SCIENTIFIC O % 3V

REPg}RTS

SUBJECT AREAS:

COMPUTATIONAL
SCIENCE

COMPLEX NETWORKS

Received

15 October 2014

Accepted
5 February 2015

Published
6 March 2015

Correspondence and
requests for materials
should be addressed to
A.S. (abhinav.singh@

manchester.ac.uk)

Finding communities in sparse networks

Abhinav Singh & Mark D. Humphries
Faculty of Life Sciences, University of Manchester.

Spectral algorithms based on matrix representations of networks are often used to detect communities, but
classic spectral methods based on the adjacency matrix and its variants fail in sparse networks. New spectral
methods based on non-backtracking random walks have recently been introduced that successfully detect
communities in many sparse networks. However, the spectrum of non-backtracking random walks ignores
hanging trees in networks that can contain information about their community structure. We introduce the
reluctant backtracking operators that explicitly account for hanging trees as they admit a small probability
of returning to the immediately previous node, unlike the non-backtracking operators that forbid an
immediate return. We show that the reluctant backtracking operators can detect communities in certain
sparse networks where the non-backtracking operators cannot, while performing comparably on
benchmark stochastic block model networks and real world networks. We also show that the spectrum of the
reluctant backtracking operator approximately optimises the standard modularity function. Interestingly,
for this family of non- and reluctant-backtracking operators the main determinant of performance on
real-world networks is whether or not they are normalised to conserve probability at each node.

tors’, and dolphins*; brain networks contain groups of correlated neurons™®, circuits of connected

groups”®, and regions of connected circuits’. Similarly modular networks occur across biological
domains from protein interaction networks to food webs'’. This range of applications has driven the dramatic
development of “community detection” methods for solving the core problem of finding modules within an
arbitrary network'’. Especially popular are spectral methods based on the eigenvalues and eigenvectors of some
matrix representation of the network. These combine speed of execution with considerable information about the
network beyond the modular structure'’, including the relative roles of each node' and characterisation of the
network’s dynamical properties'>*.

Spectral methods can fail for a range of real networks. These methods rely on the eigenvalues falling into two
classes, the vast majority — the “bulk” - following a well-defined distribution, and the outliers from that distri-
bution giving information about the community structure. Topological features of a network unrelated to its
modules, such as network hub nodes with high degree, can distort this distinction by introducing eigenvalues
outside the bulk that mix with those containing information about modules'*¢. Sparse networks often contain
such network hubs and the outlying uninformative eigenvalues cause the breakdown of spectral methods'.
Unfortunately many real-world networks are sparse (see Table II in Ref. 18 and Table 1 in Ref. 19).

Krzakala et al.*® proposed a new “non-backtracking” matrix representation of a network that solves this
problem: their matrix represents a random walker on the network who cannot immediately return to a node it
has just left. The eigenspectrum of this matrix depends on the frequency with which the walker passes through any
given node. As the non-backtracking matrix forbids the random walker to return to its immediately previous
node, network hubs are not visited disproportionately by this random walker and so the eigenspectrum is not
distorted by the presence of hubs in the network. Following this, Newman introduced the closely-related “flow”
matrix®' that conserved the probability for the random walk. Spectral methods applied to these matrices suc-
cessfully recover modules in sparse networks, down to the theoretical limit for their detection in classes of model
networks®.

However, as noted by Newman®', these represent an incomplete solution as networks containing trees cannot
be handled elegantly. Because the random walker could not escape from such a tree once entered, trees are ignored
despite being candidates for separate modules. In this paper we introduce the “reluctant backtracker” approach,
which combines the advantages of these new matrix representations by retaining the power of spectral methods
for sparse networks with the ability to detect and correctly handle networks with trees. We show that this comes
with no penalty for detection performance compared to non-backtracking and flow matrices. Rather, we show
that the main difference in performance depends on whether or not such matrix representations are normalised
to conserve probability. This finding hints at some deeper difference in network structure than modularity alone.

