regeneration.
A recent elegant work indicates that fibrin contri-
butes to liver regeneration by promoting intrahe-
patic platelet accumulation.38 In this work, the
authors showed that the tissue factor produced
by hepatocytes after partial hepatectomy is critical
for activating a coagulation cascade that leads to
intrahepatic fibrin deposition and platelet accumu-
lation in the remnant liver. Accordingly, thrombo-
cytopenia was shown to impair hepatocyte
proliferation in a surgical murine model of liver
regeneration andmany studies based on therapeu-
tic enrichment of platelets during partial hepatect-
omy indicate pro-regenerating beneficial effects.39

Furthermore, this pro-regenerative activity on
hepatocytes seems to be related to the release of
various growth factors and cytokines contained in
the platelet granules. In fact, platelets were
shown to induce direct hepatocyte proliferation in
vitro via secretion of growth factors such as hepatic
growth factor (HGF) and insulin-like growth factor
(IGF).40

Platelets, liver sinusoidal endothelial cells and
Kupffer cells: organisation of a proinflammatory
partnership
The interaction of platelets with non-parenchymal
cells turned out to modulate the immune response
to liver damage differently. Contact with liver sinu-
soidal endothelial cells (LSECs) represents the first
Reports 2019 vol. 1 | 448–459 451
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way for platelets to access the liver parenchyma.
This interaction was shown to be a priming pro-
cess for the initiation of liver repair upon injury
and the orchestration of liver regeneration. The
recruitment of platelets at the site of damage
seems to be a very dynamic process that consists
of a sudden adhesion of platelets to the altered
sinusoidal cells, which delimits the site of injury
– these interactions are dependent on GPIIb/IIIa
and at a later point GPIb receptors.41 Interestingly,
in this specific condition, platelets do not occlude
the vessels but rather organise in a paved structure
that enables neutrophils to crawl to the site of
injury. A detailed molecular analysis of this cellular
interaction was reported in the regenerative liver
following chemical injury or partial hepatect-
omy.42 In this study, platelets were shown to
release stromal derived factor (SDF)-1 and vascu-
lar endothelial growth factor (VEGF)-1 – at the
site of injury – that bound to their relative recep-
tors on LSECs and myeloid cells, thereby stimulat-
ing a haematopoietic-vascular niche that induces
and sustains liver regeneration. Notably, the
regeneration process was impaired in mice lacking
the CXCR7 receptor on LSECs or VEGFR1 on mye-
loid cells.

Moreover, in vitro, the cross-talk between pla-
telets and endothelial cells in the liver sinusoids,
via sphingosine-1-phosphate receptors (S-1-P),
results in IL-6 release from endothelial cells, pro-
moting hepatocyte proliferation.43 Whereas dur-
ing liver regeneration the adhesion to the
endothelium represents a rapid and transient
event,44 platelet adhesion to the liver sinusoids
results in deleterious changes to the microcircula-
tion in the context of hepatic ischaemia-
reperfusion injury.45 Furthermore, platelet adhe-
sion to KCs was shown to occur in the early phases
of the reperfusion injury, contributing to the
recruitment of neutrophils to the liver and to the
increased sinusoidal perfusion failure rate after
transient ischaemia. Although the effects on hepa-
tocyte proliferation might indicate a role for plate-
lets in promoting liver regeneration, the picture
emerging frommultiple interactions with different
cell populations suggests that caution is warranted
in the development of a therapeutic approach for
hepatic surgery (e.g. liver resection or
transplantation).46

The platelet-KC cooperation is particularly
intense in the context of innate immunity. Accu-
mulation of platelets in the liver was reported in
the early phases of Klebsiella O3 lipopolysacchar-
ide (LPS) infection which induced anaphylactic
shock within minutes of injection.47 Depletion of
KCs by clodronate liposomes resulted in reduced
platelet accumulation and could prevent LPS-
induced shock. Similarly, the contact mediated
through the receptor GPIb on platelets and the
vWF on the KC surface was shown to be critical
for systemic bacterial clearance.20 Therefore, this
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partnership appears to be mainly responsible for
the phenomena of infection-driven thrombosis.
Interestingly, a significant increase in aggregates
of inflammatory monocytes and platelets was
also observed in an experimental model of liver
cholestasis, the bile-duct ligation (BDL) model.48

