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Introduction
Repetitive sequences contribute to genome structure, function, 
and evolution. They are classified into transposable elements 
(TEs), tandem repeats, and high copy number genes.1 TEs, 
defined as DNA fragments with structural and functional 
characteristics that allow movement throughout the genome, 
are the most abundant component of many genomes.2 For 
example, almost 80% of the Triticum aestivum genome is 
composed of TEs,3 while TEs represent approximately 66% 
of the Aegilops tauschii genome4 and about 35% of the Oryza 
sativa genome.5 TE transpositions often produce mutations or 
changes in genome size6; thus, TEs can have a large impact 
on the evolution of a species.7 One of the most abundant TEs 
in the plant kingdom are the long terminal repeat (LTR) 
retrotransposons, mainly consisting of a polyprotein coding 
sequence flanked by LTRs at the 5′ and 3′ ends.1–3

The existing tools for the detection of TEs rely on the 
following four types of approaches: de novo, structure-based, 
homology-based, and comparative genomics (reviewed in the 
study by Bergman and Quesneville6). In the de novo approach, 
the most common strategy detects all pairs of similar sequences 

at different locations within the analyzed input sequence, by 
comparing the input sequence to itself, concomitantly allow-
ing the discovery and classification of repetitions such as TEs, 
tandem repeats, segmental duplication, and satellites. The use 
of this search method requires high-quality assemblies.8 The 
second approach for TE identification uses prior knowledge of 
the common structures shared by different TEs. This method 
searches only for structures that have been previously reported. 
As reference databases do not include nested TEs, it is almost 
impossible to identify them using this approach.9 The third 
approach involves searching for homology, usually based on 
a heuristic comparison within a sequence database.10 In this 
case, if a TE is located inside another TE, the method reports 
only the internal element. Finally, the comparative genomics 
approach describes a group of methods that rely on neither 
homology nor structural features but detect new families of 
TEs based on the fact that TE transposition causes large inser-
tions that can be detected with multiple sequence alignment. 
These methods search for insertion regions where multiple 
alignments of orthologous genome sequences are disrupted by 
a large insertion in one or more species.11 Again, under this 
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approach, a nested element will be reported only if it emerges 
from the comparison with some other genome.6

Overall, these methods allow for relatively easy detec-
tion of TEs that lack mutations, insertions, or deletions that 
alter their sequences. However, in nature, individual TEs have 
great inherent biological complexity, with temporal divergence 
between sequences and the possible insertion of TEs inside other 
TEs, thus interrupting their structure. In this study, we propose 
a method to identify nested motifs (ie, a subsequence of the 
input sequence that is repeated two or more times and might 
correspond to TEs nested into other TEs) that may provide an 
advantage over conventional TE search methods that are not 
specifically designed to identify nested motifs.

The main objectives of this study were to identify perfect 
motifs repeated at any distance within the genome and detect 
the patterns of nested motifs. This approach is based on the 
fact that the LTRs located at each end of the TEs are almost 
perfect repeats.

Materials and Methods
Developing a tool to identify individual TEs is intricate given 
the inherent biological complexity of this problem, the diver-
gence between the sequences, the presence of incomplete 
reverse transcripts, and the existence of nested sequences 
within other TEs.12 Moreover, it is difficult to define the 
boundaries of an element since TE sequences with long dele-
tions or insertions are also present in genomes. To address this 
complexity, we propose a de novo method that starts searching 
for perfect motifs at any distance. Then, an exhaustive search 
is performed between the locations where both motifs appear, 
to identify cases of a TE inside another one. In this context, 
this tool will allow analysis of the structures of insertions of 
different families of TEs by means of looking for specific fea-
tures that can define the behavior of a TE family. Therefore, in 
addition to the initial identification of a list of putative motifs, 
the detection of TEs is addressed by a combinatorial pattern 
analysis approach.