M any networks have a modular structure. Social networks contain communities of friends', collabora-
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Non-backiracking and flow matrices

We first outline the non-backtracking” and flow matrix®" approaches to
community detection. Both these approaches and ours start from the
same representation of the network. Assume an unweighted, undir-
ected, connected network with n vertices and m edges without self
loops. We convert the undirected network into a directed network
with 2m edges by replacing the undirected edge with directed edges
in both directions; j — i showing the direction of the edge. The
binary non-backtracking matrix B has 2m X 2m elements, each
element corresponding to a pair of directed edges in the network.
Its elements are given by

Bjsijok=01(1—0x), (1)

which are non-zero only if B; ,;; . corresponds to a directed path
from j to k that passes through node i with the restriction that nodes j
and k must not be identical, i.e. no backtracking. This matrix encap-
sulates the biased random walker that is prohibited from returning to
its immediately previous node.

Newman modified the non-backtracking matrix by changing the
values of its non-zero elements and called it the flow matrix F in
analogy to current flow in an electrical network. Its elements are
given by

1
F'_,,'_, :51' 1*6 rE——y 2
el l( Jk)d,-—l ()
where d; is the degree of the node i. Consider the random walker that
starts from node j and is passing through node i. According to the
flow matrix, the random walker can reach any of the d; — 1 nodes
except node j with equal probability. The probability of reaching

node k from node j passing through node i is , conserving

di—1
probability at node i. Krzakala et al*® and Newman®' respectively
showed that the second leading eigenvector of the non-backtracking
and flow matrices is very successful in correctly dividing sparse net-
works into communities.

Results

Reluctant backtracking operators. To solve the problem of
detecting communities in the presence of trees, we introduce the
idea of a reluctant backtracking random walker that admits a small
probability of returning to a node immediately. The reluctance, but
not impossibility, of immediately returning to a node mitigates
network hub effects on the spectrum of the operators, while
allowing the walker to explore and return from hanging trees
unlike the non-backtracking operator or flow matrix.

Based on this idea of reluctance, we define two new reluctant
backtracking operators R and P whose matrix elements are

1
R: Rj_>i,l_>k:5il(1_5jk) +5i15}k; (3)
j
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where R; ;1 .r and Pj_;; i represents the probability that the
random walker shall move from node j to node k with nodes i and
[ as intermediate nodes. The probability of returning to a node for
both operators R and P is inversely proportional to the degree of the
node, thus discouraging strongly a return to a high degree node.

The operator R is a reluctant version of the non-backtracking

1
operator B as it allows the additional probability 7 of returning

immediately to the node j. The operator P is a normalised version
of the operator R just like the flow operator F is a normalised version
of the non-backtracking operator B. Similar to the non-backtracking

B and flow F matrix operators, the new reluctant backtracking opera-
tors R and P can currently only be applied to undirected networks.

The procedure for detecting the communities is identical for
both operators. Given the adjacency matrix of a network, we first
generate one of the matrices R or P. Following Krzakala et al.*,
we calculate its second largest absolute real eigenvalue and the
associated eigenvector. The eigenvector has 2m elements corres-
ponding to each directed edge in the network. We group the
elements of the eigenvector by the group index of the source node
of each edge and sum them up to create a new vector that has n
elements corresponding to each node in the network. We divide
the network into two communities by grouping all nodes with the
same sign in that vector: the sign of each element represents the
estimate of the reluctant backtracking operators of the node’s
community.

Communities composed of trees. The indifference of non-backtracking
operators towards trees can impair their abilities to detect com-
munities in networks. As an extreme case, consider the network
suggested by Newman*": a network composed of two binary trees
connected at a single node. The non-backtracking operator B and the
flow matrix F cannot detect communities in such a network, but the
reluctant backtracking operators R and P do.

We show this using a network composed of two communities A
and B where each community is a tree and the two communities
are connected by a single node. The ratio of the number of nodes
in community A and B is denoted by f. The number of nodes in
community A is fixed and the number of nodes in community B
varies.

Figure 1 shows that when the size of the two communities is
comparable (f = 1), the reluctant operators detect communities
perfectly since a random walker will remain within the same
community for substantial periods of time. There is a sharp trans-
ition in the ability of the reluctant backtracking operators around f
=~ 0.6 in the network where community A consists of 400 nodes
(Figure la). When one community becomes much smaller than
the other, random walkers keep moving to the larger community
from the small community in a short period of time and leads to
the loss of performance. The transition point f is dependent on
many factors such as the structure of the network, total number of
nodes in the network, and the relative sizes of different com-
munities (as illustrated in Figure 1b where community A has
500 nodes, and the transition point is f = 0.48). Why there is a
sharp discontinuity rather than a gradual decline in performance
is presently unclear.