This interaction, apparently occurring via the
TLR-4 receptor, was essential for the full activation
of macrophages and the establishment of a proin-
flammatory environment. Cholestatic liver injury
was previously shown to induce strong platelet
activation via GPVI in the early phases of the
mouse BDL model. However, chronic cholestasis
induced loss of activation, related to impaired vas-
cularisation and the cytotoxic effects of bile acids
on platelets, leading to bleeding complications.49

Accordingly, anti-platelet therapy through admin-
istration of anti-GPIb antibodies was shown to
improve sinusoidal perfusion and reduce hepato-
cellular damage in BDL-induced cholestasis.50

Platelets and hepatic stellate cells: role in hepa-
tic fibrosis?
Based on clinical evidence, platelet transfusion and
anti-platelet therapy were reported to improve
liver functionality and reduce liver fibrosis in
patients with chronic liver injury.51 Accordingly,
TPO administration revealed beneficial effects in
a rat model of dimethylnitrosamine-induced cir-
rhosis, limiting the progression of liver fibrosis.52

These findings led scientists to investigate the cel-
lular mechanisms that underly the interaction
between platelets and HSCs. As mentioned, plate-
lets display a wide range of cellular mediators
stored in their granule cargo that can be released
upon activation and adhesion. S-1-P is one of
these mediators that was shown to induce prolif-
eration and activation of rat HSCs in vitro.53 In
another study, accumulation of platelets and the
platelet-derived chemokine CXCL4 were detected
in close proximity to fibrotic areas in patients
with chronic liver disease and in mice subjected
to models of liver fibrosis.54 In vitro, stimulation
with platelet-derived CXCL4 was able to induce
HSC proliferation and chemotaxis, whereas
genetic deletion of the chemokine in mice signifi-
cantly reduced liver damage and fibrosis. In line
with these findings, platelet-derived growth
factor-β (PDGF-B), directly produced by platelets,
was shown to activate HSCs and promote liver
fibrosis in 2 models of biliary fibrosis in mice.55

Notably, PDFG-B is well known to be one of the
most potent mitogens for HSCs.56 In this experi-
mental setting, anti-platelet therapy through
anti-CD41 antibodies or low doses of aspirin was
able to reduce the progression of fibrosis. Accord-
ingly, co-culturing platelets with HSCs induced
activation of pro-fibrogenic genes. Finally, platelets
carry significant amounts of TGF-β1 in their cargo;
mice genetically lacking this cytokine specifically
in platelets exhibited less fibrosis compared to
Reports 2019 vol. 1 | 448–459 452



Review
control mice after chronic CCl4 administration.57

However, on the contrary, other studies indicate
that platelets might contribute to limit or suppress
hepatic stellate activation via the cAMP pathway,
triggered by direct contact with ATP-enriched
granules of adhesive platelets.58 Moreover, platelet
granules also contain large amounts of HGF – at
least in rodent models – that can contribute to
inhibit HSC activation.59 In fact, whereas it was
reported that platelets might exert an anti-fibrotic
effect by inhibiting HSCs through the HGF-c-Met
axis, which resulted in reduced expression of type
I collagen genes in the same BDL model,60 in
another study, treatment with an anti-coagulant
was reported to reduce liver necrosis and neutro-
phil migration in a model of drug-induced liver
cholestasis.61

Although growing evidence indicates that pla-
telets can influence the progression of liver fibrosis
through cellular interaction with HSCs, the cellular
mechanisms and the biologic effects of this interac-
tion are still unclear.

