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Abstract

The HEAT domains are a family of helical hairpin repeat domains, composed of four or

more hairpins. HEAT is derived from the names of four family members: huntingtin, eukary-

otic translation elongation factor 3 (eEF3), protein phosphatase 2 regulatory A subunit

(PP2A), and mechanistic target of rapamycin (mTOR). HEAT domain-containing proteins

play roles in a wide range of cellular processes, such as protein synthesis, nuclear transport

and metabolism, and cell signaling. The PCI domains are a related group of helical hairpin

domains, with a “winged-helix” (WH) subdomain at their C-terminus, which is responsible for

multi-subunit complex formation with other PCI domains. The name is derived from the com-

plexes, where these domains are found: the 26S Proteasome “lid” regulatory subcomplex,

the COP9 signalosome (CSN), and eukaryotic translation initiation factor 3 (eIF3). We

noted that in structure similarity searches using HEAT domains, sometimes PCI domains

appeared in the search results ahead of other HEAT domains, which indicated that the PCI

domains could be members of the HEAT domain family, and not a related but separate

group, as currently thought. Here, we report extensive structure similarity analysis of HEAT

and PCI domains, both within and between the two groups of proteins. We present evidence

that the PCI domains as a group have greater structural similarity with individual groups of

HEAT domains than some of the HEAT domain groups have among each other. Therefore,

our results indicate that the PCI domains have evolved from a HEAT domain that acquired a

WH subdomain. The WH subdomain in turn mediated self-association into a multi-subunit

complex, which eventually evolved into the common ancestor of the Proteasome lid/CSN/

eIF3.

Introduction

Helical repeat domains are widespread in eukaryotic genomes, and are involved in virtually

every major cellular process. These encompass several families, including tetratricopeptide

repeat (TPR), ankyrin repeat (ANK), armadillo (ARM), as well as the HEAT repeat domain

family (reviewed in [1–4]). The acronym HEAT is derived from the names of several founding

members of the family: huntingtin, eukaryotic translation elongation factor 3 (eEF3), protein

phosphatase 2 regulatory A subunit (PP2A), and mechanistic target of rapamycin (mTOR)

[5]. Of these families, ARM and HEAT repeat domains are only found in eukaryotes, and likely
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arose more recently during evolution [2]. Another, smaller group of eukaryote-specific helical

repeat proteins are the PCI domains. Most PCI domain-containing proteins are subunits of

the Proteasome “lid” regulatory subcomplex, the COP9 signalosome (CSN), or eukaryotic

translation initiation factor 3 (eIF3) [6–9]. The Evolutionary Classification of Protein Domains

(ECOD) database (http://prodata.swmed.edu/ecod/) [10, 11] groups the HEAT and PCI

domains in the ARM-repeat H-group, along with multiple other helical repeat domain

proteins.

Unlike most globular domains, helical repeat domains do not have a fixed size, with a dis-

tinct beginning and end. Instead, they consist of varying numbers of helical repeats. The larger

domains have varying curvatures and tend to form solenoids. This plasticity likely contributed

to the fast divergence of helical repeat domains in size, structure, sequence, and function.

Sequence analyses have revealed that it is often impossible to detect statistically significant

sequence similarity, even among members of the same domain family. The variable length,

irregular shapes, and low/undetectable sequence similarity have made the analysis of the evolu-

tion of these domain families challenging. Sequence conservation is limited to the interfaces

between adjacent helices and tends to be lower than for other domain families (reviewed in [1,

3, 5]).

The HEAT repeat domain family was first reported in 1995 [5]; these domains consist of a

series of helical hairpins, each formed by two antiparallel helices, packing against each other

and the two surrounding helical hairpins (Fig 1). The number of hairpins varies from as few as

four to over 50 [5, 12–14].

