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Abstract
Introduction: Magnetic resonance imaging (MRI) and electroencephalography (EEG) 
are a promising means to an objectified assessment of cognitive impairment in 
Alzheimer's disease (AD). Individually, however, these modalities tend to lack preci‐
sion in both AD diagnosis and AD staging. A joint MRI–EEG approach that combines 
structural with functional information has the potential to overcome these 
limitations.
Materials and Methods: This cross‐sectional study systematically investigated the 
link between MRI and EEG markers and the global cognitive status in early AD. We 
hypothesized that the joint modalities would identify cognitive deficits with higher 
accuracy than the individual modalities. In a cohort of 111 AD patients, we combined 
MRI measures of cortical thickness and regional brain volume with EEG measures of 
rhythmic activity, information processing and functional coupling in a generalized 
multiple regression model. Machine learning classification was used to evaluate the 
markers’ utility in accurately separating the subjects according to their cognitive 
score.
Results: We found that joint measures of temporal volume, cortical thickness, and 
EEG slowing were well associated with the cognitive status and explained 38.2% of 
ifs variation. The inclusion of the covariates age, sex, and education considerably 
improved the model. The joint markers separated the subjects with an accuracy of 
84.7%, which was considerably higher than by using individual modalities.
Conclusions: These results suggest that including joint MRI–EEG markers may be 
beneficial in the diagnostic workup, thus allowing for adequate treatment. Further 
studies in larger populations, with a longitudinal design and validated against func‐
tional‐metabolic imaging are warranted to confirm the results.
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1  | INTRODUC TION

Alzheimer's disease (AD) is a fatal disorder that is associated with the 
accumulation of β‐amyloid plaques and neurofibrillary tau tangles 
causing progressive neurodegeneration in certain cortical and sub‐
cortical regions (Hyman et al., 2012). AD invariably affects episodic 
memory and other complex cognitive processes, but the perceived 
onset and early course of the symptoms are highly subjective and 
depend on the individual cognitive reserve (Stern, 2012). An accu‐
rate clinical assessment of the cognitive deficits is crucial for disease 
staging and thus for optimal pharmacological treatment and ther‐
apy planning. Typically, cognitive impairment is assessed in a doc‐
tor–patient/–caregiver interview and neuropsychological screening 
tests such as the mini‐mental state examination (MMSE; Folstein, 
Folstein, & McHugh, 1975). These tests, however, are susceptible to 
daily variations, and their outcome is affected by sociodemographic 
factors and the individual cognitive reserve (Crum, Anthony, Bassett, 
& Folstein, 1993). Consequently, there is a need for accurate alter‐
natives to measure the progression of cognitive impairment in AD.

Magnetic resonance imaging (MRI) and electroencephalography 
(EEG) are potential surrogate in vivo measures of AD progression that 
are noninvasive, inexpensive, and widely available. MRI measures of 
regional brain volumes and cortical thickness are promising markers 
of both AD neuropathology and cognitive decline (Babiloni et al., 
2015; Dubois et al., 2014; Scheltens, Fox, Barkhof, & De Carli, 2002). 
Especially, the limbic system in the medial temporal lobe has been 
identified to be vulnerable to AD: Typically, the entorhinal cortex is 
among the regions affected in the earliest disease stages (Killiany 
et al., 2002). The hippocampal volume appears to be a good marker 
of both disease onset and its progression (Bateman et al., 2012; Den 
Heijer et al., 2010; Dickerson et al., 2001; Jack et al., 2010; Lo et al., 
2011). Other affected brain regions include amygdala, posterior as‐
sociation cortex, and the cholinergic basal forebrain (Bottino et al., 
2002; Braak & Braak, 1991; Dubois et al., 2014). The cortical atrophic 
topography is often in line with the clinical phenotype; subjects with 
verbal memory impairment, for instance, frequently exhibit early atro‐
phy in the left temporal lobe (Johnson, Fox, Sperling, & Klunk, 2012).