Stochastic block model with additional leaves. Networks
composed solely of trees are of course very artificial, but we also
show that reluctant backtracking operators can detect communities
in a more plausible network where the non-backtracking operators
fail. Consider a more typical network, created by the classic
stochastic block model. The addition or deletion of hanging trees
to this network or any other will not affect the eigenspectrum of
the non-backtracking operator B. However, the presence of
hanging trees can significantly alter the structure of communities
in such a network.

Stochastic block models provide an easy recipe for constructing
networks with specified inter-community and intra-community
edge probability. Consider a network of # nodes with two com-
munities. The probability of an edge between nodes a and b is
given by

Py = Cin if a and b belong to same community (5)
n

= % if a and b belong to different communities (6)
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Figure 1 | Two binary trees connected at one node. The x-axis shows the
number of nodes in community Bas a fraction fof nodes in community A.
The triangles and squares show the performance of the two operators in
detecting communities as measured by the normalised mutual
information (NMI): 0 = NMI = 1, where NMI = 1 means perfect
community detection and NMI = 0 means random allocation of nodes to
communities (see Methods for more details). (a) 400 nodes in community
A. Number of nodes in community B varies from from 40 to 400. (b) 500
nodes in community A. Number of nodes in community B varies from 50
to 500.

_ Cin + Cout

Let ¢ be the average degree of the network and

Cin — Cout

Coninus = denote the degree of mixing between communit-

ies in the network. No mixing between the communities implies
Cminus = ¢ and complete mixing between the two communities
implies Cpinus = 0.

We demonstrate the effect of hanging trees by selectively adding
leaves to a network based on the stochastic block model. We create a
stochastic block model network with two communities, each with
500 nodes, using parameters ¢;, = 4.8, ¢,,; = 1.2. We add one leaf to
each node whose number of connections within the community
exceeds its connections outside its community by at least 3. This
selects the nodes whose degree is greater than the median and whose
membership is slightly ambiguous.

Figure 2 shows that the non-backtracking operator B does not
detect two communities as its spectra has only one real eigenvalue

outside the bulk. The additional information provided by the leaves is
not available to the non-backtracking operator. On the other hand,
Figure 2 shows that the reluctant backtracking operator accounts for
the leaves in the network and its second eigenvector successfully
detects two communities.

Stochastic block model based networks. The quality of community
detection is inversely proportional to the degree of mixing between
different communities in a network. The performance of any spectral
method falls to chance below a predictable mixing threshold for
simulated networks based on the stochastic block model****. This
threshold is defined as the minimum network mixing variable, ¢,y
where at least one real positive eigenvalue lies outside the bulk, and so
some community structure is, in principle, detectable. Below this
limit a block-model network becomes spectrally indistinguishable
from an Erdos-Rényi random graph and therefore no communities
can be reliably detected by spectral methods. Consequently, simu-
lated networks based on the stochastic block model serve as a useful
benchmark for testing the performance of different community de-
tection methods. Krzakala et al.*® showed that the non-backtracking
operator B can detect communities in sparse networks right down to
this theoretical limit where other spectral methods fail.

Figure 3 shows the performance of the four operators B, F, R and P
on a set of networks based on the stochastic block model with 10°
nodes with constant average node degree and varying degrees of
mixing between communities (0.1 = ¢,;4s = 3.0). Both the non-
backtracking B and flow F matrices are able to detect the presence of
two communities above chance levels down to the theoretical limit.
The reluctant backtracking operator R’s performance is comparable
to both. Thus the reluctant backtracker R accounts for hanging trees
in a network, yet there is no penalty for detecting communities down
to the theoretical limit.

By contrast, the normalised reluctant backtracker P performs
worse on average than all other operators, and also has the widest
variation in performance. As such, close to the theoretical limit it
only occasionally shows above-chance performance.

