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Abstract
Objectives: Around	 30%	 of	 patients	 undergoing	 surgical	 resection	 for	 drug-	
resistant	mesial	temporal	lobe	epilepsy	(MTLE)	do	not	obtain	seizure	freedom.	
Success	 of	 anterior	 temporal	 lobe	 resection	 (ATLR)	 critically	 depends	 on	 the	
careful	 selection	 of	 surgical	 candidates,	 aiming	 at	 optimizing	 seizure	 freedom	
while	minimizing	postoperative	morbidity.	Structural	MRI	and	FDG-	PET	neu-
roimaging	are	routinely	used	in	presurgical	assessment	and	guide	the	decision	to	
proceed	to	surgery.	In	this	study,	we	evaluate	the	potential	of	machine	learning	
techniques	applied	to	standard	presurgical	MRI	and	PET	imaging	features	to	pro-
vide	enhanced	prognostic	value	relative	to	current	practice.
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1 	 | 	 INTRODUCTION

Surgical	 resection	 is	 the	 treatment	 of	 choice	 for	 drug-	
resistant	mesial	temporal	lobe	epilepsy	(MTLE)	and	pro-
vides	the	patient	with	the	best	chance	of	seizure	control.1	
However,	 a	 significant	 proportion	 (approximately	 30%)	
of	apparently	good	surgical	candidates	do	not	obtain	sus-
tained	freedom	from	disabling	seizures	postoperatively.2,3	
Furthermore,	 in	 terms	 of	 risk–	benefit	 analysis,	 a	 meta-	
analysis	of	surgical	complications	 in	epilepsy	 found	that	
medical	 complications	 occur	 in	 7.0%	 of	 temporal	 lobe	
epilepsy	(TLE)	surgeries,	and	neurological	complications	
occur	in	15.6%.4	Complications	from	epilepsy	surgery	in-
clude	 infection,	 hemorrhage,	 depression,	 memory	 loss,	
language	 deficit,	 and	 visual	 impairment,	 and	 thus	 sur-
gery	is	best	avoided	if	it	is	unlikely	to	provide	relief	from	
seizures.	 Thorough	 presurgical	 evaluation	 is	 a	 prerequi-
site	 for	estimating	 the	rates	of	patients	having	sustained	
freedom	 from	 disabling	 seizures	 postoperatively	 and	

associated	surgical	morbidity.	Brain	imaging,	in	particular	
using	structural	magnetic	resonance	 imaging	(MRI)	and	
positron	emission	tomography	(PET),	is	critical	to	patient	
selection	and	surgical	planning,5	primarily	as	a	means	of	

Methods: Eighty	 two	 patients	 with	 drug	 resistant	 MTLE	 were	 scanned	 with	
FDG-	PET	pre-	surgery	and	T1-	weighted	MRI	pre-		 and	postsurgery.	From	 these	
images	the	following	features	of	interest	were	derived:	volume	of	temporal	lobe	
(TL)	 hypometabolism,	 %	 of	 extratemporal	 hypometabolism,	 presence	 of	 con-
tralateral	 TL	 hypometabolism,	 presence	 of	 hippocampal	 sclerosis,	 laterality	 of	
seizure	onset	volume	of	tissue	resected	and	%	of	temporal	lobe	hypometabolism	
resected.	These	measures	were	used	as	predictor	variables	in	logistic	regression,	
support	vector	machines,	random	forests	and	artificial	neural	networks.
Results: In	the	study	cohort,	24	of	82	(28.3%)	who	underwent	an	ATLR	for	drug-	
resistant	MTLE	did	not	achieve	Engel	Class	I	(i.e.,	free	of	disabling	seizures)	out-
come	at	a	minimum	of	2 years	of	postoperative	follow-	up.	We	found	that	machine	
learning	approaches	were	able	to	predict	up	to	73%	of	the	24	ATLR	surgical	pa-
tients	who	did	not	achieve	a	Class	I	outcome,	at	the	expense	of	incorrect	prediction	
for	up	to	31%	of	patients	who	did	achieve	a	Class	I	outcome.	Overall	accuracies	
ranged	from	70%	to	80%,	with	an	area	under	the	receiver	operating	characteristic	
curve	(AUC)	of	.75–	.81.	We	additionally	found	that	information	regarding	overall	
extent	of	both	total	and	significantly	hypometabolic	tissue	resected	was	crucial	to	
predictive	performance,	with	AUC	dropping	to	.59–	.62	using	presurgical	informa-
tion	alone.	Incorporating	the	laterality	of	seizure	onset	and	the	choice	of	machine	
learning	algorithm	did	not	significantly	change	predictive	performance.
Significance: Collectively,	 these	 results	 indicate	 that	 "acceptable"	 to	 "good"	
patient-	specific	prognostication	for	drug-	resistant	MTLE	surgery	is	feasible	with	
machine	 learning	 approaches	 utilizing	 commonly	 collected	 imaging	 modali-
ties,	but	that	information	on	the	surgical	resection	region	is	critical	for	optimal	
prognostication.

