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ABSTRACT: In this work, the pyrolysis behavior and gaseous
products of petroleum coke were investigated by nonisothermal
thermogravimetric analysis (TGA) and thermogravimetry−mass
spectrometry (TG−MS). Then, the pyrolysis kinetics of six kinds
of petroleum coke (Fushun (FS), Fuyu (FY), Wuhan (WH),
Zhenhai (ZH), Qilu (QL), and Shijiazhuang (SJZ)) were
determined by an independent parallel reaction (IPR) model,
and the kinetic parameters (activation energy and preexponential
factor) were obtained. In addition, an efficient backpropagation
neural network (BPNN) was developed to predict the thermal data
of six kinds of petroleum coke. The BPNN-predicted thermal data
were used to calculate the kinetic parameters based on the IPR
model, and the results were compared with the ones calculated
using experimental data. The results showed that the pyrolysis process of six kinds of petroleum coke was divided into three stages,
of which stage II (250−900 °C) had the significant mass loss, corresponding to the devolatilization of petroleum coke. MS
fragmented ion intensity analysis indicated that the main pyrolysis products were methane CHx (m/z = 13, 14, 15, and 16), aliphatic
hydrocarbon C3H5, H2, CO, CO2, and H2O. The thermal data predicted by the IPR, BPNN, and BPNN-IPR (BPNN combined with
IPR) models were in good agreement with the experimental data. Most importantly, it was concluded that the BPNN-predicted data
can be further applied to calculate the kinetic parameters using the IPR kinetic model.

1. INTRODUCTION
Petroleum coke is a byproduct of the oil refining process and
has a high carbon content and calorific value. It is widely used
as an important industrial raw material to produce carbon
products such as prebaked anodes, graphite electrodes, and
carburizing agents after high-temperature calcination, as well as
fuel after gasification.1−9 In recent years, with the progress of
heavier, degraded, and deep processing of crude oil around the
world, the output of petroleum coke has increased significantly.
It is reported that the global output of petroleum coke has
exceeded 150 million tons, and China is one of the major
petroleum coke consumers.10−13 Worldwide, rotary kilns and
vertical shaft calciners are the main calcination equipment of
petroleum coke, and more than 70% of petroleum coke in
China is calcined by a vertical shaft calciner. In the calcining
process of petroleum coke by a vertical shaft calciner, a large
amount of volatile matter is released, and the precipitated
volatiles enter the calciner combustion system to participate in
the combustion. Volatile combustion heat accounts for 50% of
the entire calcination energy consumption and is an important
heat source in the calcination process. Relevant studies have
shown that factors such as calcination temperature, heating
rate, particle size, and sample characteristics directly affect the

migration and transformation paths of petroleum coke
pyrolysis volatiles (light gas, tar, etc.), which in turn affect
the quality of calcined coke.14−16 Therefore, it is of great
significance to precisely grasp the pyrolysis kinetics of
petroleum coke to control the fuel supply in the calcination
process, improve product quality, and reduce energy
consumption.

To date, some related studies on the pyrolysis kinetics of
petroleum coke have been reported. Shen et al.17 proposed
introducing a (1 − α)3 model to predict the pyrolysis process
of petroleum coke and estimated the kinetic parameters of four
kinds of petroleum coke. Afrooz et al.18 proposed using five
different models to estimate the activation energy of petroleum
coke combustion and found that the modified normal
distribution function and the shrinking core model had the
best fitting effect.
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In recent years, artificial neural networks have seen rapid
development in the fields of energy and engineering
technology due to their excellent generalization ability and
computing speed, which can effectively solve problems that are
difficult to handle by traditional experiments and simula-
tions.6,12,19−25 The application of artificial neural networks in
petroleum coke pyrolysis has also been reported. For example,
Govindan et al.21 used a shrinking particle model and a weight
fraction model to estimate the combustion kinetic parameters
of calcined petroleum coke. This study focused on the
isothermal pyrolysis of calcined petroleum coke at 650 °C
and constructed an artificial neural network based on
isothermal thermogravimetric analysis (TGA) data to predict
the thermogravimetric (TG) curves of combustion and oxygen
combustion of calcined petroleum coke. The experimental data
were in good agreement with the predicted data. This set a
precedent in the field of machine learning research on
petroleum coke pyrolysis kinetics. Kang et al.26 used three
optimization algorithms of a feedforward backpropagation
neural network to predict the cogasification reaction of
petroleum coke with coal or biomass in a fluidized bed,
indicating that particle swarm optimization algorithms have
better predictive performance. Prabhakaran et al.12 obtained
the pyrolysis kinetic parameters of petroleum coke in an
oxygen atmosphere by a model-free method and verified and
optimized the thermal degradation behavior by multidiscipli-
nary tools such as artificial neural networks. In this study, the
temperature and heating rate were used as the input layer, and
mass % was used as the output layer. However, the pyrolysis
process of petroleum coke is affected not only by temperature
and heating rate but also by the type of petroleum coke
(volatile content, element composition, etc.), which should be
further considered.