Role of platelets in liver diseases and
potential therapeutic interventions
Platelets in chronic viral hepatitis
In relation to the loss of liver functionality, blood
platelet counts progressively decrease and throm-
bocytopenia becomes an important feature of
chronic viral hepatitis and cirrhosis. Many factors
were reported to contribute to the reduced num-
ber of circulating platelets, such as increased sple-
nic clearance (often in association with portal
hypertension), reduced production in the bone
marrow, sequestration of platelets in the liver and
generation of anti-platelet antibodies. In patients
with HCV infection, in whom platelet count
decreased in relation to the severity of fibrosis,
achieving a sustained antiviral response positively
correlated with a recover in platelet number and
a reduction in spleen size.62 Interestingly, similar
findings were confirmed in a recent retrospective
analysis of patients with chronic HCV infection
treated with antiviral therapy, in which a signifi-
cant increase in platelet count was observed after
viral elimination. However, in this case, changes
in platelet count were independent of changes in
liver fibrosis.63 A therapeutic approach aimed at
stimulating bone marrow production using a
thrombopoietin receptor agonist (Eltrombopag)
was shown to increase platelet counts in a group
of patients with HCV and advanced fibrosis, per-
mitting antiviral pegylated-interferon therapy and
reducing the interferon-mediated decrease in pla-
telet count.64 Currently, the use of thrombopoietin
receptor agonists is emerging as a common thera-
peutic strategy in patients with chronic liver dis-
ease presenting with thrombocytopenia. In this
direction, new drugs like avatrombopag were
recently shown to restore platelet count without
affecting their activation status.65
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An interesting clinical study by Kondo et al.66

performed on liver biopsies from patients with
HCV-induced HCC revealed an increase of infiltrat-
ing platelets in the peritumoral area of cirrhotic
liver tissue compared to healthy tissue, despite a
systemic decrease of circulating platelets. Of note,
infiltrating platelets were mainly located in necro-
tic periportal areas of inflammation, along with
CD68 positive cells, indicating possible co-
localisation with KCs. However, the number of pla-
telets and KCs was significantly decreased in the
tumour compared to the peritumoral tissue.
Finally, anti-platelet antibodies, most likely target-
ing antigens like GPIIb/IIIa and GPIIIa, were
detected in the circulation of HCV-positive
patients.67

A reduction of platelet count is also observed
frequently in the blood of patients with chronic
HBV infection, whereas increased platelet count
seems to be significantly related to restored liver
functionality and decreased liver fibrosis upon
antiviral therapy.68 Experimentally, it has been
shown that platelets play a pivotal role in the
pathophysiology of HBV, mainly by enhancing the
infiltration of virus-specific T-cells.69 In this speci-
fic case, Guidotti et al.70 showed that platelets are
essential for arresting CD8+T cells within the liver
sinusoids; these CD8+T cells then crawl along the
sinusoids before exerting their antiviral activity
via antigen recognition. By using genetic and phar-
macological lack of function approaches, the
authors demonstrated that platelets adhere to hya-
luronan on sinusoids via CD44 molecules, favour-
ing lymphocyte arrest and transmigration.

Regarding pharmacological interventions in
this context, aspirin, the most common anti-
platelet drug used in clinic to prevent cardiovascu-
lar events, seems to represent a valid complemen-
tary therapy. Aspirin is able to selectively
inactivate COX-1 at very low doses, inhibiting pla-
telet aggregation.71 Indeed, repeated low doses
result in permanent enzyme inactivation and
reduced TXA2 production with consequent anti-
aggregation effects. However, indirect effects of
aspirin are also known, such as its anti-
inflammatory and oxygen radical scavenger prop-
erties.72 A more selective drug, clopidrogel, was
specifically designed to inhibit aggregation of pla-
telets and to limit unwanted side effects. Clopido-
grel is a thienopyridine that irreversibly inhibits
the ADP receptor P2Y12.

73 In the same murine
model of viral hepatitis mentioned earlier, admin-
istration of these platelet-activation inhibitors,
aspirin and clopidrogel, resulted in a reduction of
CD8+T cells and attenuation of viral infection-
derived hepatocyte damage, without causing
bleeding effects.74 In a similar study, the same
research group showed that, whereas the same
pharmacological treatment was able to reduce the
development of HCC in an HBV murine model,
neither aspirin nor clopidrogel revealed
Reports 2019 vol. 1 | 448–459 453



antitumour effects in a non-immunological chemi-
cally induced model of hepatocarcinogenesis.75

In another study based on an experimental
model of viral hepatitis, infection resulted in plate-
let recruitment to the liver with consequent acti-
vation and impairment of the sinusoidal
microcirculation. This process turned out to delay
clearance of the virus and increased liver damage.
Lack of serotonin in tryptophan hydroxilases-1-
deficient mice resulted in improvement of the
sinusoidal circulation, reduction of CD8+T cell
recruitment and acceleration of hepatic viral
clearance, highlighting a deleterious effect of
platelet-derived serotonin.76

Beyond obvious considerations regarding
haemostasis in the establishment of anti-platelet
therapies, the studies performed so far in the con-
text of liver injury indicate that platelets interact
with different hepatic and immune cell popula-
tions at different stages of the disease. Based on
experimental data, anti-platelet therapy might
become a therapeutic possibility in the treatment
of chronic viral hepatitis characterised by
immune-mediated liver damage. It is therefore
necessary to understand the biological meaning
and the dynamics of this intracellular communica-
tion in order to offer valid and safe approaches for
the development of new therapeutic strategies.