K E Y W O R D S

epilepsy,	FDG-	PET,	machine	learning,	surgery

Key Points
•	 Machine	 learning	 approaches	 utilizing	 FDG-	

PET	 hypometabolism	 distribution,	 structural	
MRI,	and	surgical	resection	region	information	
can	successfully	predict	surgical	outcome	“bet-
ter	 than	chance”	 following	an	ATLR	for	drug-	
resistant	MTLE

•	 Classification	performance	was	"acceptable"	to	
"good"	(AUC	=	.75–	.81)

•	 Information	on	surgical	resection	region	is	criti-
cal	for	optimal	classification	performance
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assisting	 in	 localizing	 the	 epileptogenic	 zone	 and	 prog-
nosticating	 the	 surgical	 outcome.	 Complete	 resection	 of	
the	epileptogenic	zone	is	strongly	related	to	postsurgical	
outcome	 with	 respect	 to	 seizures.6,7	 Although	 presence	
of	 hippocampal	 sclerosis	 on	 MRI	 has	 long	 been	 used	 as	
an	indicator	of	good	prognosis	for	surgery,8,9	 it	has	been	
shown	 that	patients	with	no	 identifiable	potentially	epi-
leptogenic	lesion	on	MRI,	but	focal	temporal	hypometabo-
lism	detected	on	fluorodeoxyglucose	(FDG)	PET,	can	also	
enjoy	comparable	rates	of	excellent	outcomes	with	respect	
to	seizure	control	following	surgery.10–	14

Imaging-	derived	 features	 currently	 used	 in	 clinical	
practice	are	generally	used	in	a	qualitative,	rather	than	a	
quantitative,	 manner.	 Although	 multiple	 streams	 of	 im-
aging	 evidence	 are	 considered	 in	 tandem	 when	 making	
surgical	decisions,	these	multiple	imaging	sources	are	not	
routinely	combined	in	any	quantitative	multivariate	way	
to	objectively	enhance	their	localizing	or	predictive	value.	
Furthermore,	studies	investigating	the	predictive	value	of	
imaging	studies	for	postoperative	seizure	control	typically	
measure	cohort-	wide	associations,	and	do	not	give	person-
alized	outcome	predictions.	A	fully	automated	prognosti-
cation	 tool	 that	 could	 predict	 the	 probability	 of	 seizure	
control	based	on	imaging	data	for	a	given	patient	would	
be	an	 important	step	 toward	delivering	personalized	pa-
tient	care.	This	problem	lends	itself	to	the	application	of	
a	 machine	 learning	 approach.	 "Machine	 learning"	 is	 an	
umbrella	term	for	a	set	of	computing	techniques	aimed	at	
learning	patterns	from	data.	Classification	tasks,	such	as	
outcomes	following	epilepsy	surgery	(i.e.,	sustained	free-
dom	from	disabling	seizure	free	vs.	ongoing	disabling	sei-
zures	postoperatively),	are	well	suited	to	machine	learning	
approaches,	where	a	priori	unknown	features	in	data	may	
classify	 outcomes	 with	 greater	 accuracy	 than	 traditional	
statistical	associations.

