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Abstract
Groundwater is increasingly becoming a permanent and steady water source for the 
growth and reproduction of desert plant species due to the frequent channel cutoff 
events in arid inland river basins. Although it is widely acknowledged that the acces-
sibility of groundwater has a significant impact on plant species maintaining their 
ecological function, little is known about the water use strategies of desert plant 
species to the groundwater availability in Daryaboyi Oasis, Central Tarim Basin. This 
study initially determined the desirable and stressing groundwater depths based on 
ecological and morphological parameters including UAV- based fractional vegetation 
cover (FVC) images and plant growth status. Then, leaf δ13C values of small-  and big- 
sized plants were analyzed to reveal the water use strategies of two dominant woody 
species (Populus euphratica and Tamarix ramosissima) in response to the groundwater 
depth gradient. The changes in FVC and growth status of plants suggested that the 
actual groundwater depth should be kept at an appropriate range of about 2.1– 4.3 m, 
and the minimum groundwater depth should be less than 7 m. This will ensure the 
protection of riparian woody plants at a normal growth state and guarantee the co-
existence of both plant types. Under a desirable groundwater condition, water alter-
nation (i.e., flooding and rising groundwater depth) was the main factor influencing 
the variation of plant water use efficiency. The obtained results indicated that big- 
sized plants are more salt- tolerant than small ones, and T. ramosissima has strong 
salt palatability than P. euphratica. With increasing groundwater depth, P. euphratica 
continuously decreases its growth status to maintain hydraulic efficiency in drought 
condition, while T. ramosissima mainly increases its water use efficiency first and de-
creases its growth status after then. Besides, in a drought condition, T. ramosissima 
has strong adaptability than P. euphratica. This study will be informative for ecological 
restoration and sustainable management of Daryaboyi Oasis and provides reference 
materials for future research programs.
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1  | INTRODUC TION

Water resources are scarce but essential for fragile endorheic 
river– floodplain ecosystems in the middle Asian drylands (Karthe 
& Daniel, 2017; Schäfer et al., 2017). In these areas, desert ripar-
ian forests mainly consist of phreatophytes, Populus euphratica Oliv., 
and Tamarix ramosissima, which are primarily found in the floodplains 
of the catchments and are viewed as the lifeline of riparian zones 
(Han, Zhao, Feng, & Shi, 2015; Yu et al., 2021; Zhang, Zhou, Guan, 
et al., 2019) by providing critical habitats for various species and 
functioning as an "ecological shelter" against desertification (Ding 
et al., 2017). In desert riparian zones, groundwater is considered as 
a permanent and steady water source for native plant growth and 
reproduction due to the limited surface water flows and hyper-
arid climate conditions induced by severe drought events (Eamus 
et al., 2006; Evaristo & Mcdonnell, 2017; Li et al., 2020). Besides, in 
groundwater- dependent arid ecosystems, plants could suffer from 
water stress when the groundwater depth is too deep, whereby soil 
water salinity could restrain plant growth when the water depth is 
too shallow (Maihemuti et al., 2021). Abiotic stress, such as water 
stress and salt stress, is one of the most deleterious environmen-
tal factors affecting plant growth, reproduction, and survivabil-
ity during whole developmental stages (Galicia et al., 2020; Ma 
et al., 2020; Sun et al., 2010). Moreover, severe stress, including 
salt stress, may cease seed germination, decrease plant productivity 
(biomass) and growth status (vitality), and even lead to the death of 
the plants (Halik et al., 2019; Li, Si, Zhang, Gao, Luo, et al., 2019; Yu 
et al., 2018; Wang et al., 2013). Therefore, desert riparian plants are 
always sensitive to the fluctuations in the groundwater table associ-
ated with the variations in flood frequency, magnitude, duration, and 
seasonal discharge (Halik et al., 2019; Keram et al., 2019). These vari-
ations in the groundwater table may cause crucial constraints on the 
structure, distribution, and dynamics of riparian forests if they do 
not acclimate to this variability (Han, Zhao, Feng, Disse, et al., 2015; 
Li, Tong, et al., 2019; Schäfer et al., 2017; Ye et al., 2009). Several 
studies have reported that the contradiction between enlarged irri-
gated agriculture in the midstream area and degraded groundwater- 
dependent natural ecosystem in the downstream sector has become 
increasingly prominent in the arid and semiarid endorheic river basins 
in NW China (Ding et al., 2017; Guo et al., 2017; Halik et al., 2019; 
Wang et al., 2014). As a result, ecosystem functions provided by the 
floodplain areas have been severely damaged and desertification has 
been extended because of these deteriorations (Mamat et al., 2018). 
Therefore, to meet this challenge, more urgent studies are required 
to investigate the desert riparian forests' response to the different 
groundwater status, which will provide informative references for 
ecological conservation and restoration in the dryland downstream 
oases.