Along with another domain, MPN/Mov34, the PCI domain was discovered as a structural

unit found in three multi-subunit complexes, 26S Proteosome lid, CSN, and eIF3 [15–18]. PCI

domains have very similar organization to the HEAT domains and the other helical repeat

domains, but also have a “winged-helix” (WH) subdomain at their C-terminus. The WH sub-

domains mediate complex assembly with the WH subdomains of other PCI domain contain-

ing subunits. The 26S Proteosome lid, CSN, and eIF3 are multiprotein complexes with a

common ancestor and similar organization, including the presence in each of them of six PCI

domain-containing subunits: RPN3, RPN5, RPN6, RPN7, RPN9, and RPN12 in the Protea-

some lid; CSN3, CSN4, CSN2, CSN1, CSN7, and CSN8 in the CSN; and eIF3l, eIF3a, eIF3c,

eIF3e, eIF3m, and eIF3k in eIF3, respectively, as well as two MPN/Mov34 domain-containing

subunits. While the MPN domains show high degree of sequence conservation, this is not the

case for the PCI domains. For PCI domain-containing subunits in the Proteasome lid and the

CSN complexes, the pairwise correspondence was possible to establish based on sequence sim-

ilarity. However, similarity was only detected to two of their eIF3 counterparts (among CSN3,

eIF3l, and RPN3, and among CSN3, eIF3k, and RPN12). For the others, the pairwise corre-

spondence only became obvious when the structures of the Proteasome, CSN, and eIF3

became available. In each of these complexes, the WH subdomains form a ring in the core of

the complex. No similarity was detected between the six groups of PCI domain proteins [6–8,

16–18]. Exhaustive PSI-BLAST [19] searches yielded additional pairs of PCI domains with sig-

nificant sequence similarity; while using HHblits [20], we were able to detect statistically sig-

nificant sequence similarity among all PCI domains, but not between PCI and HEAT

domains, or between different groups of HEAT domains (data not shown). eIF3 in some

groups of organisms has lost part of its subunits and has fewer than six PCI domains. For

example, Saccharomyces cerevisiae (S. cerevisiae) has two of the PCI subunits: eIF3a and eIF3c;

while Schizosaccharomyces pombe (S. pombe) has four: eIF3a, eIF3c, eIF3e, and eIF3m subunits

[15, 21–26].

The structure similarity between HEAT and PCI domains is illustrated in Fig 1 and has

been noted previously [9], although no statistically significant sequence similarity could be
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Fig 1. Structure alignment between the HEAT domain of CTF3 and the PCI domain of RPN12. DALI [27]-based

structure alignment between the HEAT domain of S. cerevisiae CTF3 (6wuc.pdb, chain B) and the PCI domain of

human RPN12 (5l4k.pdb, chain P). The structures are shown in ribbon. CTF3 is colored gold; RPN12 is colored blue.

Only the aligned portions of the two structures are shown.

https://doi.org/10.1371/journal.pone.0268664.g001
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detected. However, as pointed out above, there is no detectable sequence similarity among dis-

tant members of the HEAT family, either [8, 17]. It is of course, theoretically possible that the

PCI domains and the different groups of HEAT domains with no detectable sequence similar-

ity could be the product of convergent evolution because of the simple repetitive nature of the

helical hairpins.

When performing DALI [27] searches with HEAT domains, we noticed that sometimes

PCI domain structures appeared in the search results with higher scores that some of the

known HEAT domains. This prompted us to investigate whether the PCI domains are a subset

of the HEAT family, or the PCI and HEAT domains are two related but distinct families. Here

we performed extensive comparative structure similarity analysis, which demonstrates that the

PCI domains are a sub-family of the HEAT domains, which originated when a HEAT domain

acquired a WH domain at its C-terminus.

Results

We reasoned that if structure similarity between the PCI domains and individual groups of

known HEAT domains is comparable to the structure similarity among the groups of HEAT

domains, then the PCI domains are a group of HEAT domains that acquired a WH subdomain

during evolution, after the HEAT domains had diverged from other helical repeat domain

families. Conversely, if all groups of HEAT domains have greater structure similarity to each

other than to the PCI domains, then the PCI domains split earlier, before the common ances-

tor of all HEAT domains (Fig 2):

• If the PCI domains have lower structure similarity scores with all groups of HEAT domains

than the scores among HEAT domain groups, then the PCI domains split off from their

common ancestor with HEAT domains before the individual HEAT domain groups

diverged from each other (Fig 2A).