Proposed approach. Our proposed approach is called 
Mamushka since its functioning resembles the Russian wooden 
nesting doll, a set of dolls of decreasing size placed one inside 
another. Mamushka uses Becher’s et al algorithm13 as the first 
preprocessing step. Becher’s et al method performs a search 
for all perfect repeats in the genome based on the suffix array 
construction by Manber and Myers.14 This algorithm uses the 
nucleotide sequence as input data, up to 500 million nucle-
otide bases, and a lower bound for the length of the patterns 
to be reported. The method returns a list where each element 
contains two lines; in the first line, the pattern is described 
together with its number of occurrences and its length, and 
in the second line the positions of each occurrence are listed. 
There is no upper bound for the length of perfect repeats and 
the occurrences can be at any distance from each other.

In the next step, a list (L) of t-tuples (with t = 4) is built 
where each element of L is transformed from each element 

returned by Becher’s et al algorithm. For each tuple, the first 
column stores a perfect repeat motif, the second column shows 
the position where the perfect repeat motif begins, the third 
column contains its length, and the fourth column shows the 
number of repetitions of the motif in the input file. Once this 
list of tuples is constructed, the elements are sorted based on 
decreasing length (column 3), thus building a new ordered list 
that is used to make the subsequent searches for both motifs 
within motifs and two identical motifs flanked by two other 
identical motifs (Fig. 1).

The final step of Mamushka is divided into two sub-
algorithms called motifs within motifs (MWM) and motifs 
flanked by other motifs (MFM). For MWM, given two motifs, 
the objective is to determine whether one of the motifs is perfectly 
contained inside the other motif. P and Q stand for two motifs 
that belong to the L ordered list, i is defined as the starting posi-
tion of P and j is the ending position of P obtained by adding P’s 
length to i. k and l are analogously defined for motif Q (Fig. 2A). 
To reduce the size of the exhaustive search, pairs with Q  greater 
in length than P are not considered. Q should appear at least as 
many times as P. Then, once Pi # Q   k # Q   l # Pj is verified, it can 
be confirmed that Q is a motif inside P (Fig. 2A).

The second sub-algorithm searches for motifs flanked 
by other motifs. M, N, and target site duplication (TSD) 

Figure 1. General layout of the Mamushka method. The pipeline of the 
proposed new method to detect perfect repeat sequences is illustrated. 
The identified motifs are illustrated in the input sequence scheme. The 
frame encloses the steps followed by the method leading to a list of 
motifs within motifs and motifs flanked by other motifs.
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denote three perfect distinct motifs taken from the L ordered 
list (Fig. 2B). The search determines whether N is flanked by 
other pairs of perfect motifs. M1 and M2 are defined to share 
motif M in different positions of the input sequence, as N1 
and N2 share motif N and TSD1 and TSD2 share motif TSD. 
I and K denote the starting position of M1 and M2, and J and 
L denote their end; in addition, A and C denote the start-
ing positions of N1 and N2, and B and D denote their final 
positions (Fig. 2B). Then, after verifying that M1I # M1J # 
N1A # N1B # N2C # N2D # M2K # M2L, the algorithm 
continues the search for TSD elements. TSD1 should end at 
the i−1 position and TSD2 should start at the L+1 position. 
These motifs, which define a TSD type, are also found in the 
L ordered list with perfect repetitions between 4 and 6 bp.

The use of big-O notation allows the classification of the 
algorithms based on how they respond, specifically describ-
ing the worst-case scenario. Both MWM and MFM are qua-
dratic time algorithms O(n2), meaning that their performance 
is directly proportional to the square of the size of the input 
data set. In the case of these algorithms, the input is the list of 
repetitive motifs as shown in Figure 1. Algorithms presenting 
quadratic time are considered tractable algorithms, meaning 
that their running times are computationally reasonable.

Additional technical details and software availability. 
Our Mamushka tool was written in Awk15 and is available at 
the following website: http://lidecc.cs.uns.edu.ar/mamushka. 
To provide easy-to-use software, the code runs through a 
terminal console. The front-end of this script was created by 

invoking it from a website. Execution functions called EXEC 
were used to execute an external program, the Awk script. 
Then, for statistical purposes, an R-script16 was programmed 
to show the distribution of the motifs and the number of the 
repetitions. After showing the distribution plot, the program 
allows the user to choose the range for the motifs, and motifs 
outside of this range will be discarded. After confirming the 
range, the program will perform another invocation of the 
code, this time calculating for motifs within other motifs, 
motifs flanked by other motifs, and large motifs within the 
stipulated size. This calculation will return three separate files 
that can be downloaded individually in LinDna format.

