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Abstract

Background and Purpose: Although structural disconnection represents the hallmark of

multiple sclerosis (MS) pathophysiology, classification attempts based on structural con-

nectivity have achieved low accuracy levels. Here, we set out to fill this gap, exploring the

performance of supervised classifiers on features derived from microstructure informed

tractography and selected applying a novel robust approach.

Methods: Using microstructure informed tractography with diffusion MRI data, we cre-

ated quantitative connectomes of 55MS patients and 24 healthy controls. We then used

a robust approach—based on two classical methods of feature selection— to select rel-

evant features from three network representations (whole connectivity matrices, node

strength, and local efficiency). Classification accuracy of the selected features was tested

with five different classifiers, while their meaningfulness was tested via correlation with

clinical scales. As a comparison, the same classifiers were run on features selected with

the standard procedure in network analysis (thresholding).

Results: Our procedure identified 11 features for the whole net, five for local efficiency,

and seven for node strength. For all classifiers, the accuracy was in the range 64.5%-

91.1%, with features extracted from the whole net reaching the maximum, and overcom-

ing results obtained with the standard procedure in all cases. Correlations with clinical

scales were identified across functional domains, from motor and cognitive abilities to

fatigue and depression.

Conclusion:Applying a robust feature selection procedure to quantitative structural con-

nectomes, we were able to classify MS patients with excellent accuracy, while providing

information on the white matter connections and gray matter regions more affected by

MS pathology.
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INTRODUCTION

Multiple sclerosis (MS) is a chronic disease of the central nervous sys-

tem characterized by inflammation and neurodegeneration.1–3 Both

disease diagnosis and in vivo investigation of disease pathophysiology

rely on the application of standard and advanced MRI techniques.4

Over the last years, following the developments witnessed in the arti-

ficial intelligence field, classification of MS patients via imaging-based

machine learning approaches has been pursued in order to aid MS

diagnosis and/or offer new insights inMS pathophysiology.5–8 Primary

information source for individual classification in MS appears to be

whitematter (WM) lesions.9 Indeed,WMlesions represent the imaging

hallmark of MS and the basis of the so-called disconnection syndrome,

caused by trans-axonal degeneration of fibers connecting secluded

gray matter (GM) regions.10 Being a pathophysiologically relevant and

consistentMS feature,11,12 brain structural connectivity seemsan ideal

candidate for classification tasks.

So far, however, the only study that has attempted a structural

connectivity-based classification of MS patients has reached a classi-

fication accuracy lower than 80%.8 This might be due to several rea-

sons. Among these, the intrinsic limitation of fiber (streamlines) track-

ing in presence of WM lesions and microstructural damage,13 and the

fact that the selectionof relevant features to be fed to the classification

model is based on empirically set thresholds.14,15

Here, in order to overcome these limitations, we based our classifi-

cation on structural metrics derived from quantitative connectomes,16

whose ability to characterize brain connectivity beyond impairment

caused by focal lesions has been already exploited in MS.17 To further

improve the classification accuracy, we applied a robust feature selec-

tion (FS) procedure before testing different machine learning classi-

fiers. Finally, to confirm the relevance of the selected features, not only

in terms of discrimination between MS patients and healthy controls

but also in terms of clinical meaningfulness, we explored their relation-

ships with patients’ clinical status.

METHODS

Study population

Fifty-fiveMS patients1 (36 female [F], age 50.45± 11.28 years, disease

duration 15.5 ± 11.6 years, 22 primary progressive, 20 secondary

progressive, and 13 relapsing-remitting, median Expanded Disability

Status Scale [EDSS] 4 range: 0-6.5) and 24 healthy controls (HC)