The isotopic ratio of 13C/12C in plant tissue relative to a geo-
logic standard is defined as foliar carbon isotopic composition (δl3C) 
(Samuelson et al., 2018). Currently, δl3C has been used to assess 
plant intrinsic water use efficiency (WUE) because there is a sig-
nificant positive correlation between the two (Liu et al., 2020; Ma 
et al., 2018). WUE is also a critical indicator that indicates the ability 
of plants to adjust to water deficits, and it reflects the coupling rela-
tionship or trade- offs between water and carbon cycles in the eco-
system (Bai et al., 2020; Verlinden et al., 2015). Foliar δl3C not only 
offers a comprehensive insight into how plant species interplay with 
and respond to their biotic and abiotic environments but also reveals 
the resource acquisition strategies of plant species throughout the 
growth period (Cao et al., 2020; Fu et al., 2020; Ma et al., 2018). In 
addition, previous studies on the water use efficiency (WUE) of plant 
species have reported that foliar δl3C is the best option for quantify-
ing the WUE of plant species due to its advantages of high precision 
and low destructiveness (Bush et al., 2017; Marhaba et al., 2020; Zou 
et al., 2019). In recent decades, several studies have been conducted 
on the response of plant δl3C to climate variables (Gatica et al., 2017; 
Liu et al., 2015; Sun et al., 2018), soil variables (Liu et al., 2020; 
Ogaya & Peñuelas, 2008; Verlinden et al., 2015), and habitat con-
ditions (Song et al., 2019; Zou et al., 2019). Although few attempts 
have taken an interest in WUE of desert riparian forests in Tarim and 
Heihe River basins in arid regions of northwestern China, the studies 
have only taken into account single plant types or unique age struc-
ture (Ren et al., 2014; Si et al., 2015). Furthermore, the water use 
strategies of desert plants to the decreasing water availability in en-
dangered terminal oases of arid inland river basins are still unknown.

The Daryaboyi deltaic oasis in the lower reaches of the Keriya 
River is located in the center of the Taklimakan Desert at the up-
most arid region of northwestern China (Figure 1). This oasis still 
retains its “primitive” state with a weak human interference, which 
is different from most existing modern oases in Central Asia (Shi 
et al., 2019; Zhang et al., 2011). The native vegetation types of this 
area are mainly dominated by Populus euphratica (P. euphratica) and 
Tamarix ramosissima (T. ramosissima), which are considered to be 
groundwater- dependent for maintenance of growth and ecological 
function (Hao et al., 2010; Li, Tong, et al., 2019; Li et al., 2010; Wu 
et al., 2016). These woody species play an irreplaceable role in pro-
tecting the development of oases, and maintaining the stability of 
riparian ecosystems, and the ecological functions of sand resistance 
and saline soil improvements (Chen et al., 2019; Wang et al., 2018; 
Zhang, Deng, et al., 2019). However, the expanding water demands 
for irrigation purposes in the up/midstream of Keriya River in the 
last decades have significantly decreased the river runoff into 
the downstream oasis. Consequently, the groundwater level has 
dropped significantly (Shi et al., 2019), which has caused a severe 
degradation of Populus and Tamarix communities in the oasis. In 
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turn, the decline of the ecological function of riparian forests in 
Daryaboyi has resulted in the acceleration of desertification, pe-
tering out of river channels, and abandonment of settlements, es-
pecially in the northern part of the oasis. Over the past decades, 
tree populations have experienced severe drought, and almost 
50% of the oasis area has been lost (Shi et al., 2019; Zhang, Zhou, 
& Nijat, 2019). Therefore, a scientific solution for the conservation 
and restoration of the two constructive desert riparian species 
in the Daryaboyi Oasis is urgently needed. However, very little is 
known about the water use strategies of dominant riparian species 
to different groundwater depth conditions. The main objectives ad-
dressed in this study are as follows: (a) to determine the desirable 
and stressing groundwater depths based on vegetation cover and 
plant growth status and (b) to examine the changes in water use 
strategies of plants in response to the groundwater depth gradi-
ent. From these perspectives, we hypothesized that the two plant 
species will not be subjected to water stress or salt stress under a 
desirable groundwater condition and will have a similar water use 
efficiency (δl3C). Additionally, we also hypothesized that the water 
use efficiency of plants would increase with the decrease in water 
availability and result in higher foliar δ13C values.