• If the average similarity scores between PCI domains and at least one group of HEAT

domains are comparable, or higher, than the lowest average similarity scores between at least

two groups of HEAT domains, then the PCI domains are a group of HEAT domains that

have acquired a winged helix (Fig 2B).

Fig 2. Possible alternatives for the evolution of PCI domains. A. PCI domains (red) diverged from HEAT domains before the last common ancestor

of all HEAT domains and constitute a separate family of domains, as currently thought. B. The PCI domains are members of the HEAT domain family

that acquired a WH subdomain after the last common HEAT domain ancestor.

https://doi.org/10.1371/journal.pone.0268664.g002
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To account for the presence of a Winged Helix (WH) subdomain in PCI domains, but not

in the HEAT domains, which could affect the structure similarity scores, we also used PCI

domain structures with deleted WH subdomains. Finally, helical repeat domains pose unique

challenges for structure similarity software, because they have a repetitive structure, a variable

number of repeats, and varying curvature. To try to compensate partially for these factors, we

also used four-hairpin fragments of HEAT and PCI domains.

We performed extensive structure similarity searches with HEAT and PCI domains with

known structures, using the DALI server [27]. The searches with a HEAT domain structure

consistently yielded PCI domains with structure similarity scores (Z-scores) comparable to

those of other HEAT domains, and vice versa. The PCI domain structures were the only group

that consistently appeared in the searches with high scores. All further analysis was focused on

HEAT and PCI domain structures only; however, there could be other groups of domains with

comparable structure similarity to HEAT domains. We selected a representative set of struc-

tures with high-resolution and avoiding close relatives, and then subdivided the representative

structures into groups based on structure similarity scores. The HEAT domains fell into four

groups, based on structure similarity, as well as a couple of outlier structures, which were con-

sidered as a fifth group. (Table in S1 Table) The “founding” members of the HEAT domain

family, including Huntingtin, eEF3, and PP2A [5], were in Group 1. The MA3, MIF4G, and

W2 domains [12–14, 28–31] formed individual groups, Groups 2, 3, and 4, respectively.

Finally, two of the selected proteins, UTP10 and the FAT (FRAP, ATM, TRRAP) HEAT repeat

domain of mTOR [32, 33], distinct from the “classical” HEAT repeat domain in the N-termi-

nal portion of the protein [5], were outliers and placed in Group 5. The PCI domains formed

Group 6.

We found that the average similarity score between Group 1 HEAT domains and PCI

domains (Group 6), was 4.8 (where scores above 2 indicate similarity). This score was higher

than those between Group 1 and Groups 2 (4.2) and 4 (3.6). Similar results were observed for

the outlier HEAT domains (Group 5): average similarity score with the PCI domains (Group

6) was 4.6, whereas those with Groups 2 and 4 were both 3.9. The similarity score of Group 5

with Group 3 was 4.5, comparable to that with Group 6 (PCI) (Table 1, Fig 3A). This observa-

tion indicates that the PCI domains belong to the family of HEAT domains.

The same conclusion was reached when using a set of PCI domains with deleted WH sub-

domain, which tended to increase further the similarity scores between the PCI domains

(Group 6) and the HEAT domain groups. The score between Group 1 and Group 6 was now

5.1, and that between Group 5 and Group 6 was now 4.8. Furthermore, the new score between

Group 3 and Group 6 was now 4.6, comparable to that between Group 3 and Group 5 (4.5)

(Table 1, Fig 3B).