Validation of the Proposed Mamushka Method 
for the Detection of Nested Repetitive Elements
Given the deterministic and exhaustive exploratory features of 
the method, testing with artificial data would be trivial; accord-
ingly, only real biological sequences were selected for the vali-
dation of Mamushka algorithm. By doing this, it was possible 
to demonstrate that the method can identify bona fide nested 
repetitive elements, even when the strategy searches for per-
fect repeated motifs. Thus, the experiment was conducted using 
DNA sequences from O. sativa and Ae. tauschii obtained from 
NCBI databases, included in the website as application exam-
ples 1 and 2, respectively. The output list containing the distri-
bution of all perfect motifs found, grouped according to the 
number of times each motif was repeated, should help the user 
to select a search threshold. Then, Mamushka begins searching 
for motifs within motifs, motifs flanked by other motifs, and 
remote long motifs that comply with the chosen threshold.

Application example 1. The entire O. sativa chromosome 
10 (23.7 Mb)5 was used as input data. The distribution of per-
fect repeat motifs revealed that there was a sufficient number 
of motifs with lengths ranging from 10 to 17 bp (Fig. 3), show-
ing a peak that continuously decreased. After the fulfillment 

Figure 2. Mamushka rationale. (A) Motifs within other motifs. P and 
Q represent two motifs from the L ordered list, i and k: the starting 
position of P and Q, respectively; j and l: the ending position of P and Q, 
respectively. Q is a motif inside P if Pi # Qk # Ql # Pj. (B) Motifs flanked 
by other motifs starting with two motifs from the list L. M1, M2, N1, N2, 
TSD1, and TSD2 are three pairs of perfect distinct motifs. Then, the 
search determines whether N is flanked by other pairs of perfect motifs. 
I and K: the starting position of M1 and M2; J and L: the end position of 
M1 and M2; A and C: the starting position of N1 and N2; B and D: the end 
position of N1 and N2. If M1I # M1J # N1A # N1B # N2C # N2D # M2K # 
M2 L the algorithm continues the search for TSD elements that should 
end at the i−1 position, and TSD2 should start at the L+1 position.
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Figure 3. Frequency of various motif sizes. The frequency of the motifs 
was classified according to the size for (A) O. sativa chromosome 10 
(23.7 Mb) (l), and (B) Aegilops tauschii whole-genome shotgun (1.7 Mb) 
(r) is shown, where the x-axis represents the motif size found in the input 
sequence and the y-axis represents the n-logarithm of the repetition number.
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of both experimental phases, and according to the analysis of 
the distribution plots, short perfect motifs were the most fre-
quently observed. Nevertheless, the occurrence of long motifs 
ensured that they did not appear by chance.17

Thus, in rice chromosome 10, we found examples of 
motifs within motifs and motifs flanked by other motifs. In 
the first case, one of the repetitive sequences corresponds to 
the LTRs of the complete retrotransposon RLX_59520 from 
O. sativa (e-value  =  0.0, identity  =  95%, coverage  =  100%), 
whereas the flanking repetitive sequences have identity with 
the LTRs of the retrotransposon RLG_60224 from O. sativa 
(e-value = 0.0, identity = 94%; Fig. 4A).

In the second case, motifs flanked by other motifs, the 
inner sequence corresponds to a complete retrotransposon 
RLG_58802 from O. sativa (e-value =  0.0, identity =  89%, 
coverage = 99%), flanked by two complete LTRs retrotrans
poson RLG_5282 from O. sativa (e-value  =  0.0, iden-
tity = 94%, coverage = 100%; Fig. 4B).

Application example 2. In this example, 107 whole-
genome shotgun sequences of Ae. tauschii, ranging from 0.6 
to 31 kb, were taken at random, totaling 1.7 Mb4 (GenBank 

project AOCO000000000). This sample was selected because 
it contains different sequence sizes, making it useful to demon
strate the capability of the Mamushka method to identify 
perfect motifs nested within a certain distance, negating the 
problems associated with the length of the sequences.