2  | MATERIAL S AND METHODS

2.1 | Trial area

The Keriya River Basin (35°14′– 39°29′N; 81°09′– 82°51′E) is located 
in the southern edge of the Tarim Basin and mid- northern slope of 
the Kunlun (Karakorum) Mountains in Xinjiang Uyghur autonomous 
region, NW China (Figure 1). The climate is a typically arid continen-
tal climate with an average annual temperature of 11.6°C, precipita-
tion of approximately 44.7 mm, and average evaporation of about 
2,500 mm. The endorheic river basin consists of five prominent 
landforms of upstream mountains and piedmont Gobi, midstream al-
luvium and diluvium open area (Keriya Oasis), and downstream natu-
ral desert oasis— Daryaboyi, with the terrain declining from 5,460 to 
1,180 m (Muyibul et al., 2018; Seydehmet et al., 2018).

The Daryaboyi Oasis (38°16′– 38°37′N; 81°05′– 81°46′E), the 
vanishing area of the Keriya River, is located in the hinterland of the 
Taklimakan Desert covering approximately 2,326.98 km2 (Figure 1). 
The oasis was formed by vessel- shaped countless channel networks 
with three main river channels. The climate is hyperarid with annual 
precipitation of <10 mm (Zhang et al., 2011) and potential evapo-
ration of 3,775 mm, which is almost 300 times greater than annual 
rainfall (Marhaba et al., 2020). In addition, the annual mean tempera-
ture is 12.1°C with the mean of minimum (Dec– Jan) and maximum 
temperature (July) of −17.07 and 36.26°C, respectively (referred 
to Tazhong station). The native vegetation is primarily drought- 
resistant plants such as Populus euphratica Oliv, Tamarix ramosissima, 
and Phragmites australis, and other plants with a smaller distribution 
range. Sandy soil is the primary soil type in this area.

2.2 | Experimental design and data acquisition

In mid- August 2019, the vigorous growth period of dominant plants, 
twenty- five unmanned aerial vehicle (UAV) survey images were col-
lected to provide a broader assessment of the relationship between 
groundwater depth and vegetation cover. Besides, six focal experi-
mental plots with different groundwater depth conditions were used 
to measure plant size, growth status, and leaf carbon content.

2.2.1 | Unmanned aerial vehicle vegetation 
coverage data

Unmanned aerial vehicle (UAV) vegetation survey plots 
(100 m × 100 m) were randomly selected within the research area 
according to the distribution patterns of dominant species (P. eu-
phratica and T. ramosissima) and river system characteristics of 
the oasis (Figure 1). The DJI Phantom 4 (DJI- Innovations Inc.) was 
used to obtain high- resolution RGB images of vegetation survey 
sites such as the centimeter level with 80% overlap rate. The im-
ages were preprocessed using the photogrammetry software Pix4D 
mapper (Pix4D Inc.). Five vegetation indices were used to calculate 

F I G U R E  1   Sketch map of the study 
area and the locations of UAV vegetation 
surveying and experimental sampling sites
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the vegetation cover percentile value using the ENVI 5.3 (Esri Inc.), 
and the ExGR index was selected due to its high accuracy (Table S1).

2.2.2 | Selection of experimental plots

Experimental plots (100 m × 100 m), where P. euphratica and T. ra-
mosissima coexist, were established according to the distribution 
patterns of dominant species and groundwater depth gradient 
(Figures 1 and S1). The growth status of each tree/shrub stands was 
defined according to the classification criteria reported by Aishan 
et al. (2015) based on the growth status (GS), including the degree 
of crown loss, leaves and branches, and canopy extension (Tables 1 
and S2).

In this study, the species' growth phase was grouped into three 
classes based on diameter at breast height (DBH) and crown diameter 
(CD), for example, for P. euphratica the DBH in the range of 0– 10 cm 
(small- sized plants), DBH in the range of 11– 40 cm (medium- sized 
plants), and DBH >40 cm (big- sized plants); and for T. ramosissima, 
0 < CD ≤ 2 m (small- sized plants), 2 < CD ≤ 3 m (medium- sized 
plants), and CD >3 m (big- sized plants).

2.2.3 | Groundwater data

Groundwater data were obtained from 19 observation wells estab-
lished in the sampling plots or the vicinity of the plots (Figure 1). The 
HOBO automatic monitoring device (Onset Computer Corporation) 
was used to measure and record the daily groundwater depths (6 times/
day). Correspondingly, groundwater samples were taken in April and 
November (2019) from each observation well, and the measurement 
processes for the samples were carried out following the water quality 
analytical methods (SL78- 94- 1994). The chemical components in all the 
samples were tested in the Ecological and Environmental Analysis and 
Testing Center, Xinjiang Institute of Ecology and Geography, Chinese 
Academy of Sciences. The total dissolved solid (TDS) value is equal 
to the sum of major cations and anions. Ordinary kriging interpola-
tion is a simple and accurate method commonly used to estimate the 
groundwater spatial distribution pattern (Ainiwaer et al., 2019; Ohmer 
et al., 2017; Xiao et al., 2016). Therefore, the groundwater depth data 
of UAV sampling plots were extracted using the Ordinary kriging 

geostatistical method by applying the ArcGIS software (Esri Inc., ver-
sion 10.4). Groundwater depths of the area were classified into four lev-
els: 0– 2, 2– 4, 4– 6, and 6– 8 m based on the depth gradient of observed 
and extracted water table data.