Qualitative features of the normalised reluctant operator P’s
eigenspectrum are potential contributing factors. The maximum
eigenvalue of the normalised reluctant operator P is always 1,
therefore all other eigenvalues are constrained to be less than 1.
Additionally, the bound of the bulk eigenvalues is dependent on
the average degree of the network, ¢ which is held constant at 3
while the degree of mixing c,,;,,s varies from 0 to 3. When the
number of connections between communities increases due to
greater mixing between communities, random walkers associated
with the reluctant operators P and R migrate between communit-
ies slightly more easily compared to the non-backtracking opera-
tors (B, F) leading to real eigenvalues being pushed outside the
bulk. The fixed bounds on both the bulk and the upper eigenvalue
of the normalised reluctant operator P suggests a limited range for
absorbing these noisy eigenvalues before their magnitude sur-
passes the second largest real eigenvalue. Thus, close to the theor-
etical limit where mixing is high, the community structure could
become undetectable for P. This appears not to be the case for the
reluctant operator R, as its eigenvalues are unbounded. However,
the normalised reluctant operator P is seemingly not penalised for
this limitation in real-world applications (as we show below in
Figure 4). A full understanding of the operator P’s performance
needs a formal precise analysis of its spectral properties, which is
the subject of future work.

Real world networks. Table 1 and Figure 4 compares the effective-
ness of the reluctant and non- backtracking matrices on three real
world data sets: the Zachary karate club', the social network of
dolphins in Doubtful Sound®, and word adjacencies"". In Figure 4
we plot the distribution of eigenvalues of each operator, showing
that both the non-backtracking (B, F) and reluctant-backtracking
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Figure 2 | Stochastic blockmodel network with additional leaves. Final network parameters after leaf addition: n = 1273, m =
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where # denotes the number of nodes in the network, and m denotes the number of undirected edges in the network. All the random walk operators
are square matrices of order 2m. (a) Eigenvalues of a representative non-backtracking matrix B. Note that there is only one real eigenvalue outside the

bulk. (b) Eigenvalues of a representative reluctant backtracking matrix R.

(R, P) operators have more than one outlying eigenvalue and
can thus detect community structure in these networks. The
reluctant backtrackers detect communities comparably to their
respective non-backtracking counterparts, and there is no loss of
performance when using the reluctant matrices rather than the
non-backtracking matrices. Rather, we found that the main
difference in performance depended on whether or not the
operators are normalised. This is particularly striking for the
dolphin social network, for which the normalised operators
perform similarly and both markedly better than the unnormalised
versions.

Modularity maximisation. Newman®' showed that the second
leading eigenvector of the flow matrix F maximises the widely-
used modularity function Q', connecting the non-backtracking
method to the idea of community detection as an optimisation
problem. We show that the reluctant backtracking operator P also
approximately optimises the modularity function Q.

Assume an unweighted undirected network of size n with m edges
specified by the adjacency matrix A. The modularity function Q is
defined as

1 did;
Q: ﬁz [Azj - Z_H/i] 5gigj (7)
Yy

Ajj: presence/absence of edge between nodes i and j.

d;: degree of node i.

gi: group membership of node i.

m: number of edges in the network.

Following Newman’s setting and notation*', assume that the net-
work is divided into two communities and define the n dimensional
group membership vector s with elements s; € {—1, 1} denoting the
membership of each node in the network. We define the quadratic
form

T=uT(P—11T)V ©

u,v : 2m dimensional unit vectors 1=(1,1,1, .. .)/\/2m,

If we make the particular choice u;_,; = v;_,x = s;, meaning that the
elements of both vectors v and u are equal to the group index of the
node from which the corresponding edge emerges, then