Platelets in alcohol-related and non-alcoholic
steatohepatitis
Although recent prospective clinical studies sug-
gest that patients diagnosed with non-alcoholic
fatty liver disease (NAFLD) are at an increased
risk of developing thrombocytopenia, a real corre-
lation seems to be reproducible only in the
advanced fibrotic stages of the disease.77 However,
data in this regard are still quite controversial.78

Patients diagnosed with NAFLD/NASH commonly
display increased mean platelet volume, an indica-
tor of platelet activation, which was shown to cor-
relate directly with the severity of inflammation
and the grade of fibrosis,79 whereas patients with
alcohol-related liver disease seem to display
reduced platelet activation and aggregation capa-
city.80 However, in another study, patients with
alcohol-related liver cirrhosis were reported to
display a decreased platelet count but a signifi-
cantly increased mean platelet volume compared
to control patients or patients with simple
alcohol-related fatty liver disease (AFLD).81

Recent data from our laboratories indicated an
increase of infiltrating platelets in hepatic tissue
of pre-clinical models of diet-induced NASH and
of NASH-diagnosed patients.82 Interestingly, this
increase was not observed in livers displaying sim-
ple steatosis. However, genetic thrombocytopenia
or pharmacological inhibition of platelet activation
(aspirin/clopidrogel) not only reduced NAFLD
activity score and inflammatory infiltrate but also
turned out to improve steatosis, possibly by
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ameliorating mitochondrial functionality and lipid
catabolism. Interestingly, the incidence of NASH-
induced hepatocellular carcinoma was dramati-
cally reduced in mice treated with anti-coagulant
therapy. Notably, aspirin is considered to be a
non-steroidal anti-inflammatory drug and COX-
inhibitor rather than an anti-coagulant. In this
study, the use of another general non-steroidal
anti-inflammatory drug, sulindac, failed to
improve the metabolic phenotype and the NAFLD
activity score observed after choline-deficient-
high-fat diet feeding. Instead, the use of another
platelet inhibitor, ticagrelor, a cyclopentyltriazolo-
pyrimidine reversible inhibitor of P2Y12 receptors,
with faster onset of platelet inhibition compared
to other anti-coagulants, was able to reproduce
faithfully the protective effects observed after
aspirin/clopidrogel treatment even on NASH-
induced HCC. Furthermore, a detailed 3D morpho-
logical analysis of cellular localisation revealed a
direct interaction of platelets with KCs. More pre-
cisely, anchoring of platelets to the extracellular
matrix, in particular to hyaluronan via their CD44
receptor, was essential for establishing a direct
contact with KCs and triggering the inflammatory
response associated with metabolic stress. Indeed,
genetic and pharmacologic inhibition of CD44 and
hyaluronidase reduced the hepatic accumulation
of KCs and platelets, improving the NAFLD activity
score and ameliorating inflammation. The precise
mechanisms of interaction between CD44 and hya-
luronan are not fully understood yet, but their
expression could increase in NASH-related liver
injury. Hepatic stellate cells are a possible source
of hyaluronan that could possibly be activated in
this specific context.83 Similarly, liver endothelial
cells could actively participate in hyaluronan
remodelling and production.84 Finally, genetic
impairment of platelets’ ability to release α-
granules (in Nbeal2-/- mice) resulted in ameliora-
tion of liver damage and inflammation, whereas
simple inhibition of platelet aggregation did not
reveal any beneficial effect. Interestingly, the
receptor responsible for this interaction with the
immune system and therefore for platelet activa-
tion and granule release turned out to be the glyco-
protein GPIb (Fig. 3). This set of data raises hopes
for the development of valid therapeutic strategies
in the context of NASH-induced HCC which do not
alter the haemostatic functionality. Along these
lines, preliminary analyses on human biopsies
from our laboratories indicate that NASH-
diagnosed patients display many more infiltrating
platelets in peritumoural areas than patients with
other aetiologies of liver disease, like alcohol-
related steatohepatitis or chronic hepatitis. How-
ever, the number of adhering platelets is always
lower in tumoural tissue than in non-tumoural tis-
sue. Interestingly, the number of platelets appears
to be associated with the number of CD68+ cells,
as observed in the context of HCV.66
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Thus, platelets might represent a valid thera-
peutic target even in metabolically driven liver
diseases. An associational study conducted in
patients with cardiovascular disease with or with-
out NAFLD, revealed a protective relationship
between the use of acetyl salicylic acid (active sub-
stance in aspirin) in combination with clopidrogel
and the degree of liver fibrosis.85 However,
whereas the increase in platelet levels significantly
correlated with serum concentrations of PDGF-B in
fibrotic patients, anti-platelet therapy did not affect
the levels of the growth factor in the blood. A
further recent clinical study performed on a cohort
of patients diagnosed with NAFLD indicates that
aspirin administration is associated with an
improvement of NAFLD features and a reduced
risk of fibrosis progression.86