In the present study, the thermogravimetric properties of six
kinds of petroleum coke at different heating rates were
analyzed by nonisothermal TGA, and their kinetic parameters
were obtained based on an independent parallel reaction (IPR)
model. Taking temperature, heating rate, and type of
petroleum coke (represented by the contents of C, H, N,
and S) as the input layer and mass % as the output layer, a
backpropagation neural network (BPNN) was applied to build
the petroleum coke pyrolysis prediction model, and the
prediction performance of the model was verified by
experimental data. Furthermore, the prediction performance
of BPNN for six kinds of petroleum coke and the reliability of
these BPNN-predicted thermal data in further steps, such as
the calculation of activation energy, were discussed. The
purpose of this research is to explore the possibility of
replacing the thermogravimetric experimental data with the
predicted data. Thus, the research time and cost in
determining the optimal pyrolysis and calcination conditions
of petroleum coke, as well as reactor design and optimization
in the later stage, can be reduced.

2. MATERIALS AND METHODOLOGY
2.1. Raw Materials. To make the research more widely

representative, the samples used in this experiment were
selected from six sources of petroleum coke: Fushun (FS),
Fuyu (FY), Wuhan (WH), Zhenhai (ZH), Qilu (QL), and
Shijiazhuang (SJZ) in China. The samples were ground
through a 100-mesh sieve and dried at 150 °C for 48 h. The
physical and chemical analyses of petroleum coke were carried
out through proximate analysis and ultimate analysis.

Proximate analysis was performed to obtain the content of
moisture and volatile matter according to the E871-82 2006,
E1755-01 2007, and E872-&82 2006 standards.27,28 Ultimate
analysis was implemented on an elemental analyzer (Elementar
Analysensystem GmbH, Germany) to investigate the contents
of C, H, N, and S in petroleum coke. The physicochemical
properties of the six kinds of petroleum coke are listed in Table
S1. It can be observed that the volatile content of FY
petroleum coke was the highest at 13.63%, and that of FS
petroleum coke was the lowest at only 10.48%. The
micromorphology of FS petroleum coke was observed by
field emission scanning electron microscopy (SEM, Tescan
Mira 3 XH, Czech), as shown in Figure S1. It is indicated that
the surface of petroleum coke was uneven and rough and had
an obvious layered flow texture. Petroleum coke had a typical
porous structure. These holes passed through each other and
were elliptical with a size of approximately 400 μm.

2.2. Thermal Decomposition of Petroleum Coke. The
mass loss under thermal decomposition of six kinds of
petroleum coke (FS, FY, WH, ZH, QL, and SJZ) was studied
by a thermogravimetric analyzer (STA-449F3 Jupiter of
Netzsch). A nonisothermal TGA experiment was carried out
at heating rates of 5, 10, 15, and 20 °C/min at temperatures in
the range of 25−1300 °C. TG runs were implemented under
programmed purging of high-purity nitrogen (99.999%) at a
gas flow rate of 40 mL/min. The thermogravimetry
experimental data were used to establish the database of the
BPNN model.