2.2.4 | Leaf sampling and carbon isotope analysis

In each experimental sampling plot, three to five tree/shrub stands 
with the same growing status were sampled, and leaves on the sunny 
side were collected. Only small-  and big- sized plants were discussed 
in this study due to their high sensitivity to water stress. All leaf 
samples were rinsed and air- dried at room temperature (20°C), fol-
lowed by oven- drying at 60°C for 48 hr. Finally, oven- dried leaves 
were ground to a powder and sifted through a 0.15- mm sieve, 
and 0.5 g of the preprocessed powder from each leaf sample was 
used for test analysis. δ13C measurements were done using Delta 
V Advantage Isotope Ratio Mass Spectrometer (Thermo Fisher) in 
Xinjiang Institute of Ecology and Geography, Chinese Academy of 
Sciences. The carbon isotope abundance (δ13C, ‰) was expressed 
as the isotopic ratio of a sample relative to the Pee Dee Belemnite 
(PDB) standard calculated using Equation (1) (Qin et al., 2020):

where Rsample is the isotopic ratio of 13Csample/12Cstandard, and Rstandard is 
that of PDB standard.

2.3 | Data processing

Statistical analyses and data visualization were performed using the 
Microsoft Excel 2016 and OriginPro 2020 (Origin Lab Inc.). One- way 
analysis of variance (ANOVA) and Duncan's test were carried out 
using the SPSS 21.0 (IBM) to assess the significant differences be-
tween δ13C values of same plant species with different groundwater 
depths. Simultaneously, the Dunn– Sidak test was performed using 
the Paired Comparison Plot APP, OriginPro 2020 (Origin Lab Inc.), to 
determine a significant difference between δ13C values of two spe-
cies at the same groundwater depth.

(1)δ
13C(‱ ) =

[

Rsample − Rstandard

Rstandard

]

× 1000

Degree Growth status Morphological characteristics

V1 Excellent Crown almost or without signs of damage, that is, 
leaf loss ≤10%

V2 Good Crown slightly damaged, that is, leaf loss 11%– 25%

V3 Medium Crown moderately damaged, that is, leaf loss 
26%– 50%

V4 Senesced Crown heavily damaged, that is, leaf loss 51%– 75%

V5 Dying Tree almost strays, that is, leaf loss 76%– 99%

V6 Dead Fallen or no signs of vitality, that is, leaf loss 100%

Note: In this study, the GS of ≥ good state (V2) is referred to as a normal growth level.

TA B L E  1   Classification criteria of plant 
growth status
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3  | RESULTS

3.1 | Difference in vegetation characteristics related 
to groundwater depth gradient

Unmanned aerial vehicle (UAV) is a new platform that has been 
widely used for forestry applications because of its many advan-
tages, including availability, low budget, reliability, autonomy, and 
timely high- resolution data (Akturk & Altunel, 2019). The obtained 
results indicated that the fractional vegetation coverage (FVC) values 
of the plots ranged from 4% to 18% when the GWD was <2 m, with 
an average value of 10.84% (Figure 2). However, the highest average 
FVC value (30.79%) was observed at GWDs of 2– 4 m, and the val-
ues varied from 18% to 45%. The average value declined to 25.21% 
at GWDs of 4– 6 m, with the changing range of 11%– 33%. The FVC 
values of the plots ranged between 9% and 22% when the GWD was 
6– 8 m, and the average coverage was lower than 20%. Overall, the 
average coverage ratios of dominant species, mainly P. euphratica and 
T. ramosissima, in different plots exhibited a decreasing trend when 
GWD interval increased from 2– 4 m to 6– 8 m or decreased to 0– 2 m.

The “tree growth status” measurement can be used as a crucial 
indicator for assessing a forest ecosystem's health conditions, integ-
rity, and resilience (Halik et al., 2019). The differences in tree growth 
status in the six mixed plant plots (mainly consisting of P. euphratica 
and T. ramosissima.) along the groundwater availability gradients were 
grouped and are summarized in Table S1. For P. euphratica, small- sized 
plants grew in a normal state at GWDs of 2.1– 4.3 m, and significant 
numbers of dead stands were observed when the GWD was 5.7 m. In 
addition, medium- sized plants could not grow normally at 6.9 m (be-
longs to the medium growth status) and were subjected to senesce 
when the GWD dropped to 7.8 m. Besides, big- sized plants grew nor-
mally at GWDs ranging from 2.1 to 6.7 m, with dead twigs appearing 
at 7.8 m. For T. ramosissima, results obtained from field investigation 
indicated that small- sized plants belong to excellent growth level 
were observed at GWDs of 2.1– 4.3 m, whereas large proportions of 
small- sized plants were severely damaged or dead at GWD ≥5.7 m. In 
addition, the crown of middle- sized T. ramosissima plants were mod-
erately damaged at 7.8 m, while big- sized plants were in an excellent 
or normal state when the GWD was between 2.1 and 7.8 m.