Platelets in liver cancer and metastasis
Although data concerning the number of circulat-
ing platelets in patients with NASH- induced and
virus-induced HCC are still sparse and controver-
sial, an emerging body of evidence supports a
pro-carcinogenic environment driven by platelets.
However, it is interesting to note that
JHEP
thrombocytopenia is a hallmark of cirrhosis, a con-
dition considered as a risk factor for HCC develop-
ment. Despite this apparent contradiction, the
presence of small HCC, normally in the context of
liver cirrhosis, was reported to be associated with
reduced platelet counts.87,88 In cirrhotic patients
with AFLD or NAFLD-related HCC, a low platelet
count was recently included among the para-
meters considered to be reliable predictors of
HCC development.89 Conversely, increased platelet
count has often been associated with HCC aggres-
siveness and size, tumour recurrence and
increased metastatic risk.90–92 Elevated platelet
distribution width, reflecting changes in platelet
size and therefore activation status, was shown to
be significantly associated with poor prognosis
in patients with HCC.93 These observations could
indicate different immunological scenarios affect-
ing the carcinogenic process in different ways.
The interplay between platelets and the tumour
microenvironment certainly deserves deeper
investigation, as increased platelet count and/or
activation often correlates with a sustained inflam-
matory response.94 Notably, anti-platelet therapy
turned out to repress HCC formation in a mouse
Reports 2019 vol. 1 | 448–459 455
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model of chronic hepatitis B, through modulation
of CD8+T cell-mediated hepatic necro-
inflammation.70 Similarly, as described in detail
earlier, anti-platelet therapy prevented NASH-
induced HCC mainly through modulation of the
immune response.82

However, platelet cargo has been shown to
contain mediators and growth factors that can
directly promote growth and invasion of HCC cell
lines.95 Increased levels of serotonin, stored in pla-
telet granules and critical for liver regeneration,
were detected in association with early disease
recurrence in patients undergoing surgical resec-
tion for liver tumours.96 He et al. showed that the
release of TGF-β from platelet granules exerts a
proliferative effect on HCC by inhibiting the
expression of Klf6 on cancer cells.97 Apparently,
platelets can directly enhance HCC growth and
proliferation mainly through activation of a TGF-
β-dependent pathway. Zhang et al. reported that
patients with poorly differentiated HCC display
increased platelet activation. Local accumulation
of platelets was observed in poorly differentiated
tissues where they bind to tumour cells mainly
via P-selectin interactions. Clopidrogel therapy
was able to induce hepatoma cell differentiation,
thus limiting tumour progression in a xenograft
model of tumour implantation on NOD/SCID
mice.98 Accordingly, a very recent study showed
that low dose aspirin administration reduces the
incidence of HCC and improves survival in patients
with hepatitis-related cirrhosis after
splenectomy.99