(11 F, age 50.3 ± 8.5 years) were prospectively enrolled. Clinical

examination, performed within 1 week from the MRI scan, included

scales assessing neurological dysfunction (EDSS), motor performance

(manual dexterity-9 Hole Peg Test and ambulation-25 Foot Walk

Test), cognitive performance (attention-Symbol Digit Modalities Test,

visuospatial memory-Brief Visuospatial Memory Test, verbal memory-

California Verbal Learning Test, verbal fluency-Controlled Oral Word

TABLE 1 Demographic and clinical data

Healthy controls MS patients

Age (years) 50.3± 8.5 50.45± 11.28

Sex 11 female, 13

male

36 female, 19male

Phenotype – 22 primary progressive

20 secondary progressive

13 relapsing-remitting

Disease duration (years) – 15.5± 11.6

EDSSmedian (range) – 4 (0-6.5)

9HPT (seconds) – 28.13± 7.84

25FWT (seconds) – 8.44± 10.22

SDMT – 48.6± 12.21

BVMT – 17.96± 8.87

CVLT – 52.65± 13.47

COWAT – 38.45± 13.40

CARD SORTING – 9.46± 4.74

MFIS – 37.11± 20.68

BDI – 9.16± 7.17

Note: Summary of demographic and clinical data for the subjects involved in

this study. All measures are reported as mean ± standard deviation unless

otherwise indicated.

Abbreviations: 25FWT, 25-foot walk test; 9HPT, 9-hole peg test; BDI, Beck

depression inventory; BVMT, brief visuospatial memory test; COWAT, con-

trolled oral word association test; CVLT, California verbal learning test;

EDSS, Expanded Disability Status Scale; MFIS, modified fatigue impact

scale; MS, multiple sclerosis; SDMT, symbol digit modalities test; std, stan-

dard deviation.

Association Test, executive functions-card sorting test), fatigue

(Modified Fatigue Impact Scale), and depression (Beck Depression

Inventory). Table 1 contains a summary of clinical and demographical

data. Written informed consent was obtained from all participants

before the beginning of the study procedures, according to the Dec-

laration of Helsinki. The protocol was approved by the Institutional

Review Board of the Icahn School ofMedicine atMount Sinai.

MRI acquisition

All subjects underwent MRI on a Siemens Skyra 3T scanner (Siemens,

Erlangen, Germany) with a 32-channels head coil. The MRI protocol

included the following sequences: axial T2-weighted 3-dimensional

(repetition time [TR]: 8000 ms, echo time [TE]: 95 ms, spatial res-

olution 0.5 × 0.5 × 3.0 mm3); sagittal T1-weighted 3-dimensional

magnetization-prepared rapid gradient echo (TR/TE: 3000/2.47 ms,

inversion time: 1000 ms, spatial resolution 0.8 × 0.8 × 0.8 mm3; gen-

eralized autocalibrating partially parallel acquisitionswith acceleration

factorR= 2); twice-refocused spin echo echo-planar imaging sequence

for diffusionMRIwith b values of 1000 and 2000 seconds/mm2 and 30
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TABLE 2 Features selected for each representation (whole
network, local efficiency, and node strength)

Whole net

Features IFS LASSO

L.superiorparietal→R.supramarginal 1.000 1.000

R.thalamus→R.paracentral 0.987 0.934

L.middletemporal→R.superiorparietal 1.000 0.914

L.supramarginal→R.postcentral 0.987 0.909

L.paracentral→R.caudalmiddlefrontal 1.000 0.757

R.caudate→ R.lateraloccipital 0.975 0.701

L.lateraloccipital→ L.thalamus 1.000 0.678

R.bankssts→R.precuneus 0.937 0.653

L.superiorparietal→ L.caudate 1.000 0.605

R.thalamus→R.precuneus 0.987 0.590

L.rostralmiddlefrontal→

R.superiorfrontal

1.000 0.524

Local efficiency

Features IFS LASSO

R.thalamus 1.000 1.000

R.caudate 1.000 1.000

R.cuneus 1.000 0.623

R.pericalcarine 0.924 1.000

R.superiorfrontal 0.557 1.000

Node strength

Features IFS LASSO

L.parsopercularis 1.000 1.000

L.superiorparietal 1.000 0.661

L.thalamus 1.000 0.532

R.thalamus 1.000 1.000

R.caudate 1.000 0.716

R.putamen 1.000 1.000

R.superiorfrontal 0.532 0.997

Note: For each feature, we report how many times it has been selected

among the different leave one out runs and repetitions for the two different

feature-selection schemes: infinite feature selection (IFS) and least absolute

shrinkage and selection operator (LASSO). In the features name, L indicates

left and R right.