3.2 | Changes in δ13C values of P. euphratica along 
with groundwater depth gradient

Leaf carbon isotope content is the key indicator that reflects the 
plant water use efficiency in arid regions. Evident changes were 
observed in leaf δ13C values of P. euphratica at different groundwa-
ter burial depths (Figure 3). Although the δ13C values of small- sized 
plants initially decreased to its lowest value of −28.98‰ at 3.1 m and 
sharply increased to a maximum value of −28.11‰ at 4.3 m, there 
were no significant differences between δ13C values at 2.1-  and 
3.1- m and at 2.1-  and 4.3- m GWD. However, the δ13C values differ 
measurably when the GWD increased from 3.1 m to 4.3 m (p < .05). 

For big- sized P. euphratica plants, the leaf δ13C values ranged from 
−29.01 to −29.16‰ at GWDs ranging from 2.1 to 3.1 m, and there 
were no significant changes in water use efficiency at this stage 
(p < .05). Interestingly, the δ13C value increased sharply and peaked 
at −27.07‰ when the GWD was 4.3 m, which was significantly 
higher than the δ13C value of GWDs at 2.1– 3.1 m (p < .05). The dif-
ferences between the leaf δ13C value in P. euphratica at GWDs rang-
ing from 4.3 to 8.7 m were not significant despite the value initially 
decreasing followed by a gradual increase (p < .05).

3.3 | Changes in δ13C values of T. ramosissima along 
with groundwater depth gradient

Figure 4 shows the response of the δ13C amount in leaves of small-  
and big- sized T. ramosissima plants to the groundwater depth gradi-
ent. For small- sized plants, the leaf δ13C value at 2.1- m GWD was 
higher than that at GWDs ranging from 3.1 to 4.3 m (p < .05), and 
almost the same degree δ13C values of the big- sized plants at GWDs 
between 5.7 and 6.7 m. This indicates that the water use efficiency 
of T. ramosissima at 2.1 m may have been affected by other influenc-
ing factors. There was no significant change in water use efficiency 
of T. ramosissima. at 3.1-  to 4.3- m GWD (p < .05). For big- sized plants, 
the water use efficiency of T. ramosissima sharply increased when 
the GWD increased from 2.1 m to 3.1 m and was almost 2.0‰ higher 
than that at 2.1- m GWD. Although a minor difference was observed 
for δ13C values at GWDs ranging from 5.7 to 6.7 m, the overall water 
use efficiency of T. ramosissima increased significantly when the 
GWD varied from 4.3 to 8.7 m (p <.05).

3.4 | Comparison of δ13C values in P. euphratica and 
T. ramosissima at different groundwater depth

For the small- sized plants grown at 2.1- m GWD, T. ramosissima had 
a higher δ13C value than at the other two sites, while the δ13C value 
in P. euphratica fell in between GWDs of 3.1 m and 4.3 m (Figure 5). 
Besides, the δ13C values in T. ramosissima (−26.83‰) were significantly 
higher when compared to the corresponding δ13C values in P. euphrat-
ica (−28.41‰) at GWDs of 2.1– 3.1 m (p ≤ .01 and p ≤ .05, respectively). 
The insignificant difference in leaf δ13C values between P. euphratica 
and T. ramosissima at 4.3- m GWD suggests that these two species had 
the same water use efficiency or similar water use strategies.

For big- sized plants, leaf δ13C values of both plant types re-
sponded differently to the changes in groundwater depth when the 
groundwater depth was <4.3 m (Figure 5). The δ13C value in T. ra-
mosissima was remarkably higher than that in P. euphratica when the 
groundwater depth was 3.1 m (p < .001), whereas an insignificant 
difference was observed at 2.1- m GWD. Surprisingly, the δ13C value 
in P. euphratica at a depth of 4.3 m slightly exceeded the correspond-
ing T. ramosissima δ13C value and was almost the same degree with 
P. euphratica δ13C value at 7.8 m. However, when the GWD was be-
tween 5.7 and 7.8 m, the δ13C values of both plants increased with 
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the increase in groundwater depth gradient, and the δ13C value of 
T. ramosissima was significantly higher than the corresponding P. eu-
phratica value (about 1.31‰) (p ≤ .05). The above results indicate 
that the overall water use efficiency of T. ramosissima is higher than 
that of P. euphratica in both small-  and big- sized plants.