Finally, we used a set of protein fragments with only four helical hairpins, so that all struc-

tures had the same size. Again, the average similarity score between Group 1 HEAT domains

and PCI domains (Group 6), 4.6, was higher than those between Group 1 and Groups 2 (3.9)

and 4 (3.7). Likewise, the average similarity score of Group 5 with the PCI domains (Group 6),

5.2, was higher than those with Group 2 (4.2), Group 3 (4.8), and Group 4 (3.5) (Table 1, Fig

3C). Thus, all three versions of the analysis yield the same conclusion: that the PCI domains

are a group of HEAT domains that have acquired a WH subdomain (the scenario shown sche-

matically in Fig 1B, above).

Structure-based sequence alignment of helical hairpins from PCI and HEAT domain struc-

tures showed a preference for hydrophobic side chains at positions buried at the interface

between the two helices in the hairpin and, to a lesser extent, at positions facing adjacent hair-

pins, as expected (Fig 4). No obvious signature motifs could be observed at specific hairpin
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positions within groups or among the entire alignment, at least with the set of hairpins used

here.

Discussion

The comparative structure similarity analysis of HEAT and PCI domain structures presented

here shows that the PCI domains are members of the HEAT domain family. The canonical

HEAT domains (Group 1) have similar structure similarity with the MIF4G (Group 3) and

PCI (Group 6) domains. And in fact, the PCI domains appear more closely related to the

canonical HEAT domains than do the MA3 (Group 2) and W2 (group 4) domains (Fig 3).

Sometimes described as atypical HEAT domains [12] and found mostly in eukaryotic transla-

tion initiation factors and proteins involved in translation regulation and ribosome biogenesis,

the MA3 and W2 HEAT domains tend to be shorter, some with as few as four helical hairpins,

often arranged in tandem, and likely evolved from a common ancestor containing a MIF4G,

an MA3, and a W2 domains in a row, as observed in eIF4G and CBP80 (reviewed in [34–37]).

To avoid possible score bias due to the length of individual domains, we repeated the struc-

ture similarity analysis using four-hairpin fragments of the proteins, which corresponds to the

size of the smallest HEAT domains. The results with four-hairpin fragments confirm the

results obtained with the intact domains. Using the four-hairpin fragments has its own caveats,

because, while for the PCI domains, using the last four hairpins before the WH subdomain

ensures that corresponding fragments are used, this is not guaranteed to be the case for the

Table 1. Structure similarity scores among groups of HEAT and PCI domains.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

Classical HEAT MA3 MIF4G W2 HEAT Outliers PCI

A. Intact structures

Vs. group 1 11.1 +/- 2.8 4.1 +/- 1.1 6.8 +/- 1.6 3.6 +/- 1.2 5.2 +/- 1.5 4.8 +/- 1.5

Vs. group 2 4.1 +/- 1.1 12.9 +/- 4.1 9.0 +/- 2.4 7.8 +/- 1.8 4.0 +/- 0.6 3.1 +/- 0.8

Vs. group 3 6.8 +/- 1.6 9.0 +/- 2.4 13.6 +/- 3.7 5.4 +/- 1.4 4.5 +/- 0.8 4.2 +/- 1.2

Vs. group 4 3.6 +/- 1.2 7.8 +/- 1.8 5.4 +/- 1.4 12.7 +/- 1.6 3.9 +/- 1.3 3.1 +/- 1.0

Vs. group 5 5.2 +/- 1.5 4.0 +/- 0.6 4.5 +/- 0.8 3.9 +/- 1.3 5.7 +/- 0.0 4.6 +/- 1.7

Vs. group 6 (PCI) 4.8 +/- 1.5 3.1 +/- 0.8 4.2 +/- 1.2 3.1 +/- 1.0 4.6 +/- 1.7 10.6 +/- 3.8

B. Wingless PCI

Vs. group 1 11.1 +/- 2.8 4.1 +/- 1.1 6.8 +/- 1.6 3.6 +/- 1.2 5.2 +/- 1.5 5.1 +/- 1.5

Vs. group 2 4.1 +/- 1.1 12.9 +/- 4.1 9.0 +/- 2.4 7.8 +/- 1.8 4.0 +/- 0.6 3.1 +/- 0.6