directions each (repeated for both phase acquisitions), in addition to

six b= 0 images (TR/TE: 4700/100ms, flip angle 80◦, spatial resolution

1.8× 1.8× 2mm3).

MRI processing

All images were processed as described in Schiavi et al17 accord-

ing to the pipeline illustrated in Figure 1. Briefly, after segmenting

T2-hyperintense and T1-hypointense lesions,18 we used the relative

masks to fill theT1-weighted imageswith FMRIB software library (FSL)

(https://fsl.fmrib.ox.ac.uk) and processed themwith FreeSurfer version

6.0 (http://surfer.nmr.mgh.harvard.edu), to obtain an cortical parcella-

tion comprising 85 regions of interest.19 The obtained parcellations

were visually inspected by a neurologist with more than 5 years of

experience in neuroimaging, but no additional manual editing was per-

formed on them. After state-of-the-art processing steps on diffusion

MR images to build the whole brain probabilistic tractogram,20 we ran

the convex optimization modeling for microstructure informed trac-

tography (COMMIT)16,21 to assign the intra-axonal signal fraction to

each entry of the connectivity matrix and derive a more quantitative

structural connectome. As done in previous works investigating differ-

ences in structural connectivity between HC and MS patients,17,22,23

for each node of thewhole brain connectomes,we extracted the node’s

strength (NS; which is the sum of weights of links connected to the

node) and local efficiency (LE; which is the average inverse shortest

path length in the neighborhood of the node, and is related to the clus-

tering coefficient) using Brain Connectivity Toolbox.24 We then ran

the FS approaches described below on the entire set of connections

(Whole Net [WN] (85 × 85 – 85)/2 features), and on the set of NS and

LE (85 features each) separately.

Feature selection

The goal of the FS step was to identify the set of most important fea-

tures within each network representation (WN, NS, LE) for the dis-

crimination between healthy subjects andMS patients. To achieve this,

we devised a robust procedure, based on a leave one out (LOO) cross-

validation scheme25 already applied in other scenarios when estimat-

ing feature stability.26 Briefly, given a population of N subjects, we

applied N times a FS method, each time on a set in which a single

element has been removed (ie, in the first round we applied the FS

method to all subjects except the first, in the second round to all sub-

jects except the second, and so on). Good features are those that are

selected as important for discrimination in most of the rounds (ie, fea-

tures which are extracted even if we have a small perturbation of the

dataset). Given the nonidentical sets of features extracted in the dif-

ferent perturbations of the original dataset, only features that were

selected in more than 50% of the rounds were considered as discrimi-

nativewithin our robust framework. To further increase the robustness

of the results, we applied two different FS schemes:

1. Least absolute shrinkage and selection operator (LASSO): an effec-

tive and widely applied method for FS,27 based on a penalized

regression model. To estimate the parameter of the model in each

LOO run and increase the robustness against random fluctuations,

we repeated 10 times a 10-fold cross-validation, keeping the value

thatminimized themean square error on the left-out fold (averaged

over the 10 runs).

https://fsl.fmrib.ox.ac.uk
http://surfer.nmr.mgh.harvard.edu
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F IGURE 1 Main steps of processing pipeline. From diffusion-weighted imaging (DWI), we built the whole brain probabilistic tractography and
then ran the convex optimizationmodeling for microstructure informed tractography (COMMIT). In parallel, we parcellated the T1 images with
the Desikan–Killiany atlas. Combining the cortical parcellation with COMMITweights, we built the quantitative connectomes used for the feature
selection procedure. MS, multiple sclerosis; NS, node strength