4  | DISCUSSION

4.1 | Responses of vegetation characteristics to the 
groundwater condition

Groundwater is the primary and steady water source for riparian for-
ests in the Daryaboyi Oasis due to the sparse precipitation and lim-
ited surface water flow. Studies have reported that maintaining the 
desirable groundwater depth is vital for sustaining the function and 
healthy growth of xerophyte communities (Lang et al., 2016; Zhu 
et al., 2013). Desirable groundwater depth is defined as the limits 

of groundwater depths that satisfy the physiobiological demand for 
growth of natural vegetation without water stress caused by water 
deficiency or water salinity derived from higher groundwater level 
(Huang, Zhang, & Chen, 2019; Huang, Zhang, Zhang, et al., 2019; 
Wang et al., 2019). In this study, the probable desirable groundwater 
depth was estimated based on obtained UAV vegetation cover im-
ages combined with plant growth state (Table S1). The results indi-
cated that the average FVC value was highest (30.79%) at GWDs 
ranging from 2 to 4 m, and it declined to 25.21% at GWDs of 4– 6 m. 
The lowest FVC values of less than 20% were obtained when the 
GWD was >6 m or <2 m. This result was consistent with a study 
conducted downstream of the Tarim River (Hao et al., 2010). Tree 
vitality is a crucial indicator for assessing a forest's health conditions, 
integrity, and resilience (Halik et al., 2019). For both P. euphratica and 
T. ramosissima, small- sized plants grew normally only when the GWD 
was between 2.1 and 4.3 m, and the vitality of medium- sized plants 
declined from its normal state to a severely damaged level when 
the water depth was deeper than 5.7 m and 6.7 m, respectively. 

F I G U R E  2   Vegetation cover ratios 
under different groundwater depths in 
the Daryaboyi Oasis. In UAV fractional 
vegetation cover images, the green color 
represents vegetation, and the dark 
yellow represents bare land

F I G U R E  3   Carbon isotope content of P. euphratica leaves of 
small-  and big- sized plants. Different letters indicate significant 
differences (p < .05) between δ13C values of P. euphratica at 
different groundwater depths and vice versa (capital letters for big- 
sized plants and lowercase letters for small- sized plants)

F I G U R E  4   Carbon isotope content of T. ramosissima leaves for 
small-  and big- sized plants. Different letters indicate significant 
differences (p < .05) between δ13C values of T. ramosissima. at 
different groundwater depths and vice versa (capital letters for big- 
sized plants and lowercase letters for small- sized plants)
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However, a GWD of ≥7.8 m was not suitable for the normal growth 
of big- sized P. euphratica plants, but T. ramosissima still grew in a nor-
mal state even when the water depth was 7.8 m. The above results 
indicate that the desirable groundwater depth should be kept at 
about 2.1– 4.3 m when considering the normal growth stats of these 
two plant species at three size classes, which will support their sur-
vivability and regeneration. These findings are consistent with the 
results of previous studies conducted on the Lower Tarim River re-
gion. Ma et al. (2011), Chen et al. (2013), and Halik et al. (2019) re-
ported that the desirable ecological water level for P. euphratica and 
T. ramosissima in Lower Tarim River region should be below 4 m, and 
a water depth ≥9 m may cause partial or total senescence of P. eu-
phratica trees. The studies also reported that the suitable ground-
water depth for survivability of P. euphratica in Lower Tarim River 
region is 2– 4 m, and the threshold depth is 7– 8 m. The maximum 
biomass of Tamarix was observed when the GWD was <4.5 m, and it 
significantly decreased when the GWD was >7 m (Chen et al., 2015; 
Han et al., 2017; Hao et al., 2010; Li et al., 2010). Therefore, the ac-
tual groundwater depth should be kept at a range about 2.1– 4.3 m, 
and the minimum (threshold) groundwater depth should be less than 
7 m. This will help in the protection of riparian woody plants at nor-
mal growth state and will guarantee the coexistence of both plant 
types.

4.2 | Variations of plant water use efficiency 
under the desirable groundwater condition: effects of 
water alternation

Water stress can limit plant growth more significantly than any 
other factor (Si et al., 2015). Foliar δ13C can be used as a proxy for 