Thermogravimetry−mass spectrometry (TG−MS) equip-
ment was used to monitor the gas products generated in the
pyrolysis process of FS petroleum coke in real time. The
thermogravimetric analyzer SETSYS Evolution 16/18 was
manufactured by SETARAM, France. The mass spectrometer
OMNI star was manufactured by PFEIFFER, Germany. TG−
MS pyrolysis experiments were performed at a heating rate of
10 °C/min in a temperature range of 25−1200 °C. The 10 ±
0.1 mg sample was placed in the analyzer under high-purity
helium gas (99.999%). The flow rate of the purge gas was 50
mL/min, and the flow rate of the protective gas was 25 mL/
min. The operating voltage was 70 eV, and the mass
spectrometry scanning range was 0−200 amu.

2.3. Kinetics Study. 2.3.1. Theory of Kinetic Triplets.
Pyrolysis of petroleum coke is a complex chemical process with
multiple reactions frequently occurring throughout the
conversion process. The pyrolysis process of petroleum coke
in an inert atmosphere can be simply summarized as follows

+petroleum coke(s) residual carbon(s) volatile(g)
(1)

The solid-state reaction rate equation for the pyrolysis of
petroleum coke can be expressed as29

=
t

k T f
d
d

( ) ( )
(2)

= m m m m( )/( )t0 0 (3)

=k T k E RT( ) exp( / )0 (4)

where α represents the conversion rate of petroleum coke;
m0, mt, and m∞ are the initial, t time and final mass of
petroleum coke, respectively; f(α) is the reaction mechanism
function; k(T) is the rate constant; k0 is the preexponential

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c04866
ACS Omega 2022, 7, 41201−41211

41202

https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c04866/suppl_file/ao2c04866_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c04866/suppl_file/ao2c04866_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c04866/suppl_file/ao2c04866_si_001.pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c04866?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


factor; E is the apparent activation energy; R is the universal
gas constant; and T is the temperature.

Under nonisothermal conditions, β = dT/dt. Then, eq 2 can
be described as

= i
k
jjj y

{
zzzT

k E
RT

f
d
d

exp ( )0

(5)

Considering the pyrolysis reaction of petroleum coke as an
isothermal homogeneous reaction, the differential form of f(α)
can be expressed as f(α) = (1 − α)n. Then, eq 5 can be
rewritten as

= = i
k
jjj y

{
zzzT

kf
k E

RT
d
d

( ) exp (1 )n0

(6)

where n is the reaction order and β is the heating rate.
The integral form of f(α) of the nonisothermal thermal

degradation of petroleum coke g(α) is as follows30
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2.3.2. IPR Model. Petroleum coke has a porous structure,
and its pyrolysis process is very complicated, including primary
cracking (cracking and polycondensation of aromatic rings,
breaking of branches and side chains of petroleum coke, etc.)
and secondary reactions (tar cracking reaction and cross-
linking to carbonization reaction).31−33 These reactions are
mostly parallel and sequential reactions, which can be modeled
by the IPR model. The IPR model has been widely used in
pyrolysis fields such as biomass and industrial waste, and
relevant studies reported that model predictions agreed well
with the experimental data.34−36 The IPR model, also known
as the n-pseudocomponent model, means that the pyrolysis
process of petroleum coke can be described by several
independent parallel first or nth reactions, each of which
corresponds to the pyrolysis of different components in
petroleum coke. This can be described as follows37

= · =
m m
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(8)
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where subscript i represents the ith pseudocomponent, and ci is
the mass fraction of pseudocomponent i.

The performance of the IPR model was evaluated by the
fitting quality parameter Fit (%)37

= [ ]
=

NFit(%) 100 /
i

n

i i
1

exp, cal,
2

p

d

(10)

where αexp,i and αcal,i represent the experimental data and
calculated data, respectively, and Np denotes the number of
unknown parameters.