2. Infinite feature selection (IFS): a very recent graph-based feature

ranking approach28 that exploits properties of power series matri-

ces and Markov chains derived from a graph representation of the

FS problem. This method has shown to be very competitive and

effective in many problems: for example, IFS has been successfully

employed for cancer classification28,29 that, similarly to our case,

typically involves few subjects andmany features: diagnosis of amy-

otrophic lateral sclerosis30 and exploring gender differences in cor-

tical morphological networks,31 just to cite a few.

Only features selected by both methods were considered as robust

for our results.
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TABLE 3 Classification accuracies before and after the application of the proposed feature selection procedure

Representation Max Average NN KNN SVM-LIN SVM-RBF RF

WN 0.8101 0.7443 0.6456 0.6709 0.7975 0.8101 0.7975

WN+ FS 0.9114 0.8658 0.8481 0.8354 0.8608 0.9114 0.8734

LE 0.8354 0.7949 0.7468 0.7848 0.8354 0.7848 0.8228

LE+ FS 0.8481 0.8329 0.8228 0.8481 0.8228 0.8481 0.8228

NS 0.7975 0.7139 0.6582 0.7342 0.6962 0.6835 0.7975

NS+ FS 0.8608 0.8278 0.8354 0.7722 0.8608 0.8481 0.8228

Note: For each representation:whole net (WN), local efficiency (LE), and node strength (NS), we report the accuracy results before and after the application of

the feature selection (FS) procedure for each classifier (NN, KNN, SVM-LIN, SVM-RBF, and RF) as well as the maximum (Max) and the average scores among

them (Max and Average).

Abbreviations: KNN, Kth nearest neighbor; NN, nearest neighbor; RF, random forest; SVM-LIN, Support Vector Machine linear kernel; SVM-RBF, Support

VectorMachine radial basis function kernel.

TABLE 4 Classification accuracies obtained with the standard feature selection approach

Representation Max Average NN KNN SVM-LIN SVM-RBF RF

WN+ StandardFS 0.7722 0.7038 0.6582 0.7089 0.7089 0.6709 0.7722

StandardFS+ LE 0.8354 0.7989 0.7884 0.7884 0.8101 0.7722 0.8354

StandardFS+NS 0.8228 0.7519 0.6582 0.7342 0.8228 0.7468 0.7975

Note: Classification accuracies of the different classifiers (NN, KNN, SVM-LIN, SVM-RBF, and RF) and maximum (Max) and average obtained on whole net

(WN), local efficiency (LE), and node strength (NS) preprocessedwith the standard thresholding procedure (StandardFS).

Abbreviations: KNN, Kth nearest neighbor; NN, nearest neighbor; RF, random forest; SVM-LIN, Support Vector Machine linear kernel; SVM-RBF, Support

VectorMachine radial basis function kernel.

Classification

The classification analysis aimed at quantitatively measuring the dis-

crimination capability of a given set of features. To compute the clas-

sification accuracy, we applied the LOO cross-validation protocol to

five different classifiers, ranging from the simple nearest neighbor

technique up to the more complex support vector machines and ran-

dom forests (nearest neighbor and Kth nearest neighbor with Euclid-

ian distance, support vectormachinewith linear kernel, support vector

machine with radial basis function kernel, and random forest with 100

trees). Theparameters of the classifiers havebeenautomatically set via

cross-validation on the training set.