assessing the plant's physiological response to water stress within 
or interspecies. It is also an essential indicator for demonstrating 
plant water use efficiency due to the strong positive correlation 
between them (Cao et al., 2020). It has been reported that desert 
plant species resist water stress by improving water use efficiency 
(Marhaba et al., 2020). A parallel study in the lower reaches of Tarim 
River reported that plants of the same species or functional group 
will not be subjected to water stress and may have similar δ13C val-
ues when growing under a desirable groundwater condition (Ren 
et al., 2014). In this study, the foliar δ13C of P. euphratica and T. ramo-
sissima responded differently to the changes in water depth when 
the GWD was between 2.1 and 4.3 m. The δ13C value of big- sized 
T. ramosissima (−27.89‰) was slightly higher than that of P. euphra-
tica (−28.66‰) when the depth was 2.1 m, and the values were not 
significantly different (p > .05) (Figure 5). However, small- sized T. 
ramosissima plants experienced a higher δ13C value at a significant 
level (p < .05) than those at 3.1- m and 4.3- m GWD (Figure 6), and the 
value was also significantly higher than the corresponding P. euphra-
tica value (p ≤ .01). Ye et al. (2009), Huang, Zhang, and Chen (2019) 
and Huang, Zhang, Zhang, et al. (2019) reported that riparian plants 
could suffer from anoxia or salt stress when the groundwater level is 
too high, thereby harming plant mortality. In addition, Zhang, Zhou, 
and Nijat (2019) reported that salinity influences the distribution 
of P. euphratica by restricting the growth of stands and germina-
tion of seeds. Figure 6 shows that the TDS exhibited a trend of first 
decreasing and then increasing with an increase in the groundwater 
depth, and it reached its maximum when the groundwater depth 
was 2.1 m. In our field investigation, we found that P. euphratica 
trees begin to die from top to stem base, and small- sized plants have 
died out, whereas T. ramosissima still maintain its normal growth 
when the GWD is about 1.5 m (Figure S2). A previous study also 

F I G U R E  5   Difference in δ13C 
value in leaves of small-  and big- sized 
P. euphratica and T. ramosissima plants 
grown at different groundwater depths. 
The asterisk (*) indicates a significant 
difference between δ13C values of two 
plant species at the same groundwater 
depth (*p ≤ .05, **p ≤ .01, and ***p ≤ .001)

F I G U R E  6   Foliar δ13C, plant growth 
degree (V, Table 1), TDS (total dissolved 
solid), and SWC (subsurface soil water 
content from 50-  to 100- cm soil layer) 
values of experimental plots under 
different groundwater table depths
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reported that TDS up to 17.55 g/L could severely restrict WUE of P. 
euphratica saplings, resulting in a severe water deficit in the leaves 
and a sharp reduction in water transport via the xylem (Zhang, 
Deng, et al., 2019; Zhou et al., 2020). The above results combined 
with the growth status (Figure 6) indicate that small- sized plants in 
both plant species might suffer from salt stress induced by shallow 
GWD. In response, the plants resist this stress through different 
adaptive strategies such as reducing growth status in P. euphratica 
(Figure 6) and increasing water use efficiency by T. ramosissima. The 
obtained results in this study also suggest that big- sized plants are 
more salt- tolerant than the small- sized plants in the riparian ecosys-
tem, and T. ramosissima has stronger salt tolerability than P. euphra-
tica. These results are consistent with Li et al. (2013) and Zhang, 
Deng, et al. (2019).

Interspecific competition is more likely to occur under high 
water availability, thereby leading to the plants achieving rapid 
growth (Wu et al., 2016). Under a desirable groundwater depth, the 
water alternation induced by different recharging methods such as 
flooding and rising groundwater depth may cause competition be-
tween P. euphratica and T. ramosissima to access water resources 
for occupying the riparian zones, which results in an increase or 
decrease in leaf δ13C. Studies have reported that flooding is the 
precondition for P. euphratica growth, regeneration, and resto-
ration, mainly due to the pivotal role of recharging soil water and 
reducing soil salinity (Wu et al., 2018; Zhang, Deng, et al., 2019). 
In this study, the sampling site where GWD was 3.1 m had been 
flooded a week before field investigation, and thus, a high soil water 
content (Figure 6) with a comparatively lower TDS in groundwater 
(Figure 6) was observed. A significant difference in δ13C values be-
tween P. euphratica and T. ramosissima at 3.1 m in both size groups 
(p ≤ .05 for small- sized plants and p ≤ .001 for big- sized plants) can 
be attributed to the fact that P. euphratica growth is favored after 
an area has suffered flooding disturbances, and this may lead to 
the dominance of P. euphratica in the riparian plant communities. 
Although the δ13C values of the two species were not significantly 
different (p ≤ .05), the leaf δ13C content of P. euphratica, surprisingly, 
exceeded T. ramosissima when the GWD was 4.3 m. Wu et al. (2018) 
and Li, Tong, et al. (2019) have reported that T. ramosissima benefits 
from its rapid root system responses to groundwater alterations, 
which allows it to access groundwater earlier than P. euphratica 
once the groundwater depth is raised. Steinberg et al. (2020) found 
that Tamarix cover will increase with intra-  and interannual varia-
tion in groundwater depth. During the field investigation, we found 
a river channel with a small water flow located 20 m away from 
the sampling site, which is the probable recharging source for the 
groundwater. The high δ13C value of P. euphratica in this study could 
be due to the competition by the plants for groundwater alterna-
tion, which favors T. ramosissima over P. euphratica. However, no 
significant sensitive response was found for the small- sized plant 
species at 4.3- m GWD. Generally, the anomalies in δ13C values of 
woody plant species in a desirable groundwater depth range are 
more likely associated with salt stress and interspecific competition 

caused by water alternation. The long- term effect of these factors 
requires further investigation.