Electroencephalography, on the other hand, is a promising tool to 
assess the AD‐related functional disintegration of large scale brain 
networks such as the default mode network during resting state 
(Dillen et al., 2017; Horn, Ostwald, Reisert, & Blankenburg, 2014). 
Visual resting state EEG analyses in AD patients have revealed a slow 
dominant posterior rhythm and an increase in widespread delta and 
theta activity combined with a reduction in alpha and beta (Berger, 
1937; Brenner, Reynolds, & Ulrich, 1988; Gordon & Sim, 1967; 
Letemendia & Pampiglione, 1958; Liddell, 1958; Rae‐Grant et al., 
1987; Soininen, Partanen, Helkala, & Riekkinen, 1982; Weiner & 
Schuster, 1956). These abnormal EEG patterns have shown correla‐
tions with the cognitive status as well (Brenner et al., 1988; Gordon 
& Sim, 1967; Johannsen, Jakobsen, Bruhn, & Gjedde, 1999; Kaszniak, 
Garron, Fox, Bergen, & Huckman, 1979; Liddell, 1958; Merskey et al., 
1980; Mundy‐Castle, Hurst, Beerstecher, & Prinsloo, 1954; Obrist, 
Busse, Eisdorfer, & Kleemeier, 1962; Rae‐Grant et al., 1987; Roberts, 

McGeorge, & Caird, 1978; Weiner & Schuster, 1956). Computerized 
resting state EEG studies have confirmed these early studies; they 
used the spectral power in predefined frequency bands to quantify 
EEG rhythmicity, synchrony‐measures such as coherence to quantify 
EEG connectivity, and measures from information theory to quantify 
EEG complexity (see Jeong, 2004 and Dauwels, Vialatte, & Cichocki, 
2010 for extensive reviews). Besides resting state analyses, grow‐
ing evidence suggests that the EEG recorded during memory en‐
coding tasks carries essential information about other AD‐affected 
large‐scale brain networks (Garn et al., 2014, 2015; Hidasi, Czigler, 
Salacz, Csibri, & Molnár, 2007; Hogan, Swanwick, Kaiser, Rowan, & 
Lawlor, 2003; Jiang, 2005; Jiang & Zheng, 2006; Klimesch, Sauseng, 
& Hanslmayr, 2007; Pijnenburg et al., 2004; Stam, 2000; Stam, van 
Cappellen van Walsum, & Micheloyannis, 2002; Van der Hiele et al., 
2007; Waser et al., 2016). With this in mind, EEG measures such as 
upper alpha desynchronization and theta synchronization during 
memory encoding might be the potential markers of impaired mem‐
ory performance (Klimesch, 1999).

Despite their evident potential as noninvasive assistive tools in AD 
diagnose, MRI is routinely used solely for the purpose of excluding 
other possible causes such as vascular lesions, strategic lunar infarcts, 
or cerebral haemorrhages (Dubois et al., 2014; Schmidt et al., 2010), and 
EEG is not included in the standard diagnostic workup at all (American 
Psychiatric Association, 2013; Dubois et al., 2007, 2010, 2014; Hyman 
et al., 2012; McKhann et al., 1984, 2011; Schmidt et al., 2010). A rea‐
son is that, individually, these modalities tend to lack precision in both 
AD diagnosis and staging. However, combining the structural and func‐
tional information from MRI and EEG in a multimodal approach has the 
potential to overcome the limitations of the individual modalities. This 
cross‐sectional study systematically investigates the usefulness of dif‐
ferent MRI and EEG measures as symptom‐independent markers of the 
cognitive deficits in a cohort of early AD patients. We hypothesize that 
(a) these markers are significantly related to global cognition as mea‐
sured by MMSE in early AD and that (b) joint MRI–EEG markers allow 
for an accurate identification of significant cognitive deficits.

2  | MATERIAL S AND METHODS

2.1 | Ethics statement

This research was approved by the ethics committees of the Medical 
Universities Graz, Innsbruck, Vienna and the Ethics Committee of 
the State of Upper Austria.