In	recent	work,	our	group	investigated	a	number	of	as-
sociations	between	the	distribution	of	hypometabolism	on	
a	preoperative	FDG-	PET	and	postsurgical	seizure	control	
in	a	cohort	of	82 TLE	patients	 from	two	comprehensive	
epilepsy	 programs	 in	 Melbourne,	 Australia.15	 We	 found	
imaging	 features,	 such	 as	 the	 presence	 of	 contralateral	
FDG-	PET	 hypometabolism	 and	 lower	 volumes	 of	 FDG-	
PET	temporal	lobe	(TL)	hypometabolism	resected	in	sur-
gery,	 were	 significantly	 associated	 with	 poorer	 surgical	
outcome,	 and	 interestingly	 that	 these	 associations	 were	
dependent	on	the	laterality	of	the	epileptogenic	focus.

In	this	study,	we	utilized	this	same	cohort	to	explore	the	
extent	to	which	those	same	imaging	features	can	predict	
sustained	freedom	from	disabling	seizures	(i.e.,	an	Engel	
Class	I	outcome	at	2 years	postoperatively16)	for	individ-
ual	patients,	using	a	 range	of	 the	most	widely	used	and	
powerful	methods	in	machine	learning:	logistic	regression	
(LR),	support	vector	machine	(SVM),	random	forest	(RF),	

and	artificial	neural	network	(ANN).	We	addressed	three	
further	pertinent	research	questions.	First,	do	models	that	
are	 able	 to	 detect	 hidden	 interactions	 between	 variables	
improve	 classification	 performance	 compared	 to	 fully	
specified	models?	Second,	to	what	extent	does	the	previ-
ously	 reported	 interaction	 between	TLE	 laterality,	 imag-
ing	 variables,	 and	 seizure	 outcome	 impact	 on	 machine	
learning	classification	performance?	Third,	can	preopera-
tive	information	alone	yield	satisfactory	predictions,	or	is	
information	about	the	surgical	resection	necessary?

2 	 | 	 MATERIALS AND METHODS

2.1	 |	 Subjects

The	 sample	 for	 this	 study	 was	 previously	 described	 by	
Cahill	et	al.15	Subjects	were	patients	in	the	Comprehensive	
Epilepsy	 Programs	 of	 the	 Royal	 Melbourne	 and	 Austin	
Hospitals,	Melbourne,	Australia,	who	underwent	an	an-
terior	TL	resection	(ATLR)	for	treatment	of	drug-	resistant	
MTLE	between	2001	and	2014.	Inclusion	criteria	were	age	
>	16	years,	hippocampal	sclerosis	or	no	identifiable	lesion	
on	an	epilepsy	protocol	MRI	(i.e.,	patients	with	focal	corti-
cal	dysplasia,	cavernomas,	etc.	were	excluded),	concord-
ant	results	of	presurgical	investigations	including	seizure	
semiology	 and	 interictal/ictal	 electroencephalography,	
presence	 of	 ipsilateral	 hypometabolism	 on	 FDG-	PET,	
and	 at	 least	 2  years	 of	 follow-	up	 following	 surgery.	 The	
study	was	approved	by	the	Melbourne	Health	and	Austin	
Health	Human	Research	Ethics	Committees.