4.3 | Water use strategies of plants to the decreased 
water availability revealed by differences in δ13C and 
plant growth status

Riparian trees may experience water- deficit stress and reduce 
productivity as the water table accessibility is reduced (Pettit and 
Froend, 2018). Correspondingly, plants respond adaptively to exter-
nal stress conditions by applying internal adjustment mechanisms 
to resist drought stress induced by extreme or unexpected water 
shortage (Chen et al., 2013). In drought conditions, P. euphratica pho-
tosynthesizes using both sides of leaves to improve water use effi-
ciency and effectively controls transpiration loss by adjusting stoma 
conductance (Ren et al., 2014). On the other hand, T. ramosissima 
maintains a relatively high transpiration rate to avoid severe drought 
stress even in instances where the groundwater depth is more in- 
depth than for P. euphratica (Marhaba et al., 2020). In general, the 
capacity of P. euphratica to maintain hydraulic balance was signifi-
cantly weaker than that of T. ramosissima, and severe drought may 
lead to branch dieback in P. euphratica faster than in T. ramosissima 
(Li, Si, Zhang, Gao, Luo, et al., 2019). To adapt to severe drought, T. 
ramosissima utilizes an optimal water absorption strategy and shifts 
the water source to obtain more stable moisture, which was benefi-
cial to T. ramosissima to enhance hydraulic efficiency in the ecosys-
tem (Su et al., 2020). However, P. euphratica improves the hydraulic 
conductance of branches with minor hydraulic limitation and dimin-
ishes branches with higher hydraulic limitation to avoid total loss of 
internal hydraulic regulation (Li, Si, Zhang, Gao, Wang, et al., 2019). 
This study found that the change in groundwater depth resulted in 
a difference between the δ13C values of P. euphratica and T. ramosis-
sima when the GWD was between 5.7 and 7.8 m. Besides, the two 
plant species exhibited different growth states and water use strate-
gies in the same groundwater condition. For example, P. euphratica 
maintains its normal growth condition at a GWD between 5.7 and 
6.7 m mainly by decreasing aboveground biomass, thereby declining 
growth conditions (from excellent to good). At the same time, T. ra-
mosissima maintains its normal state by increasing water use effi-
ciency. However, when the GWD was 7.8 m, P. euphratica eliminated 
more branches to keep intrinsic water use efficiency, and T. ramo-
sissima maintained its life condition by using adaptive strategies to 
increase water use efficiency first and decrease health status after 
then (Figure 6). Results also showed that T. ramosissima has strong 
adaptability to drought conditions than P. euphratica has.

5  | CONCLUSIONS

In this study, water use strategies of dominant riparian woody plant 
species were identified along a gradient of groundwater depth in the 
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lower reaches of the Keriya River– Daryaboyi Oasis. The following 
results were obtained in the study:

1. Captured UAV- based vegetation cover images and field- observed 
plant growth status data indicated that the groundwater depth 
should be kept in a desirable range of about 2.1– 4.3 m to support 
the survivability, regeneration, and coexistence of P. euphratica 
and T. ramosissima communities. In addition, the threshold ground-
water depth should be smaller than 7 m to guarantee normal 
health status of overmature stands for both plant species.

2. Contrary to our hypotheses, the leaf carbon isotopic contents of 
the two plant species showed flexible patterns in the three sam-
pling sites where groundwater depths were appropriate. When 
the groundwater was 2.1– 4.3 m, salt stress and interspecific 
competition caused by water alternation, including flooding and 
rises in groundwater depth, led to the significant differences in 
leaf δ13C values of P. euphratica and T. ramosissima. The study also 
found that big- sized plants are more salt- tolerant than seedlings 
or small ones, and T. ramosissima has strong salt tolerability than P. 
euphratica.

3. Inconsistent with our hypotheses, P. euphratica generally utilizes a 
pure strategy with the reduction in water availability to withstand 
drought stress, while T. ramosissima adopts multiple solutions. 
The study also found that T. ramosissima has strong adaptability to 
drought conditions than P. euphratica.

The aim of this study was restricted by the availability of enough 
sampling tree/shrub stands, generally three to five, of different sizes 
in each experimental plot. Consequently, we were not able to discuss 
the response of medium- sized plants to the changes in groundwa-
ter depths, although they were recognized as the main composition 
of the plant communities. Therefore, further study on the response 
mechanisms of plants of all three sizes to the long- term dynamical 
changes of groundwater depth will be critical in the future.
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