2.2 | Study cohort

The study cohort consisted of 111 subjects diagnosed with probable 
(N = 77) or possible (N = 34) AD according to NINCDS‐ADRDA1 criteria 
(McKhann et al., 1984) who participated in the prospective dementia 
(PRODEM) study of the Austrian Alzheimer Society (Seiler et al., 2012). 
1National Institute of Neurological and Communicative Disorders and Stroke and 
Alzheimer's Disease and Related Disorders Association. 
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Enrollment criteria included the availability of a caregiver, written in‐
formed consent of participant and caregiver, no need for 24‐hr care, 
and the absence of other physical or neurological causes of dementia‐
like symptoms. All patients underwent a routine laboratory assess‐
ment, measurement of serum vitamin B12 and folic acid levels, as well 
as serologic (HIV, Lues) and thyroid testing. AD‐inconsistent patterns of 
cerebral atrophy and lesion were excluded in T1‐weighted MRI (3D 
MPRAGE) sequences. The dementia severity was assessed by clinical 
dementia rating (CDR) on a scale of 0 (no dementia) to 3 (severe demen‐
tia) (Hughes, Berg, Danziger, Coben, & Martin, 1982; Morris, 1993). Our 
cohort consisted of subjects with CDR scores of 0.5 (very mild demen‐
tia) or 1 (mild dementia). The global cognition was assessed by MMSE 
scores on a scale of 0–30 where scores below 24 indicate significant 
cognitive deficits (Folstein et al., 1975; Mungas, 1991). The participants’ 
age, sex, and completed years of education were included as potential 
confounders (Crum et al., 1993; Kittner et al., 1986; O'Connor, Pollitt, 
Treasure, Brook, & Reiss, 1989).

2.3 | MRI assessment

The brain structure was assessed by T1‐weighted whole‐brain MRI 
scanning (3D MPRAGE sequence) on one of the three different sys‐
tems (Avanto 1.5 T, Symphony Tim 1.5 T and Trio Tim 3.0 T, all were 
manufactured by Siemens Healthcare, Erlangen, Germany). The 

selected sequence parameters were echo time 3.0 ms (1.9–4.2 ms), 
repetition time 2,020 ms (1,410–2,300 ms), inversion time 1,017 ms 
(800–1,100 ms), flip angle 9°, 10° and 15°, resolution 0.9 mm 
(0.83–1 mm) × 0.9 mm (0.83–1 mm) × 1 mm (1–1.2 mm), and band‐
width 130 Hz.

MRI scans were processed with the FreeSurfer neuroimaging 
software (Version 5.3, Massachusetts General Hospital, Boston 
MA, USA) that included automated methods for volume segmenta‐
tion and measurement of cortical thickness of various brain regions. 
Briefly, the processing flow consisted of skull stripping followed by 
segmentation of gray/white matter and mapping of different brain 
structures in Talairach space (Desikan et al., 2006; Fischl et al., 
2002). A detailed technical description can be found, for example, in 
Fischl et al., 2002 and Reuter, Schmansky, Rosas, & Fischl, 2012. In 
previous studies, these morphometric FreeSurfer procedures were 
validated against manual mapping (Fischl et al., 2002; Kuperberg 
et al., 2003; Salat et al., 2004) and proved to be reliable across scan‐
ner types and field strengths (Han et al., 2006; Reuter et al., 2012).

The regional volume and mean cortical thickness of the frontal, 
parietal, left and right temporal, and occipital lobe of the cerebral 
cortex – the major control of higher cognitive function – were em‐
ployed as potential markers of cognitive impairment. The left and right 
temporal lobes were hereby assessed separately since the left tem‐
poral lobe has been described to be more affected in early AD stages 
(Johnson et al., 2012). In addition, we included the volume of entorhi‐
nal cortex, hippocampus, and amygdala due to their vulnerability to 
atrophy in early AD (Juottonen, Laakso, Partanen, & Soininen, 1999; 
Poulin, Dautoff, Morris, Barrett, & Dickerson, 2011). All MRI measures 
were normalized by the individual total intracranial volume to account 
for anatomical differences between the subjects (Fischl, 2012).

2.4 | EEG assessment

The brain function was assessed by EEG recordings collected from 
19 gold cup electrodes (Fp1, Fp2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, 
T8, P7, P3, Pz, P4, P8, O1, and O2; ground between Fz and Cz; con‐
nected mastoids as reference) placed according to the international 
10–20 system (Jasper, 1958). Vertical and horizontal EOG and wrist‐
ECG were recorded in parallel. All clinics used identical EEG systems 
(AlphaEEG amplifier by Alpha Trace Medical Systems, Vienna, Austria 
with NeuroSpeed software, bandpass 0.3–70 Hz (3 dB), notch 50 Hz, 
sampling rate 256 Hz, and resolution 16 bits). Impedances were kept 
below 10 kOhm.