2.2	 |	 Imaging

As	 part	 of	 their	 presurgical	 evaluation,	 patients	 had	 an	
FDG-	PET	 and	 a	 T1-	weighted	 MRI	 scan	 (magnetization-	
prepared	 rapid	 acquisition	 gradient	 echo)	 acquired.	
FDG-	PET	 scans	 were	 acquired	 on	 an	 Allegro	 (Phillips	
Medical	Systems)	at	Austin	Hospital	with	a	voxel	size	of	
2 × 2 × 2 mm	or	a	Discovery	690	(GE	Medical	Systems)	
at	 Peter	 MacCallum	 Cancer	 Centre	 with	 a	 voxel	 size	 of	
1.82  ×  1.82  ×  3.27  mm	 as	 described	 previously.17	 The	
median	 timing	 of	 the	 FDG-	PET	 scans	 was	 5  months	
preceding	 surgery	 (interquartile	 range  =  3–	10.25,	
range = 1–	23 months).	At	Austin	Hospital,	MRI	exami-
nations	 were	 carried	 out	 on	 a	 Genesis	 Signa	 1.5  T	 (GE	
Medical	Systems)	until	2005,	and	on	a	Magnetom	Avanto	
1.5 T	(Siemens	Medical	Solutions)	thereafter.	Voxel	sizes	
were	.41 × .41 × 1.50 mm	until	2006,	.65 × .65 × 1.50 mm	
until	2011,	and	 .77 ×  .77 ×  .80 mm	thereafter.	At	Royal	
Melbourne	 Hospital,	 MRI	 examinations	 were	 carried	
out	on	a	Genesis	Signa	1.5 T	(GE	Medical	Systems)	until	
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2005	and	on	a	Magnetom	Trio	Tim	3 T	(Siemens	Medical	
Solutions)	 thereafter.	 Voxel	 sizes	 varied	 depending	 on	
clinical	 requirements	 and	 scanner	 upgrades;	 all	 were	
higher	resolution	than	1 × 1 × 1 mm3.

Following	 the	 surgery,	 patients	 underwent	 a	 repeat	
MRI	to	assess	the	extent	of	the	surgical	resection.	Eighty-	
two	patients	were	identified	who	had	a	full	set	of	presurgi-
cal	FDG-	PET	and	MRI	and	postsurgical	MRI	images.

2.3	 |	 Image processing

The	image	processing	was	as	for	Cahill	et	al.15	Briefly,	in	
SPM12,18	 pre-		 and	 postoperative	 MRIs	 were	 nonlinearly	
registered	 and	 masked	 using	 brain	 tissue	 segmentation,	
and	the	difference	between	masks	was	calculated	to	give	
the	region	of	resection.	FDG-	PETs	were	normalized	to	the	
Montreal	Neurological	Institute	template	and	compared	to	
20 healthy	controls.	Regions	of	hypometabolism	were	ex-
tracted	using	a	two-	sample	t-	test,	thresholded	at	p < .001.	
Statistical	maps	were	 inverted	back	to	subject	space	and	
then	 transformed	 to	 MRI	 space	 by	 coregistration	 of	 the	
FDG-	PET	 to	 preoperative	 MRI.	 Hypometabolism	 maps	
were	then	compared	to	resection	regions	to	calculate	per-
centage	 of	 TL	 hypometabolism	 resected	 (Figure	 1).	 The	

presence	of	hypometabolism	in	the	contralateral	TL	was	
visually	assessed	on	the	statistical	maps	by	two	fellowship-	
trained	neurologists/epileptologists.	All	continuous	vari-
ables	were	standardized	to	zero	mean	and	unit	variance.

2.4	 |	 Machine learning

All	algorithms	were	coded	and	executed	in	sci-	kit	 learn,	
a	 Python	 machine	 learning	 toolbox.	 Predictor	 variables	
for	 the	 machine	 learning	 algorithms	 were	 those	 consid-
ered	 in	Cahill	 et	al.15	Presurgical	variables	were	volume	
of	 TL	 hypometabolism,	 percentage	 of	 extratemporal	 hy-
pometabolism,	presence	of	contralateral	TL	hypometabo-
lism,	presence	of	hippocampal	sclerosis,	and	laterality	of	
seizure	 onset.	 Surgical	 variables	 were	 volume	 of	 tissue	
resected	and	percentage	of	TL	hypometabolism	resected.	
Engel	 classification	 of	 seizure	 outcomes16	 was	 used	 as	
the	outcome	variable	(i.e.,	Engel	Class	I	vs.	Class	II–	IV).	
Distribution	 of	 predictor	 variables	 between	 outcome	
classes	is	shown	in	Table	1.	Logistic	regression	was	trained	
with	 each	 input	 variable	 included	 as	 a	 linear	 term	 and	
no	interaction	terms	applied.	The	SVM	was	trained	with	
radial	 basis	 function	 used	 as	 the	 kernel.	 The	 ANN	 was	
constructed	 in	 TensorFlow	 using	 the	 keras	 application	