2.4. BPNN Methodology. BPNN is a typical multilayer
feedforward artificial neural network. Structurally, the BPNN
model contains input, hidden, and output layers. Each layer has
neurons, and adjacent nodes are connected by weights, but the
neurons in each layer are independent of each other. Its
function process includes four parts: forward transmission of
information, backward transmission of errors, circular memory
training, and learning result discrimination. It was theoretically
proven that a BPNN with a single hidden layer or a double
hidden layer can approximate any nonlinear function with
arbitrary precision and can well meet the needs of calculation
in practical applications.38−40 The main mathematical
operation process of the BPNN model includes four steps,
which are described in detail in eqs S1−S8 in the Supporting
Information.41

In this work, first of all, a BPNN-based petroleum coke
pyrolysis model with two hidden layers was established. In this
model, the six variables of heating rate, temperature, and C, H,
N, and S contents were used as the input layer, and the real-
time mass % of petroleum coke was used as the output layer.
The C, H, N, and S contents reflect the species characteristics
of petroleum coke. In addition, BPNN-predicted mass loss

Figure 1. Overview of the methodology followed in this study.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c04866
ACS Omega 2022, 7, 41201−41211

41203

https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c04866/suppl_file/ao2c04866_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c04866?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c04866?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c04866?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c04866?fig=fig1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c04866?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


data were applied to calculate pyrolytic activation energy based
on the IPR model. The results were compared with the ones
calculated using nonisothermal experimental data so as to
evaluate the applicability and reliability of the BPNN model
developed for a wide variety of petroleum coke. The overview
of the methodology followed in this study is summarized in
Figure 1.

3. RESULTS AND DISCUSSION
3.1. Pyrolysis Behavior of Petroleum Coke. The TG

and differential thermogravimetric analysis (DTG) curves
related to the pyrolysis of six kinds of petroleum coke (FS, FY,
WH, ZH, QL, and SJZ) at heating rates of 5, 10, 15, and 20
°C/min under a nitrogen atmosphere are shown in Figure 2.
The pyrolysis process of petroleum coke was divided into three
stages. In stage I, physical and chemical changes such as drying,

liquefaction, diffusion, and flow may occur, ranging from room
temperature to 250 °C, and the mass loss was insignificant,
which is only 0.87% for FS at a heating rate of 20 °C/min, as
shown in Figure 2a. The maximum weight loss (8.59% in
Figure 2a) can be observed in stage II, with a temperature
range of 250−900 °C. The significant mass loss was attributed
to the devolatilization of petroleum coke, accompanied by the
release of a large amount of small-molecule volatiles, water,
light oil, CO, and CO2, which can be witnessed by a broad
pyrolysis peak in the DTG curves. In stage III (900−1300 °C),
the mass loss rate decreased significantly, and the weight loss
was reduced to 1.17%, as shown in Figure 2a. This involved
rapid polymerization and carbonization, and molecules
rearranged petroleum coke, resulting in a disordered stacking
structure that was more orderly and stable.

Figure 2. TG and DTG curves for six kinds of petroleum coke at heating rates of 5, 10, 15, and 20 °C/min: (a) FS, (b) FY, (c) WH, (d) ZH, (e)
QL, and (f) SJZ.
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Moreover, the DTG curves of the six kinds of petroleum
coke almost all had only one broad pyrolysis peak. Taking the
pyrolysis of FS petroleum coke at 20 °C/min as an example,
the pyrolysis started at approximately 250 °C, and the weight
loss rate reached the maximum value of −0.4634 %/min at 572
°C. Until approximately 1300 °C, the pyrolysis basically ended,
and the residual mass of petroleum coke was 89.36%. Among
the six kinds of petroleum coke, FY petroleum coke had the
largest value of weight loss and the maximum reaction rate.
Combined with Table S1, it can be seen that this is due to the
more intense pyrolysis reaction of FY petroleum coke with the
highest volatile content. The residual proportion of FY
petroleum coke was 82.34% when it underwent a non-
isothermal procedure with a heating rate of 20 °C/min from
room temperature to 1300 °C. In addition, it was found that a
thermal hysteresis appeared in the DTG curve as the heating
rate increased. The peak value of the DTG curves increased
and shifted to the high-temperature region, due to the different
conversion rates of petroleum coke at different heating rates.37

3.2. TG−MS Analysis of Petroleum Coke. Figure 3
illustrates the TG/DTG curves and the process and character-
istics of the major small-molecule gas products released during
the pyrolysis process of FS petroleum coke in the range of