The recordings were conducted in quiet and separated rooms 
with soft light in accordance with a predefined paradigm. Participants 
sat upright in comfortable chairs with neck support and a monitor 
positioned in front of them. They were asked to reduce movements 
to a minimum. A recording session included a 30‐s resting phase with 
closed eyes (REC) and a 30‐s memory encoding test with open eyes 
(ENC) where on‐screen face–name combinations had to be memo‐
rized. This test was designed to capture AD‐specific visual‐verbal 
memory deficits. The details of the paradigm were described else‐
where (Garn et al., 2015).

TA B L E  1  Summary of potential electroencephalography (EEG) 
markers

EEG markers Channels Assessment phase

Individual alpha 
frequency

P3, Pz, P4, O1, O2 Rest, eyes closed

Spectral delta‐power F3, F4, C3, C4, 
O1, O2

Visual‐verbal 
encoding

Spectral theta power F3, F4, C3, C4, 
O1, O2

Visual‐verbal 
encoding

Spectral alpha1 power F3, F4, C3, C4, 
O1, O2

Visual‐verbal 
encoding

Spectral alpha2 power F3, F4, C3, C4, 
O1, O2

Visual‐verbal 
encoding

Spectral beta1 power F3, F4, C3, C4, 
O1, O2

Visual‐verbal 
encoding

Spectral beta2 power F3, F4, C3, C4, 
O1, O2

Visual‐verbal 
encoding

Auto‐mutual 
information

F3, F4, C3, C4, 
O1, O2

Visual‐verbal 
encoding

Interhemispheric 
coherence

F3‐F4, C3‐C4, 
O1‐O2

Visual‐verbal 
encoding

Intrahemispheric 
coherence

F3‐C3, F3‐O1, 
C3‐O1, F4‐C4, 
F4‐O2, C4‐O2

Visual‐verbal 
encoding

Interhemispheric 
mutual info

F3‐F4, C3‐C4, 
O1‐O2

Visual‐verbal 
encoding

Intrahemispheric 
mutual info

F3‐C3, F3‐O1, 
C3‐O1, F4‐C4, 
F4‐O2, C4‐O2

Visual‐verbal 
encoding
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We used Matlab software (Version R2016b, MathWorks, 
Natick MA, USA) to remove non‐neuronal artifacts from the EEG. 
More specifically, each recording was downsampled to 128 Hz to 
reduce computational cost and bandpass filtered in the range of 
1–30 Hz (type 1 FIR filter, 60 dB). Eye artifacts were removed by 
constrained independent component analysis using the EOG (Lu & 
Rajapakse, 2006). Cardiac artifacts were corrected by a modified 
Pan‐Tompkins algorithm using the ECG (Waser & Garn, 2013). The 
resulting EEG samples were divided in 2‐s epochs with 1‐s overlap 
(Blanco, Garcia, Quiroga, Romanelli, & Rosso, 1995). Epochs with re‐
sidual artifacts were identified by a thresholding algorithm (Waser 
et al., 2017), visually validated by an EEG expert and omitted from 
further analyses.

The EEG measures listed in Table 1 were computed epoch‐ and 
channel‐wise. Global markers were derived separately for REC and 
ENC by taking the average over all channels and epochs (cf. Table 1). 
A technical marker description can be found in Supporting informa‐
tion Material section A. In brief, the dominant posterior EEG rhythm 
was measured by the individual alpha frequency (IAF) defined as the 
mean frequency‐position of the spectral center of gravity between 
8 and 13 Hz. Using the IAF as anchor frequency, the spectral power 
was computed in individualized frequency bands delta from IAF‐7 
to IAF‐5 Hz, theta from IAF‐5 to IAF‐2 Hz, alpha1 from IAF‐2 to IAF 
Hz, alpha2 from IAF to IAF + 2 Hz, beta1 from IAF + 2 to IAF + 8 Hz 
and beta2 from IAF + 8 to IAF + 16 Hz. The auto‐mutual information 
(aMI) quantified the similarity of an EEG signal at different points in 
time and was designed to capture EEG complexity and information 
processing mechanisms (Jeong, Gore, & Peterson, 2001; Shannon 
& Weaver, 1949). Inter and intrahemispheric EEG connectivity was 
measured by coherence in a linear and by mutual information (cMI) 
in a nonlinear way. Figure 1 illustrates the topographic logic of the 
marker assessment.