Finally, given their well-known pro-metastatic
role, platelets contribute to the spreading of HCC
from the site of origin via direct adhesion to cancer
cells. Morimoto et al. reported that high platelet
count, high tumour number and the presence of
high vascularisation were significantly associated
with extrahepatic metastasis in patients with
liver cancer.90 This process also seems to be regu-
lated by adhesion with endothelial cells and inter-
actions mediated by molecules such as P-selectin
or C-type lectin-like receptor 2 (CLEC-2).100,101 It
was also proposed that an interaction between
TLR-4 on platelets and HMGB-1 released by
tumour cells might mediate platelet-tumour cell
interactions.102 Using a murine model of mela-
nomametastasis and a lack of function Tlr4 knock-
out mouse, the authors showed that the
interaction between TLR-4 and HMGB-1 induced
the activation of platelets, leading to the produc-
tion of TGFβ-1 and enhancing metastatic spread-
ing in the lung and liver. In this line, treatment
with the platelet aggregation inhibitor ticagrelor
led to a reduction in liver metastases
in experimental mouse models of cancer.103 In
contrast, Kurokawa et al. reported that a TPO
receptor agonist could exert antitumour activity
independent of restoring platelet counts. In fact,
the cytostatic effect of eltrombopag seems to be
JHEP
mediated mainly by an alteration of iron metabo-
lism in cancer cells.104 Regarding patients with
cholangiocarcinoma, only a few clinical studies
based on the platelet-to-lymphocyte ratio indicate
a possible increase in platelet counts related to
poor prognosis and survival.105 Therefore, in the
context of liver cancer, a better comprehension of
the cellular and molecular mechanisms underlying
the interactions between platelets, cancer cells and
immune cells is urgently required to validate the
efficacy of a potential anti-platelet therapeutic
approach.

Future perspectives
Whereas the immunomodulatory functions of
platelets during chronic liver diseases are start-
ing to be widely recognised, the precise cellular
dynamics and the interactions relevant for dis-
ease outcomes are still poorly understood. Pre-
clinically, more in vivo functional studies are
required to understand if the “polarisation/acti-
vation” status of platelets might be important to
delineate selective or complementary therapeu-
tic strategies. The effects of anti-platelet therapy
in relation to the immune system should be care-
fully analysed, starting from several available
models of liver cancer. Data from the clinic are
sparse and still quite controversial. Therefore,
there is a need for studies with larger and strati-
fied patient cohorts, which will allow research-
ers to determine the correlation between
platelet profile and disease stage, particularly
with respect to liver cancer.

Platelets contain all types of RNA molecules,
mostly unspliced immature forms of mRNA,
which they can translate into proteins or transfer
to neighbouring cells, thereby modulating their
biological functions.106 Analyses of the processes
regulating protein synthesis, storage and release
of pre-stored peptides could be the key to under-
standing platelet functions and the development
of selective therapeutic interventions. For many
years, the proteomic and transcriptomic arsenal
of platelets has been considered static. Instead, it
was recently shown that platelets display a
functional spliceosome with spliceosome factors
enabling signal-dependent splicing, giving birth
to mature peptides.107 In this way, external
stimuli that activate platelets through contact
with surface receptors induce splicing of
specific pre-mRNAs in circulating platelets. Con-
sidering that platelets can be shaped and re-
programmed according to the genetic and
immune environment, a detailed analysis of
RNA expression patterns (even at the single cell
level) might become a valid tool to identify speci-
fic biomarkers of disease. The combination of
specific splice events in response to external sig-
nals and the capacity of platelets to ingest
directly (spliced) circulating mRNAs can
provide these cells with a highly dynamic
Reports 2019 vol. 1 | 448–459 456
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mRNA repertoire, with potential applicability to
cancer diagnostics. In fact, platelet RNA can be easily
isolated from cell pools and subjected to gene-
expression analysis. Promisingly, a transcriptomic
approach based on next-generation RNA sequencing
was shown to be able to offer interesting insight into
the platelet transcript profile.108

A transcriptomic/proteomic approach might
offer information on how different environmental
stimuli or toxicants (e.g. high caloric food, alcohol,
JHEP
exercise, drugs, etc...) affect the plateletmRNA reper-
toire and thereby influence the responsiveness
to therapeutic regimens or immunosuppressants.
Finally, it will be important to identify differences
in the RNA signature of circulating platelets and acti-
vated platelets in the hepatic tissue within the same
pathological context. Considering the less invasive
and more accessible nature of liquid biopsies, plate-
let transcriptome analysis might become a useful
tool for the diagnosis of chronic liver disease.
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