100−1200 °C at a heating rate of 10 °C/min. As can be seen
from Figure 3a, methane CHx was one of the main aliphatic
products of petroleum coke pyrolysis, which was dominated by
m/z = 13, 14, 15, and 16 fragments in the mass spectrum. The
CHx fragments mainly appeared in stage II, which started to be
generated at approximately 450 °C and reached their
maximum precipitation peak at approximately 600 °C, which
basically corresponds to the maximum pyrolysis peak (550 °C)
in the TG/DTG curve. Of course, there was a small deviation
due to the lag phenomenon in the gas precipitation process.
They stopped generation at approximately 850 °C. Relevant
research reported that CHx was mainly produced by the
cracking of aliphatic components in petroleum coke. The
production process generally included the cleavage and
decomposition of long-chain aryl−alkyl ether bonds, secondary
cleavage, and other reactions.42 In addition, an intensity peak
of H2 was also observed in the temperature range of 550−900
°C in stage II, which was mainly generated by the
polycondensation of aromatic structures in petroleum coke.43

Figure 3b shows that C3H5 is the most important aliphatic
hydrocarbon product, with a strong generation peak at
approximately 800 °C, which corresponds exactly to the
production peak of H2. According to TG/DTG analysis, there

Figure 3. TG/DTG curves and MS fragmented ion intensities of pyrolysis products from thermal decomposition of FS petroleum coke: (a) H2, m/
z = 2; CHx, m/z = 13, 14, 15, and 16; (b) H2O, m/z = 18; CO, m/z = 28; C3H5, m/z = 41; CO2, m/z = 44.

Table 1. Kinetic Parameters of Different Sources of Petroleum Coke Calculated Using the 3-IPR Model Based on
Experimental Data

pseudocomponents parameters FS FY WH ZH QL SJZ

1 ln(k1) (s−1) 7.00 7.00 7.00 7.00 7.00 7.00
E1(kJ/mol) 92.36 86.40 87.96 91.97 91.88 92.74
n1 1.66 1.53 1.40 1.51 1.45 1.44
c1 0.41 0.34 0.37 0.42 0.42 0.42

2 ln(k2) (s−1) 7.00 7.00 7.00 7.00 7.00 7.00
E2(kJ/mol) 73.52 66.30 66.20 67.66 67.89 67.81
n2 1.66 1.81 1.65 1.92 1.72 1.76
c2 0.23 0.19 0.17 0.21 0.21 0.19

3 ln(k3) (s−1) 6.53 7.00 7.00 7.00 7.00 7.00
E3(kJ/mol) 111.15 105.82 107.82 115.28 115.77 118.20
n3 3.26 3.72 3.31 3.55 3.47 3.26
c3 0.36 0.47 0.45 0.37 0.37 0.38

fitting quality, fit (%) R2 >0.997 >0.999 >0.996 >0.997 >0.993 >0.993
fit (%) <0.030 <0.029 <0.040 <0.039 <0.046 <0.043
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was just a small weight loss peak near 800 °C. C3H5 may arise
from the breakdown of macromolecular functional groups in
the structure of petroleum coke into smaller molecules. H2O
existed in the three stages. The water loss in stage I was related
to the drying and precipitation of adsorbed water, and the
water loss in the next two stages was related to the cracking of
oxygen-containing functional groups (C−O and C−OH) in
petroleum coke molecules. The higher peak range of H2O
generation (600−800 °C) corresponded to the strongest peaks
of CHx and C3H5, indicating that a large amount of H2O is
generated along with the production of CHx and C3H5 during
the pyrolysis of petroleum coke. Meanwhile, it was found that
CO2 mainly appeared at more than 200 °C and continued to
exist until stage III. CO2 in stage I was mainly the result of the
precipitation of adsorbed CO2. The strong and broad peak of
CO2 appeared in the temperature range of 400−600 °C in

stage II, which was mainly due to the cleavage of aromatic
weak bonds and oxygen-containing carboxyl functional
groups.42 The whole pyrolysis process of petroleum coke was
accompanied by the release of a large amount of CO.
According to relevant reports, CO may be generated from
the decomposition of aliphatic ethers in the macromolecular
structure of petroleum coke before 700 °C. However, when the
temperature was higher than 700 °C, the generation of CO was
mainly subject to Boudouard’s equilibrium reaction.44