2.5 | Statistical analyses

Statistical analyses were performed with the R statistics software 
(Version 3.4.1, R Foundation for Statistical Computing, Vienna, 
Austria). We inspected the MMSE scores, covariates (age, sex, and 
years of education), as well as MRI and EEG markers in histograms, 
scatter‐ and boxplots. MMSE scores were log‐transformed to make 
them conform to normality. All data were rescaled to z‐scores with 
mean 0 and standard deviation 1. First, we tested the correlation of 
MMSE with each individual marker using F‐tests (α = 0.05). Second, a 
generalized multiple regression model was used to relate a combina‐
tion of markers (regressors) to the cognitive scores (outcome) while 
accounting for age, sex, and education (covariates). More specifi‐
cally, we used all‐subset selection to identify the marker subset that 
described the most MMSE variance in terms of R2 value. To avoid 
overfitting, models with a large number of regressors were hereby 
penalized using the corrected Akaike information criterion (Akaike, 
1973; Sugiura, 1978). The model assumptions were visually verified 
in diagnostic residual plots. The regression fit was tested by an over‐
all F‐test and two‐tailed t tests of individual terms (α = 0.05). The 

central statistical concepts are described in detail in Supporting in‐
formation Material Section B.

2.6 | Diagnostic utility assessment

The same marker subset was then used to distinguish subjects with 
MMSE ≥ 24 from those with MMSE < 24 by a machine learning clas‐
sification approach (see Supporting information Material Section 
B.3). We used a support vector machine (SVM) with radial basis 
function kernel to separate the two groups (Cortes & Vapnik, 1995). 
Parameters were hereby tuned using a grid search over defined pa‐
rameter ranges. Classification was performed with leave‐one‐out 
cross‐validation and evaluated by its sensitivity (true positive rate), 
specificity (true negative rate), and accuracy. Group differences 
regarding age, sex, and years of education were tested by χ²‐ and 
Kruskal–Wallis tests.

3  | RESULTS

3.1 | Sample characteristics

Table 2 summarizes the demographic and clinical sample character‐
istics. The subjects’ age was negatively correlated with the cogni‐
tive scores (r = −0.22, F(1,109) = 5.29, p = 0.023). There was, however, 
no significant age difference between the subjects with MMSE ≥ 24 
and those with scores below 24. Neither the subjects’ sex nor their 
completed years of education were significantly related to the 

F I G U R E  1   Electrode placement on the scalp as seen from 
above: The dominant posterior rhythm was measured in P3, Pz, 
P4, O1, and O2 (green area), whereas the remaining features 
were calculated in F3, F4, C3, C4, O1, and O2 (blue dots). 
Interhemispheric couplings are indicated by solid red lines and 
intrahemispheric coupling by dotted red lines



     |  5 of 11WASER et al.

cognitive status. The rather weak MMSE–CDR relation (�2

(1)
 = 4.19, 

p = 0.041) in the earliest AD stages is in line with previous findings 
(Perneczky et al., 2006).

3.2 | Neuroimaging markers across the spectrum of 
cognitive impairment

3.2.1 | Individual markers

Table 3 lists the MRI and EEG markers and their respective (non‐nor‐
malized) mean values ± standard deviation. In relating individual mark‐
ers with MMSE scores, we found significant results for the volumes 
of the parietal and the left temporal lobe, the spectral power in theta, 
alpha1, beta1, and beta2, as well as aMI. More specifically, reduced 
lobar volume, increased portions of spectral power in a low frequency 
range, and increased aMI were all associated with lower MMSE scores.

Figure 2 shows the between‐marker correlation (Pearson's r) 
color‐coded from blue (−1) to red (1) and tagged with a (*) in case of 
a high statistical significance (p < 0.01). We observed a widespread 
positive correlation between the MRI markers that were most pro‐
nounced in the cortical thickness markers. The relative spectral 
power in the delta and theta frequency bands was negatively cor‐
related with the power in the higher beta1 and beta2 bands. The aMI 
showed high correlations with beta1 and beta2 power, indicating 
that information processing mechanisms were mainly reflected by 
a large portion of high‐frequency EEG oscillations. As for MRI–EEG 
correlations, reduced volume and cortical thickness of the parietal 
lobe were significantly associated with high delta‐power, the parietal 
volume was positively correlated with beta1 power as well as the left 
temporal volume with interhemispheric coherence.