u’Pv= Z

1 1
— 010+ 0i(1—0i) | ———sis;
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Figure 3 | Community detection performance on the stochastic block
model. We plot normalised mutual information of the recovered communities
compared to the planted communities as a function of the degree of mixing in
the block model network (1000 nodes, average degree ¢ = 3). Each data point
shows the mean and standard deviation of NMI for the different operators as
applied to 20 networks with the given mixing parameters.
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Figure 4 | Real world performance. The dots are the eigenvalues of the respective matrices. The black circle is the approximate analytical bound of
the bulk eigenvalues for the non-backtracking and flow matrices, respectively 1/(c) (Ref. 20) and /(c/(c—1)}/(c) (Ref. 21), where cis degree, and () is an
average. These bounds were derived for the stochastic block model, so are used here as an heuristic guide for the distribution of eigenvalues resulting from
the real-world networks, and computed using their degree distribution. # denotes the number of nodes in the network. m denotes the number of
undirected edges in the network. All the random walk operators are square matrices of order 2. Values in legends are NMI from Table 1.
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Table 1 | Performance (measured as normalised mutual information) of different operators as applied to real datasets
Reluctant Non backtracking Normalised reluctant Flow
Karate 1 1 0.8365 0.8322
Dolphins 0.5445 0.4984 0.8141 0.7883
Adjnouns 0.3299 0.3396 0.4703 0.4853
Also it follows that Determining the number of communities in a network is a problem
- 1 by itself and knowing the number of communities in a network can
uwll'v=_— Z 8= 5 Z AjjAgs;si improve the performance of community detection methods.
edges j—i ijkl Krzakala et al.* suggested a heuristic to determine the number of
edges [=k (10) communities in a given network when using the non-backtracking
1 pdd” matrix B. They derived an approximate analytical bound for the
“om Z didisisi =s > uninformative eigenvalues lying inside the bulk for sparse stochastic
J block model networks and found that the number of real-valued
eigenvalues lying outside the bulk’s radius served as a good heuristic
Therefore to estimate of the number of modules in model networks. Newman
derived a similar bound for the flow matrix F*'. When applied to real-
Q= 1 u’ (p— llT)V, world networks, a further heuristic is to compute these bounds using
2m the mean degree of the real-world network and use them as a guide to
(11) " the number of modules in that network. We plot these approximated

1 T( ddT>
=—s (A——— s
2m 2m

Since the normalised reluctant backtracker P also optimises the
modularity function, our spectral solution coincides with Newman’s.
We summarise Newman’s solution here, refer to Ref. 21 for further
details. Solving equation 11 exactly is hard but an approximate solu-
tion can be found by standard relaxation techniques. Allow uand vto
independently take any real value rather than only =1 and apply the
constraint that u” v = 2m. This modified problem can be solved by
the method of Lagrange multipliers. We get the following equation
by introducing the multiplier / and differentiating with respect to
elements of u

(P—11")v=1v (12)
The leading eigenvector of P — 117 or the second leading real eigen-
vector of P exactly optimises the relaxed problem. We arrive at the
approximate solution of the original unrelaxed problem by setting

si=sgn (Z Vio j> , 1.e. we sum up all the elements of the eigenvector

that emerge from node i and assign s; = 1 if the sum is positive or —1
if it is negative. This is very similar to the algorithm used by Krzakala
et al.* with the difference that we sum up edges emerging from a
node rather the ones incident upon it.

Discussion

We propose a new reluctant backtracking operator to detect com-
munities in sparse networks that accounts for hanging trees. Unlike
other recent operators such as the non-backtracking matrix and the
flow matrix, the reluctant backtracking operator accounts for the
presence of hanging trees in a network and its eigenspectrum is
shaped by their presence. We demonstrate the utility of the reluctant
backtracking operator by detecting communities in simulated net-
works where the non-backtracking matrix is unable to do so and also
show a comparable ability to detect communities in benchmark
simulated and real networks.

Newman®' showed that the second leading eigenvector of the flow
matrix approximately maximises the modularity function by ensur-
ing conservation of probability at each node. Following a similar
argument we also show that the eigenvector of the normalised reluct-
ant backtracking matrix P approximately maximises the modularity
function.

An interesting future problem is to extend the reluctant backtrack-
ing approach to reliably detect more than two communities.

bounds for our sample of real-world networks in Figure 4; we note
that, like the flow matrix F, the eigenvalue distribution for our nor-
malised reluctant backtracker P is particularly well-behaved with
respect to the approximated bounds compared to the unnormalised
matrices. We leave the determination of the bound for the reluctant
operators for future work, as they do not follow simply from those
derived for the non-backtracking matrices.

However, because of the approximations involved, the heuristic
can fail for real®® and simulated networks®, by predicting too many
real-valued eigenvalues outside the bulk and thus predicting too
many modules. The optimisation of modularity Q by the second
eigenvector of both the flow F and normalised reluctant-backtracker
P matrices suggests two further solutions for finding more than two
communities. The first solution is a more cautious approach that
treats the total number g of real eigenvalues outside the approxi-
mated bulk radius as an upper limit for the number of communities
in the network®. We can identify these communities by first taking
each of the g — 1 eigenvectors corresponding to the g — 1 eigenvalues
(remembering that we start from the second eigenvector) and con-
verting them into a length n vector as before — we sum over the
eigenvector entries corresponding the same source node. We can
then cluster in the R?~! space defined by these node vectors, using
a standard clustering algorithm such as k-means: we cluster for each
k € [2, g — 1], and compute Q for each k, retaining the clustering
that maximises Q. The second solution is to apply the iterative bisec-
tion algorithm from Ref. 11. We initially divide the network into two
communities using the second leading eigenvector of F or P, then
iteratively divide each sub-division using the same algorithm. We
compute Q for each sub-division (adjusted to account for the remain-
der of the network''), stopping when Q < 0.