The distribution of perfect motifs showed a significant 
number of motifs with lengths ranging from 10 to 17 bp (Fig. 3). 
For Ae. tauschii, a higher frequency of motifs was detected 
between 5 and 60 bp as compared to longer motifs. After the 
fulfillment of both experimental phases, and according to the 
analysis of the distribution plots, short perfect motifs were the 
most frequently observed. Nevertheless, the occurrence of long 
motifs ensured that they did not appear by chance.17

A sequence corresponding to a putative LTR retrotrans-
poson flanked by another LTR retrotransposon in the whole-
genome shotgun AOCO010454749 from Ae. tauschii (Fig. 4C) 
was identified. In this case, Mamushka detected a pair of 
perfect motifs that enclosed another pair of perfect motifs, 
previously called “motifs within motifs”. After performing an 
alignment using Blast-X,18 the inner sequence showed identity 
to a putative gag–pol polyprotein (AAG13508; e-value = 0.0, 
identity  =  50%, positives  =  65%, protein coverage  =  92%). 
Interestingly, the sequence encoding this polyprotein was 
flanked at the 5′ and 3′ end by the first (∼3,800 bp) and the 
last region (∼1,400 bp), respectively, of a Ty-1 Copia class TE 
(RLC_66683), suggestive of an LTR being inserted into a 
Copia LTR (Fig. 4C).

Matching regions are indicated by dotted lines, and 
the regions without a match are indicated by dashed lines 
in Figure 4.

These results were validated using RepeatMasker,6,19 
which identified TEs by comparing them against known ele-
ments found in a database. The positions found by Mamushka 
constituted a subsequence of a sequence identified by 
the RepeatMasker.

Conclusion
We have developed a new method, termed Mamushka, for the 
de novo discovery of nested motifs. Our approach identifies 
repetitive patterns in DNA sequences that can constitute puta-
tive nested TEs, thus simplifying the process of detecting these 
elements. Mamushka recovers the nested patterns in three main 
steps. First, it performs a search for all perfect repeats in the 
genome using a suffix array construction. Next, all perfect repeats 
are ordered according to decreasing length. Then, two pattern 
recognition algorithms, MWM and MFM, are executed. For 
MWM, given two motifs, Mamushka determines whether one 
motif is perfectly contained inside the other motif. The MFM 
algorithm searches for motifs flanked by other motifs.

The Mamushka method is exclusively focused on the 
identification of perfect nested patterns. Nevertheless, this 
feature does not constitute a drawback for the applicability 
of our strategy with real biological data. Any mutated TE has 
a conserved subsequence up to the point where the mutation 

Figure 4. Nested long terminal repeat (LTR) retrotransposons 
found using our Mamushka approach in whole-genome shotgun 
sequences. Mamushka allowed the identification of perfect motifs 
(white triangles) flanked by other perfect motifs (gray triangles). The 
BLAST analysis revealed that the identified sequences correspond 
to LTRs (light gray boxes). (A) The inner sequence showed identity to 
the LTR retrotransposon RLX_59520, flanked by the LTRs of the LTR 
retrotransposon RLG_60224. (B) The inner sequence showed identity 
to the LTR retrotransposon RLG_58802, flanked at both sides by two 
complete copies of the LTR retrotransposon RLG_5282. (C) The inner 
sequence showed identity to a putative LTR retrotransposon flanked by 
two halves of another retrotransposon, RLC66683.
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occurred, allowing Mamushka to identify it. Moreover, the 
search does not need to be conducted in both directions because 
Mamushka searches for a perfect repeat. These arguments 
are supported by the results obtained for two different plant 
species, O. sativa and Ae. tauschii, in which the experiments 
demonstrated that our method can solve the complex problem 
of discovering nested TEs in actual DNA sequences.

This pattern-matching approach can be combined with 
existing techniques to allow for the identification of nested 
repetitive motifs that cannot be found with existing method-
ologies. We intend to test the performance of Mamushka in 
other plant species in future work.
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