3.2.2 | Marker combinations

The following marker subset was selected to be included in the re‐
gression model: the left temporal volume, the cortical thickness of 
frontal, parietal and occipital lobe, and the spectral power in theta 
and alpha2. The regression was significant (p < 0.001) and the com‐
bined regressors explained 38.2% of the variation in MMSE scores. 
Figure 3 shows the relation of each regressor to the MMSE given 
that the remaining regressors were included in the same model. 

Among the individual effects, theta power (p < 0.001), left tempo‐
ral volume (p = 0.007), frontal thickness (p = 0.001), and parietal 
thickness (p = 0.003) were significant with the latter two having the 
steepest slopes.

3.3 | Diagnostic utility

Table 4 summarizes the results of discriminating the two groups 
(MMSE ≥ 24 and MMSE < 24) using the same marker subset from MRI 
and EEG individually, as well as in a modality‐combined manner. Using the 
latter, individuals were classified with an accuracy of 84.7% (sensitivity 
92.1%, specificity 75.0%). Figure 4 visualizes the SVM results in greater 
detail. The confusion matrix in Figure 4a contains the true positive and 
negative (green) and false positive and negative (red) elements resulting 
from the combined MRI–EEG classification, which correctly identified 58 
of 63 subjects with MMSE ≥ 24 and 36 of 48 subjects with MMSE < 24. 
Figure 4b illustrates that the combined MRI–EEG approach yielded better 
results as compared to the individual modalities. MRI markers separated 
the groups with an accuracy of only 66.7% (sensitivity 77.8%, specific‐
ity 52.1%). EEG markers apparently reflected the cognitive deficits bet‐
ter than MRI, and they separated the groups with an accuracy of 79.3% 
(sensitivity 87.3%, specificity 68.8%).

4  | DISCUSSION

The first study question sought to determine whether there was a 
significant relation between the MRI–EEG markers and the severity 
of cognitive impairment in early AD. Prior studies have reported that 
individual MRI measures of regional volume and cortical thickness 
as well as abnormal EEG patterns are related with the cognitive sta‐
tus. Here, only few individual markers were significantly correlated 
with MMSE scores. However, the combined MRI–EEG markers were 
well associated with the subjects’ cognitive status. By measuring the 
left temporal volume, the cortical thickness of frontal, parietal and 
occipital lobe, and the spectral power in the theta and alpha2 fre‐
quency bands, 38.2% of MMSE variation was explained. In line with 
previous studies, the inclusion of age, sex, and education improved 
these results (Crum et al., 1993; Kittner et al., 1986). O'Connor et al. 
(1989) suggested that also the sociocultural background, though 

TA B L E  2   Empirical and statistical sample description

Total

Correlation with MMSE

MMSE ≥ 24 MMSE < 24

Difference

Pearson r p value p value

Subject count 111 63 48

Age (years) 74.6 ± 8.1 −0.22 0.023* 74.8 ± 7.2 74.3 ± 9.3 0.744

Sex (female) 61 −0.18 0.065 32 29 0.414

Education (years) 10.9 ± 2.9 0.16 0.091 11.2 ± 3.2 10.6 ± 2.4 0.253

MMSE 23.4 ± 3.1 ‐ ‐ 25.5 ± 1.4 20.5 ± 2.3 ‐

CDR (0.5 | 1) 73 | 38 −0.18 0.055 47 | 16 26 | 22 0.041*

Note. The p values in bold font with an asterisk (*) indicate statistical significance at alpha level 0.05.
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difficult to quantify, should be included. Other potentially influential 
factors might include medication and lifestyle.