In order to have a comparison with standard analyses, we also

computed the accuracies of the different classifiers when applying

the “Standard FS” procedure, which represents standard preprocess-

ing done in this field.14 This scheme consists of postprocessing usu-

ally applied to the whole connectome (ie, on the WN representation),

and it retains only those features (ie, connections) that are present in

at least 50% of the subjects involved in the study.14,15 Even if these

results are not directly comparable with those obtained with the pro-

posed approach (in the previous case, the LE/NS have been computed

before applying the FS), with this comparison we can get an idea on

how the proposed approach compares with established preprocess-

ing pipelines (which implies filtering with Standard FS and computing

quantities such LE/NS from the filtered net). To aid in this comparison,

we also computed the No Information Rate (or Null Information Rate

[NIR]). The NIR is the accuracy obtained with a “silly” classifier that

assigns every object to the class that is most probable a priori, that is,

to the class that is themost frequent in the training set. The NIR is typ-

ically used to have an idea of the minimum significant accuracy below

which a classifier is considered useless.

Relationships between extracted features and clinical
scores

To confirm the meaningfulness of the selected features, we tested

their correlation with clinical scales. Bivariate correlations were run

between clinical scores and selected features for each network repre-

sentation (WN, NS, LE). Significance level was set at p < .002, that is,

Bonferroni corrected formultiple comparisons (0.05/23 as the number

of features tested).

RESULTS

Extracted features

Weapplied theproposedFSpipeline to the three representations (WN,

NS, LE). Obtained features (ie, those features that were selected by

both LASSO and IFS in at least 50% of the runs) are listed in Table 2

and graphically represented in Figure 2. For each representation and

for each FS scheme,we reported the feature togetherwith its selection

percentage (ie, howmany times such feature has been selected among
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F IGURE 2 Selected features for whole net (left), local efficiency (top right), and node strength (bottom right). For whole net, we graphically
show the selected connection and their mean strengths in healthy controls andmultiple sclerosis (MS) patients. For local efficiency and node
strength, we show the selected nodes color-coded as follows: right superior frontal gyrus in blue; right cuneus in green; right pericalcarine in
yellow; right thalamus in red; right caudate inmagenta; left superior parietal in orange; left parsopercularis in light blue; left thalamus in yellow

the different LOO runs and repetitions—eg, 1.00 indicates that the fea-

ture has always been selected).

Classification results

In Table 3, we report the accuracy results for each classifier on WN,

NS, and LE before and after applying the proposed FS methodology. In

the former case, each subject is represented with all features derived

from the quantitative connectomes; in the latter, each subject is rep-

resented only with the features surviving FS. Average and maximum

accuracy computed across all classifiers for a given representation are

also shown.

In Table 4, we report the accuracies of the different classifiers

applied toWN processed with Standard FS as well as NS/LE represen-

tations derived from the network preprocessedwith Standard FS.

The NIRwas 0.6962.

Clinical impact of selected features

Correlations between selected features and clinical scores are shown

in Table 5.

DISCUSSION

In this study, we introduced a robust FS procedure that allowed us to

improve the discrimination of MS patients from HC based on struc-

tural connectivity while identifying clinically meaningful features. We

devised a robust procedure that combines the results of two classical

methods of FS and tested their classification accuracy with five differ-

ent classifiers. Finally, the different classifierswere also used to investi-

gate the accuracy obtained with the standard thresholding procedure.

The investigation of structural connectivity through diffusion trac-

tography and the extraction of meaningful properties to distinguish

patients from HC is a well-established procedure.20 However, this

methodology selects features in the whole network via a thresh-

olding procedure solely based on empirical assumptions, with local

and global graph-based metrics being extracted from the thresholded

network.14,15

On the contrary, our approach was based on the selection of con-

nections and nodes’ local properties that were consistently extracted

by two different FS procedures (LASSO and IFS) in more than 50%

of the runs. Indeed, in the majority of cases LASSO and IFS agree-

ment in the selectionof individual features reached70%.This approach

offers two main advantages: (i) it reduces the dimensionality of the

space of features (in our case from 3570 connections—deriving from

85 × 85 cells of the connectivity matrix minus 85 diagonal entries

divided by 2—to 11 connections and from 85 nodes’ local properties

to 5 or 7 [for node strength and local efficiency, respectively]); (ii) it

offers insights onwhichWMtracts/GMnodes aremore affected by the

disease and, likely, represents the substrates of the observed clinical

disability.