3.3. IPR Kinetics Calculation. An IPR model of three
pseudocomponents (3-IPR) was used to successfully obtain
the kinetic parameters (activation energy and preexponential
factor), the content of each pseudocomponent, and the
reaction order for six kinds of petroleum coke FS, FY, WH,
ZH, QL, and SJZ, as shown in Table 1. Figure 4 presents the
comparison of the experimental and calculated dα/dT results

Figure 4. Experimental and calculated results by the 3-IPR model at a heating rate of 10 °C/min for (a) FS, (b) FY, (c) WH, (d) ZH, (e) QL, and
(f) SJZ.
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of the six kinds of petroleum coke at a heating rate of 10 °C/
min. The dα/dT curves calculated by the 3-IPR model were
basically consistent with the experimental results. Of course,
there was still a certain deviation, which is acceptable with a
small fitting quality parameter Fit (%) of less than 0.046. The
kinetic parameters of different petroleum coke species showed
no significant difference. For pseudocomponent 1, the
activation energies of FS, FY, WH, ZH, QL, and SJZ were
92.36, 86.40, 87.96, 91.97, 91.88, and 92.74 kJ/mol,
respectively. For pseudocomponents 2 and 3, the activation
energies of the six petroleum coke samples ranged from 66.20
to 73.52 and 105.82 to 118.20 kJ/mol, respectively. The
reaction order of each pseudocomponent was also different.
For pseudocomponents 1 and 2, the reaction order n was
between 1.40 and 1.92. For pseudocomponent 3, the reaction
order n was between 3.26 and 3.72.

3.4. Pyrolysis Prediction by the BPNN Model. In this
work, the Tanh−Tanh combination was used as the activation
function to establish a dual-hidden-layer BPNN model. The
influence of the number of neurons in the hidden layer and the
number of iterations on the performance of the model was
examined by two parameters: mean squared error (MSE) and
R2. The variations in MSE and R2 with the number of neurons
in the hidden layer are shown in Figure 5. The MSE values of

the training and validation sets were relatively small, and R2

was close to 1 (R2 = 0.9996) when the number of neurons in
the hidden layer was 25. This result indicated that the degree
of overfitting was relatively small when using this network
structure. Therefore, the BP neural network model with double
hidden layers established in this work had a topology of 6-25-
25-1, which meant that the input layer had six nonlinear
activation neurons, the two hidden layers each had 25
nonlinear activation neurons, and the output layer had one
linear neuron.

Figure 6 shows the brief structure of the established BPNN
model and the variation in MSE with the number of iterations
during the training process. With an increase in the number of
iterations, the MSE of the training, validation, and test
decreased sharply at first, stabilized in the interval of 350−
500 times, and then decreased rapidly. At 3000 iterations, the
best validation performance of MSE = 0.01 for training was

achieved. The regression plots of the training data, validation
data, test data, and complete data sets of the (6-25-25-1)
BPNN model are presented in Figure 7. The regression
coefficients for the training, validation, test, and entire data sets
were all greater than 0.9989, indicating that the model
predictions were very close to the experimental results.
Therefore, the weight and bias vectors trained by the BPNN
model can well describe the correlation between the petroleum
coke species, heating rate, temperature, and mass% for the
training samples.

In addition, the reliability of the BPNN-predicted thermal
data in further steps was discussed. The kinetic parameters
calculated by the 3-IPR model based on the BPNN-predicted
thermal data are given in Table 2. Comparing Tables 1 and 2,
the obtained activation energies were still close to the
experimental ones, and the relative error was less than 8%.
Therefore, it can be considered that using the thermal data
predicted by BPNN combined with the IPR (BPNN-IPR)
model can be effective and helpful for the prediction of the
activation energy of the overall pyrolysis process of petroleum
coke. Figure 8 shows the comparison of experimental data and
the thermal data predicted by different models. As given in
Figure 8, the IPR, BPNN, and BPNN-IPR predicted that α
curves were very close to the experimental data. Of course,
there were slight deviations between experimental and
predicted data for six kinds of petroleum coke, due to the
differences in their own theories and assumptions between
different models. However, the deviations were less than 3%,
which was acceptable. At this point, it was concluded that the
BPNN can be an alternative and promising tool that allows for
predicting thermal data and the further calculation of kinetic
parameters.