Vs. group 3 6.8 +/- 1.6 9.0 +/- 2.4 13.6 +/- 3.7 5.4 +/- 1.4 4.5 +/- 0.8 4.6 +/- 1.3

Vs. group 4 3.6 +/- 1.2 7.8 +/- 1.8 5.4 +/- 1.4 12.7 +/- 1.6 3.9 +/- 1.3 3.3 +/- 1.1

Vs. group 5 5.2 +/- 1.5 4.0 +/- 0.6 4.5 +/- 0.8 3.9 +/- 1.3 5.7 +/- 0.0 4.8 +/- 1.8

Vs. group 6 (PCI) 5.1 +/- 1.5 3.1 +/- 0.6 4.6 +/- 1.3 3.3 +/- 1.1 4.8 +/- 1.8 7.9 +/- 2.8

C. Four-hairpin fragments

Vs. group 1 9.1 +/- 2.4 3.9 +/- 1.0 6.4 +/- 1.6 3.7 +/- 1.0 6.3 +/- 1.7 4.6 +/- 1.2

Vs. group 2 3.9 +/- 1.0 10.8 +/- 3.2 7.6 +/- 3.0 7.4 +/- 1.8 4.2 +/- 0.5 3.1 +/- 0.6

Vs. group 3 6.4 +/- 1.6 7.6 +/- 3.0 10.3 +/- 4.5 4.8 +/- 1.3 4.8 +/- 1.5 4.2 +/- 1.1

Vs. group 4 3.7 +/- 1.0 7.4 +/- 1.8 4.8 +/- 1.3 15.5 +/- 3.6 3.5 +/- 0.8 3.0 +/- 0.7

Vs. group 5 6.3 +/- 1.7 4.2 +/- 0.5 4.8 +/- 1.5 3.5 +/- 0.8 5.6 +/- 0.0 5.2 +/- 2.5

Vs. group 6 (PCI) 4.6 +/- 1.2 3.1 +/- 0.6 4.2 +/- 1.1 3.0 +/- 0.7 5.2 +/- 2.5 7.6 +/- 2.3

Average pairwise DALI [27] Z-scores +/- standard deviation (SD) between members of individual HEAT and PCI domain groups. The average intragroup Z-scores (in

the diagonal) are highlighted in grey.

https://doi.org/10.1371/journal.pone.0268664.t001
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Fig 3. Structure similarity scores among groups of HEAT and PCI domains. Average pairwise DALI [27] Z-scores

+/- standard deviation (SD) between members of individual HEAT and PCI domain groups. Groups are labeled and

color-coded. The Z-scores of each group with the other five groups are shown on the Y-axis, with slight offset along the

X-axis, and color-coded. Classic HEAT domains (Group 1) are navy. MA3 domains (Group 2) are red. MIF4G

domains (Group 3) are grey. W2 domains (Group 4) are orange. Outlier HEAT domains (Group 5) are light blue. PCI

domains are green. Intragroup Z-scores are not shown.

https://doi.org/10.1371/journal.pone.0268664.g003
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Fig 4. Structure-based sequence alignment of hairpins from HEAT and PCI domains. Eight hairpins per group

were used for the alignment. Alignment viewer (https://alignmentviewer.org/) with Clustal residue coloring scheme

was used, instead of conservation, because there were no detectable sequence conservation patterns, besides

hydrophobic side chains at buried positions. Secondary structure is shown above the alignment: H, helix; L, loop.

Positions of intra-hairpin contacts are marked with a “�” above the alignment. Note that side chains at the same

position in the alignment may contact both the other helix in the hairpin and an adjacent hairpin, or contact one or the

other in different hairpins, due to variations in inter-helix angles and orientations. Positions with hydrophobic side

chains in>50% of sequences are labeled with “F”; positions with hydrophobic side chains in>75% of the sequences

are labeled with “F” in bold. Gaps are marked with “-“. Positions of deleted amino-acid sequences in the interhelix

loop are marked with “‥”.

https://doi.org/10.1371/journal.pone.0268664.g004
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various HEAT domains, even if using the last four hairpins of each protein. However, the

observation that the evolutionary trees and groups obtained using intact domains vs. four-

hairpin fragments are very similar, supports the validity of this approach. Importantly, both

the analysis using intact domains, and that using four-hairpin fragments yield the same results,

which strongly supports the overall conclusions.