On the question of the diagnostic utility of MRI and EEG markers, 
a joint MRI–EEG approach demonstrated higher diagnostic accuracy 
(84.7%) as compared to the individual modalities. Our results are in 
agreement with previous research, showing AD classification accu‐
racies between 74%–100% for temporal lobe atrophy (O'Brien et al., 
2004), 76.9%–81.7% for volumetric measures of medial temporal 
structures (Bottino et al., 2002), and 87%–99% for measures of cortical 
volume and thickness (Du et al., 2007). However, considering the small 
samples of these studies, the results need to be interpreted with cau‐
tion. Similar results have been found in EEG studies, with EEG markers 
yielding accuracies from 76% to 85% (Jelic & Kowalski, 2009; Triggiani 
et al., 2016). Thereby, it seems that the MRI and EEG modalities might 
be complementary due to an incomplete overlap in subjects regarding 
MRI and EEG abnormalities (Strijers et al., 1997). This view got further 
support by a recent study showing superior AD‐control classification 
accuracy (90%) for combined MRI and EEG markers as compared to the 
individual modalities as well. These data suggest that MRI–EEG markers 
have potential as accurate cognitive staging tools.

One interesting finding is that four of the six selected markers were 
measures of cortical lobe atrophy. Especially, atrophy patterns in the 
left temporal, frontal, and parietal lobe are in accord with previous 
studies (Du et al., 2007; Hwang et al., 2016). Hartikainen et al. (2012) 
also found occipito–parietal cortical thinning in AD. Caution is advised; 
however, for the cortical thickness, measures are highly inter‐correlated 
and any conclusion on topographic patterns needs further validation. 
In contrast to earlier findings, the medial temporal lobe structures hip‐
pocampus, amygdala, and entorhinal cortex were not included in the 

TA B L E  3   Original magnetic resonance imaging (MRI) and 
electroencephalography (EEG) marker values (mean ± standard 
deviation) and linear regression analysis: The slope β refers to the 
linear regression coefficient of the normalized markers as 
regressors and log‐normalized MMSE scores as outcome, while 
correcting for age, sex, and completed years of education as 
covariates

Potential markers

Values Regression analysis

Mean ± SD Slope β p value

MRI markers

Cortical volumes [cm³]

Frontal lobe 122.91 ± 17.41 0.053 0.579

Parietal lobe 77.31 ± 11.61 0.194 0.037*

Temporal lobe left 38.45 ± 6.22 0.188 0.045*

Temporal lobe right 38.48 ± 6.13 0.109 0.244

Occipital lobe 35.97 ± 5.48 0.126 0.176

Cortical thickness [mm]

Frontal lobe 2.12 ± 0.22 0.137 0.144

Parietal lobe 1.78 ± 0.19 −0.009 0.921

Temporal lobe left 2.27 ± 0.30 −0.001 0.988

Temporal lobe right 2.34 ± 0.33 −0.034 0.721

Occipital lobe 1.60 ± 0.12 0.112 0.234

Limbic volumes [cm³]

Entorhinal cortex 2.82 ± 0.67 0.080 0.393

Hippocampus 6.28 ± 1.19 −0.055 0.564

Amygdala 2.27 ± 0.55 0.058 0.543

EEG markers

Posterior dominant rhythm in rest

Individual alpha 
frequency

9.71 ± 0.44 0.093 0.328

Rhythmic activity

Spectral delta power 0.11 ± 0.04 −0.176 0.057

Spectral theta power 0.15 ± 0.06 −0.380 0.001*

Spectral alpha1 power 0.09 ± 0.04 −0.220 0.018*

Spectral alpha2 power 0.07 ± 0.02 0.087 0.359

Spectral beta1 power 0.15 ± 0.04 0.284 0.002*

Spectral beta2 power 0.17 ± 0.07 0.225 0.014*

Information processing

Auto‐mutual 
information

0.31 ± 0.01 −0.213 0.021*

Functional coupling

Interhemispheric 
coherence

0.57 ± 0.09 0.177 0.058

Intrahemispheric 
coherence

0.41 ± 0.07 0.114 0.223

Interhemispheric 
mutual information

0.19 ± 0.01 −0.020 0.834

Intrahemispheric 
mutual information

0.17 ± 0.01 −0.037 0.691

Note. The p values in bold font with an asterisk (*) indicate statistical signifi‐
cance at alpha level 0.05.
SD: standard deviation. 