4. CONCLUSIONS
TG and DTG analyses of FS, FY, WH, ZH, QL, and SJZ
petroleum coke were implemented by the nonisothermal
thermogravimetric method at heating rates of 5, 10, 15, and 20
°C/min. The results showed that the thermogravimetric trends
of the six kinds of petroleum coke were basically similar, and
the DTGs of different petroleum coke had a single broad
pyrolysis peak. The pyrolysis process was divided into three
stages, of which the temperature range of 250−900 °C was the

Figure 5. Variation in MSE and R2 with the number of neurons in the
hidden layer.

Figure 6. Variation in the MSE of training, validation, and test sets
with the number of iterations.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c04866
ACS Omega 2022, 7, 41201−41211

41207

https://pubs.acs.org/doi/10.1021/acsomega.2c04866?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c04866?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c04866?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c04866?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c04866?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c04866?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c04866?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c04866?fig=fig6&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c04866?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


main weight loss interval, corresponding to the devolatilization
of petroleum coke. The process and characteristics of gas
products in the pyrolysis process of petroleum coke were
investigated by a TG−MS device. MS fragmented ion intensity
analysis indicated that the main pyrolysis products were
methane CHx (m/z = 13, 14, 15, and 16), aliphatic
hydrocarbon C3H5, H2, CO, CO2, and H2O.

The 3-IRP model was used to simulate the pyrolysis process
of six kinds of petroleum coke. The results showed that the
kinetic parameters of the pseudocomponents of the six kinds of
petroleum coke showed no significant difference, and the
activation energies of pseudocomponents 1, 2, and 3 ranged
from 86.40 to 92.74, 66.20 to 73.52, and 105.82 to 118.20 kJ/
mol, respectively. For pseudocomponents 1 and 2, the reaction

order n was between 1.40 and 1.92; for pseudocomponent 3,
the reaction order n was between 3.26 and 3.72.

An efficient BPNN tool with a network topology of 6-25-25-
1 was developed to predict the TGA kinetic data of petroleum
coke. In this model, the six variables of heating rate,
temperature, and C, H, N, and S contents were used as the
input layer and the mass % of petroleum coke in real time was
used as the output layer. The Tanh−Tanh combination was
used as the activation function. The results showed that the
data predicted by the model were in good agreement with the
experimental data, with very high regression coefficient values
(R2 > 0.9989). Moreover, based on the IPR model, the
activation energies calculated from the thermal data predicted
by BPNN were close to the ones obtained from the
experimental data. The thermal data predicted by the IPR,

Figure 7. Regression plots of (a) training data, (b) validation data, (c) test data, and (d) complete data sets of the (6-25-25-1) BPNN model.

Table 2. Kinetic Parameters of Six Kinds of Petroleum Coke Calculated Using the 3-IPR Model Based on BPNN-Predicted
Thermal Data

pseudocomponents parameters FS FY WH ZH QL SJZ

1 ln(k1) (s−1) 7.00 7.00 7.00 7.00 7.00 7.00
E1(kJ/mol) 90.55 85.27 85.38 92.55 87.77 88.63
n1 1.20 1.37 0.65 1.36 1.26 0.70
c1 0.35 0.32 0.21 0.37 0.31 0.23

2 ln(k2) (s−1) 7.00 7.00 7.00 7.00 7.00 7.00
E2(kJ/mol) 73.44 63.79 65.16 68.03 65.39 68.72
n2 1.26 1.68 1.18 1.76 1.27 1.17
c2 0.20 0.15 0.15 0,22 0.16 0.15

3 ln(k3) (s−1) 7.00 7.00 7.00 7.00 7.00 7.00
E3(kJ/mol) 110.71 103.33 101.57 112.85 106.76 106.69
n3 3.12 3.58 3.19 3.64 3.63 3.55
c3 0.45 0.52 0.64 0.41 0.53 0.62
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BPNN, and BPNN-IPR models were in good agreement with
the experimental data. Therefore, it was concluded that the
BPNN-predicted thermal data were alternative and applicable
to the subsequent calculation of kinetic parameters.
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