The MIF4G and MA3 domain groups are evolutionarily closer to each other than to the

rest of the HEAT domains, while the W2 domains are closer to the MA3 domains that to the

rest of HEAT domains, including the MIF4G group (Fig 3). These observations indicate that

the MA3 and W2 domains could have resulted from the duplication of a MIF4G domain

(Fig 5), as opposed to the breaking up of a long HEAT domain solenoid into three consecutive

shorter HEAT domains. The propensity of these short HEAT domains to duplicate is illus-

trated by UPF2, which has three tandem MIF4G domains, and Pdcd4, which has two MA3

domains [38]. eIF5, eIF2Bε, and 5MP/BZW all have W2 domains closely homologous to the

W2 domain of eIF4G [29, 37, 39, 40]. 5MP/BZW also has a predicted MA3 domain N-terminal

to the W2 domain (refs. [37, 41] and AlphaFold [42, 43]). The much lower structure similarity

scores of Group 1 HEAT domains with MA3 and especially W2 domains, compared to MIF4G

Fig 5. Possible evolutionary tree of HEAT and PCI domains. The dendrogram is based on average structure similarity Z

scores from the DALI server [27] between individual groups of domains and branches, using intact HEAT domains and

WH-less PCI domains. The outliers, UTP10 and the FAT domain of mTOR, which had been operationally grouped

together as Group 5 in Fig 3, Table 1, and Table in S1 Table, had slightly lower structure similarity between each other (Z

score 5.7) than their highest average Z scores with other groups (UTP10, Z score 6.0 with Group 1; and the mTOR FAT

domain, Z score 5.9 with Group 6). Therefore, these two structures were not considered as a group in building the

dendrogram and were added separately, instead, and are shown in smaller font.

https://doi.org/10.1371/journal.pone.0268664.g005
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domains (Table 1, Fig 3), would then suggest different divergence rates of individual groups of

domains. As stated in the Introduction, considering the simple, repetitive nature of the helical

hairpins, convergent evolution cannot be excluded because there is no detectable sequence

similarity between the different groups of domains. The structure of the mTOR FAT domain

has average Z score 6.3 with WH-less PCI domains (Fig 5) and 5.9 with intact PCI domains

(see Table in S1 Table), which is higher than with any of the groups of HEAT domains (the

highest average Z score is 4.4 with Group 1, see Table in S1 Table). Therefore, it appears that

the FAT domains could be more closely related to the PCI domains than to any of the current

groups of HEAT domains. However, the absence of detectable sequence similarity makes it

impossible to make any reliable conclusions.

In conclusion, this study offers insights into the evolution of the HEAT domain family in

eukaryotes and shows that the PCI domains are in fact HEAT domains, which have acquired a

WH subdomain at their C-terminus. This further expands the number of proteins containing

a HEAT domain, and the already wide range of functions performed by these domains. It

would be interesting to trace the origins and divergence of all helical repeat domain protein

families as a whole, throughout the evolution of eukaryotes.

Methods

Structure similarity searches

The DALI Server [27] was used to search the RCSB PDB database [44] for similar structures

and obtain structural similarity scores (Z-scores). The goal was to assemble a diverse set of

HEAT and PCI domain structures, as well as identify potential new structures belonging to

these families. Searches were initiated with several known HEAT domain and PCI domain

structures. An initial diverse set of structures was assembled, eliminating structures with high

similarity, as well as selecting high-resolution structures. Each structure and the corresponding

structure-based sequence alignment were inspected manually, e.g., to confirm whether a puta-

tive PCI domain indeed contains the obligate WH subdomain, or that the DALI-generated

automatic structure alignment does indeed define a contiguous helical hairpin structure seg-

ment. PyMol [45] was used for structure visualization.