F I G U R E  2  Analysis of marker intercorrelation: The Pearson's 
correlation is shown color‐coded and a (*) indicates a significant 
intercorrelation as tested by two‐tailed Student's t test (α = 0.01)
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final model. A possible explanation might be the strong innervation of 
these structures and the cerebral cortex and, consequently, that lim‐
bic atrophy was implicitly included through the coarser cortical mea‐
sures. Another reason might be that the included EEG markers reflected 
the changes in the limbic structures. It also seems possible that these 
relatively small brain structures were subject to measurement bias in 
contrast to the greater cortical lobes. The most plausible explanation, 
however, is that these brain structures have already been affected long 
before AD was diagnosed and that, during early AD, they do not vary 
as much.

Among the abnormal EEG patterns, increased theta and de‐
creased alpha rhythms, commonly referred to as EEG slowing, were 

the most significant markers. These findings are consistent with 
previous studies and the role of theta and alpha rhythms in cog‐
nitive performance: Klimesch (1999) observed that “upper alpha 
desynchronization correlates with semantic memory performance 
whereas theta synchronization correlates with working memory 
or episodic memory performance in particular.” The same author 
stated: “Because alpha frequency varies to a large extent as a func‐
tion of age, neurological diseases, memory performance, brain vol‐
ume, and task demands, the use of fixed frequency bands does not 
seem justified”. The current approach of recording the EEG during a 
memory task and computing markers using individualized frequency 
bands corroborate these ideas. Surprisingly, neither coherence nor 

F I G U R E  3  Visualization of the regression model: Each window shows the scatterplot of a standardized marker versus standardized log‐
transformed MMSE scores (corrected for the remaining markers) where a black dot represents a subject, the green line represents the partial 
regression and the light green area its 95% confidence band. The combined markers explain 38.2% of MMSE variation

Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%)

MRI 77.78 52.08 68.06 64.10 66.67

EEG 87.30 68.75 78.57 80.49 79.28

MRI + EEG 92.06 75.00 82.86 87.80 84.68

Note. NPV: negative predictive value; PPV: positive predictive value.

TA B L E  4  Evaluation of MMSE ≥ 24 and 
MMSE < 24 classification using magnetic 
resonance imaging (MRI) markers, 
electroencephalography (EEG) markers, 
and markers from both modalities
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cMI – both measures of functional coupling – were selected into the 
final set of markers. Especially, changes in EEG coherence have been 
related to AD progression (Jeong, 2004). There are several possible 
explanations for this result. On the one hand, coherence and cMI are 
clearly correlated with other EEG markers and by including those 
parts of the functional coupling information is implicitly included in 
our model. On the other hand, our approach of global markers might 
not be well‐suited to capture the topographic characteristic of func‐
tional coupling markers. Finally, the changes in functional coupling 
during early AD might be too subtle to be used as accurate marker 
of cognitive decline.

A limitation of this study is the sole use of MMSE scores as mea‐
sure of the global cognitive status. AD typically impairs cognitive 
complex domains, the sequence and severity of impairment varies 
from patient to patient, even more so in the earliest disease stages. 
Another well‐described issue of the MMSE is its susceptibility to de‐
mographic factors such as age and education. In the current study, 
we tried to overcome this limitation by including demographic infor‐
mation as covariates. However, a single MMSE cutoff to distinguish 
stages of cognitive impairment is thus problematic, and it is import‐
ant to bear in mind the possible resulting bias. By using more elab‐
orate cognitive tests that are less sensitive to demographic factors, 
further research should be undertaken to investigate which markers 
reflect deficits in which cognitive domain.

5  | CONCLUSION

The purpose of this study was a systematic assessment of the use‐
fulness of different MRI and EEG measures as symptom‐independ‐
ent markers of the severity of cognitive deficits in early AD. Our 
study has demonstrated the potential of a combined MRI–EEG ap‐
proach by separating subjects with MMSE ≥ 24 from those with 
MMSE < 24 with an accuracy of 84.7%. These results suggest that 
the current diagnostic workup might benefit from an inclusion of 
joint MRI–EEG markers. These markers may represent noninvasive 

and cost‐effective means to gain information on early AD progres‐
sion that could be essential in timely treatment and facilitate ad‐
ditional clinical research. Further studies in larger populations 
are warranted to validate the current results. Longitudinal study 
designs are particularly relevant to confirm the evident potential 
of these markers and to estimate their true diagnostic accuracy. 
Finally, cross‐modality validation against functional–metabolic 
imaging might further increase the understanding of disease 
progression.
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