We achieved a higher accuracy when employing the proposed FS

methodology than when applying the standard FS approach, thus con-

firming the importance of reducing the dimensionality to improve clas-

sification. Indeed, with our approach the mean accuracy was higher

than 82% for all tested classifiers, which, compared to the NIR of

69.62%, confirms the potentiality of the proposedmethod. Here, a crit-

ical observation is that our analysis is limited due to the small sample

size. Indeed, these accuracies might become even higher by employ-

ing a dataset with a larger number of both MS and HC. Nevertheless,

the newly proposed procedure outperformed classification accuracies

obtained with the standard FS procedure in all the investigated cases.

Perhaps our most relevant finding is the fact that the largest accu-

racy increments as well as the highest overall accuracy were obtained

by using the FS procedure on the whole net. This suggests that the



654 ROBUST SELECTIONOF STRUCTURALMETRICS

procedure of FS proposed here might be used as an alternative of the

classical network analysis procedure,which usually reduces the dimen-

sionality of the space of features by deriving global metrics like effi-

ciency and strength. Indeed, analyzing the outcomes of the standard

FS procedure, an accuracy improvement over classification attempted

with the entire set of features was obtained only for NS.

The major potential of our approach is that it can directly select

connections more affected by the disease instead of combining and

merging the information of all the connections ending in the same

node. In particular, the best performance was obtained by select-

ing only 11 connections. This model reached a classification accuracy

of 91%, a percentage considerably higher than the ones previously

reported by classification works based on structural/functional con-

nectivity analysis.7,8

Regarding the biological meaningfulness of the extracted features,

those with higher selection percentage at both LASSO and IFS were

more consistently associated with clinical scores, confirming that our

approach was able to identify relevant indicators of the patients’ clin-

ical status. Among the selected features, NS of deep GM (thalamus,

putamen, caudate) showed the strongest correlations with a variety of

clinical disability measures (eg, manual dexterity, fatigue, cognition—

measured in terms of processing speed, visual memory, and verbal flu-

ency). This finding is in linewith the known relevance of deepGMdam-

age for clinical disability in MS,32–34 and once again underscores how

disconnection of this relay from cortical areas and wider brain circuits,

here expressed by the reduction in NS, is a fundamental contributor

to the clinical expression of disability.11 Of note, while the highest dis-

criminative accuracywas reachedwith the set of features derived from

whole net connectivity, in agreement with the prominent role of WM

already reported with deep brain algorithms,9 NS constitutes the best

correlate of clinical disability. This is probably because it represents a

better synthetic measure of disconnection for salient regions than the

damage of singleWMbundles.

Among the extracted features, the connection between the left

middle temporal gyrus and the right superior parietal gyrus, identified

in 91.4% of the runs, is anatomically implausible and represents a false

positive. The identification of false positive connections represents

an unsolved issue in the tractography field, and it is known to exert a

nonnegligible impact on connectivity analyses.35 The selected false

positive connection was consistently present in the HC, while it was

never identified in the MS patients. This can be explained by the pres-

ence of lesions that change the directions that can be followed by the

tracking in particular voxels by altering the aspect of the fiber orienta-

tion distribution functions. Although the presence of false positive is

a limitation of our analyses, none of the techniques currently available

in the field are spared from this issue.20 Recently, the COMMIT2

framework has been proposedwith impressive results in terms of false

positive removal.36 Once validated (not only in a few healthy subjects

but also in pathological brains), COMMIT2 could be used instead of

COMMIT to create quantitative structural connectomes and investi-

gate the stability of both performances and features extracted. Beyond

the false positive issues, the inclusion of a small number of relapsing

patients might limit the generalizability of our findings.

Despite these limitations, applying a robust FS procedure to input

data derived from quantitative tractography, we were able to classify

MS patients with excellent accuracy, while providing information on

theWMconnections and GM regionsmore affected byMS pathology.
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