Structure classification

Any non-HEAT or PCI domain portions of the structures were deleted at this stage using

PyMol [45]. Structure similarity scores were calculated for all pairs of structures in the dataset,

followed by a second round of removing highly similar structures, yielding the final dataset

(Table in S1 Table). Where DALI failed to detect similarity, we did not use the pair in future

analyses, because the structures are in fact similar. Using the pairs with a Z score 0, or with a Z

score 2 (the minimum score considered statistically significant) did not affect the conclusions.

The evolutionary tree automatically generated by the DALI server served as a starting point

for grouping the structures in the dataset. The HEAT domains fell into four groups, “classic”

HEAT domains, MA3 domains, MIF4G domains, and W2 domains, all of which had previ-

ously been defined [5, 12–14, 28–30, 46]. Two HEAT domain structures were not part of any

of the groups and were assigned a separate group (Group 5). The PCI domains formed one

group (Group 6). The auto-generated dendrogram was correct in most cases, except grouping

CTIF3 with Group 3 (MIF4G), instead of Group 1 (“classic” HEAT domains), and grouping

the CBP80 MIF4G domain with Group 2 (MA3), instead of Group 3 (MIF4G). In both cases,

the Z scores in Table in S1 Table unambiguously assign these two structures to the correct

group.
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Analysis of structure similarity and evolutionary relationships

We calculated average structure similarity scores (Z scores) and standard deviations for every

pair of groups from the pairwise Z scores between all members of the two groups, obtained

using the DALI server [27]. The average Z scores between groups of HEAT domains were

compared to those between a HEAT domain group and the PCI domains, in order to deter-

mine whether or not at least one of the groups of HEAT domains shows greater, or at least

comparable, similarity to the PCI domains than to at least one other group of HEAT domains.

To evaluate the contribution of the WH subdomain in the PCI domains, we repeated the

analysis using “wingless” PCI domains. The WH subdomains were deleted from the corre-

sponding structures in PyMol [45]. To account for the fact that different HEAT and PCI

domains vary greatly in size, we generated four-hairpin fragments from each structure in the

dataset and repeated the analysis with those. MOLMOL [47] was used to create figures of

structure alignments between HEAT and PCI domains. The dendrogram in Fig 5 was gener-

ated using averaged DALI server [27] generated Z scores for intact HEAT domains and WH-

less PCI domains. The outliers, UTP10 and the mTOR FAT domain, which had been opera-

tionally grouped together (Group 5) to simplify analysis, had relatively modest similarity

between each other (Z score 5.7), which was comparable, and even slightly lower than their

highest average Z scores: with Group 1 (UTP10, Z score 6.0) and with Group 6 (mTOR FAT,

Z score 5.9), respectively. Therefore, these two structures were not considered as a group in

building the dendrogram and were added separately, instead.

Structure-based sequence alignments

Exhaustive PSI-BLAST [19] and HHblits [20] searches yielded statistically significant sequence

similarity between proteins belonging to the same group, but not between groups (data not

shown). Therefore, we relied on structure alignments in aligning both consecutive hairpins

from the same structure and from proteins belonging to different groups. Eight hairpins per

group were used for the alignment. The structure alignments were done using the DALI server

[27] (larger structures) and in PyMol [45] (hairpins) because the hairpins were too short for

the DALI server to recognize statistically significant structure similarity. The structure-based

alignment of corresponding hairpins from structures belonging to the same group (where

sequence similarity could be observed), was consistent with the PSI-BLAST [19] and HHblits

[19] based sequence alignments. We used the Clustal residue coloring scheme, instead of con-

servation, because there were no detectable sequence conservation patterns, besides hydropho-

bic side chains at buried positions. Fig 4 was generated with the help of Alignment viewer

(https://alignmentviewer.org/).

Supporting information

S1 Table. Pairwise structure homology scores for all structures included in the analysis.

(XLSX)
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