The difference in performance between the normalised and non-
normalised versions of the operators on the real-world networks
hints that normalisation is incorporating more information about
the network’s structure than is available to the unnormalised oper-
ator. Normalisation adds information about the degree of the trans-
ition node i in the path j — i — k to each non-zero element of the
matrix of the normalised operators F and P. By contrast, each path
from node j — k in the non-backtracking matrix B has an equal
weight of 1 irrespective of the degree of the intermediate node i.
This new information affects the eigenspectrum of the normalised
operators, and thus likely leads to the observed differences in com-
munity detection performance. Precisely how and when this addi-
tional information is beneficial for detecting communities is the
subject of future work.
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Methods

Normalised mutual information. Given a network with two possible partitions of its
nodes into communities, normalised mutual information (NMI) quantifies the
overlap between these two partitions. NMI serves as a metric to quantify the absolute
performance of a community detection method and compare the relative
performance of different methods.

Assume a network with N nodes and community partitions A and B. A4; is the
subset of nodes in the network that belong to community i in partition A and B; is the
subset of nodes in the network that belong to community j in partition B. Let 1, and
np be the number of communities in the partitions A and B respectively (in this paper
we have ny = ng = 2 throughout). The confusion matrix F captures the overlap
between the two partitions: element F; counts the number of nodes common to the
communities A; and B;. Normalised mutual information®” is defined as

—2300, 30 Fyln(FyN/NiNy)
iy Niln(N;/N)+ 327" | Njln(N; /N)

NMI(A,B)= (13)

where

na,ng : number of communities in partition A and B

Ni,N; : number of nodes in communities A; and B;

NMI always lies between 0 and 1; NMI = 1 only if the partitions A and B are identical
and NMI = 0 only if the partitions A and B are completely independent of each other.

Community detection algorithm and numerical considerations. Given the
adjacency matrix of a network, we first generate one of the matrices R or P. Following
Krzakala et al.*°, we calculate its second largest absolute real eigenvalue and the
associated eigenvector. The eigenvector has 2m elements corresponding to each
directed edge in the network. We group the elements of the eigenvector by the group
index of the source node of each edge and sum them up to create a new vector that has
n elements corresponding to each node in the network. We partition the network into
two communities by grouping all nodes that have the same sign; the sign of each
element represents the estimate of the reluctant backtracking operators of the node’s
community.

If the network has less than 500 nodes, we calculated all the eigenvalues and
eigenvectors using the eig function in MATLAB based on the QR algorithm because it
is feasible to quickly calculate on a desktop computer all the eigenvalues and eigen-
vectors for networks where the number of edges, m is within one order of 1000. When
the network is large and the number of edges becomes greater than 10000, it became
impractical to quickly calculate all the eigenvalues and eigenvectors and we resort to a
different approach since our community detection algorithm does not require us to
know all the eigenvalues to estimate the community structure of the network. If the
network was larger than 500 nodes, we employed a heuristic to find the second largest
real eigenvalue by magnitude. We first calculated the largest 50 eigenvalues by
absolute value and the associated eigenvectors using the eigs function in MATLAB
that is suited for sparse matrices and is based on the implicitly restarted Arnoldi
iteration method?®. We then selected the eigenvalues whose complex part was less
than 0.5 X 107* to allow for the inexactness of the eigenvalue algorithms and from
these finally chose the eigenvalue with the second highest absolute value and its
associated eigenvector. The number of eigenvalues that need to be calculated before a
real eigenvalue is found is mostly dependent on the degree of mixing in the network
rather than the number of edges or nodes in the network. If the communities in the
network are strongly mixed then the real eigenvalues will be buried deep within the
bulk even if the network has few nodes and the real eigenvalues will be detached from
the bulk in a large network if the communities are weakly mixed.
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