F I G U R E  1  Images	for	a	patient	who	underwent	a	right	anterior	temporal	lobe	resection	for	drug-	resistant	mesial	temporal	lobe	epilepsy,	
who	had	contralateral	mesial	hypometabolism	(in	addition	to	the	ipsilateral	hypometabolism)	on	a	preoperative	fluorodeoxyglucose	positron	
emission	tomography	(FDG-	PET),	and	who	did	not	achieve	seizure	freedom	at	2-	year	follow	up.	(A)	Preoperative	magnetic	resonance	
imaging	(MRI).	(B)	postoperative	MRI.	(C)	Subtraction	of	segmented	preoperative	and	postoperative	MRIs	(red),	used	to	calculate	volume		
of	tissue	resected.	(D)	FDG-	PET	coregistered	to	MRI.	(E)	Hypometabolism	(green–	blue)	measured	by	comparison	to	20 healthy	controls.		
(F)	Overlay	of	resection	region	with	hypometabolism	(shaded	green–	blue),	used	to	calculate	the	percentage	of	temporal	lobe	
hypometabolism	resected
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programming	 interface.	 It	 had	 a	 shallow	 architecture,	
with	 the	 number	 of	 input	 nodes	 equal	 to	 the	 (variable)	
number	of	input	variables,	two hidden	layers	with	seven	
nodes	in	each	layer,	and	a	single	output	node.	Activations	
functions	 were	 ReLU	 for	 hidden	 layers	 and	 sigmoid	 for	
the	output	 layer,	with	Adam	used	as	 the	optimizer,	and	
batch	normalization	applied	with	100	epochs.	Additional	
hyperparameters	are	described	in	Section	2.7.

2.5	 |	 Data augmentation

Because	 our	 data	 are	 imbalanced,	 with	 70.7%	 achieving	
seizure	 freedom,	 and	 only	 29.3%	 were	 not	 seizure-	free,	
SMOTE	 resampling	 (synthetic	 minority	 oversampling	
technique19)	 was	 performed	 on	 the	 training	 set.	 This	
interpolates	 within	 the	 minority	 class	 to	 generate	 addi-
tional	data	points	for	the	minority	class,	ensuring	an	ap-
proximately	equal	number	of	training	data	points	for	each	
outcome.

2.6	 |	 Classification performance

To	estimate	the	out-	of-	sample	performance,	an	estimate	of	
how	the	algorithm	would	perform	on	unseen	data,	a	strati-
fied	10-	fold	cross-	validation	with	10	random	repeats	was	per-
formed	on	each	of	the	classification	algorithms.	Briefly,	the	
data	are	split	into	approximately	10 equally	sized	samples,	
with	stratification	such	that	an	equal	proportion	of	seizure-	
free	 and	 non-	seizure-	free	 patients	 are	 in	 each	 sample.	 In	
each	fold,	nine samples	are	combined	to	form	the	training	
set	 to	 fit	 model	 parameters,	 and	 the	 remaining	 sample	 is	
used	as	a	test	set	to	measure	prediction	performance	in	an	
unseen	sample.	The	classification	performance	was	evalu-
ated	using	area	under	the	receiver	operating	characteristic	

curve	(AUC),	accuracy	(total	proportion	correctly	predicted),	
sensitivity	(proportion	of	Engel	Class	I	correctly	predicted),	
specificity	 (proportion	 of	 Engel	 Class	 II–	IV	 correctly	 pre-
dicted),	positive	predictive	value	(PPV;	probability	positive	
prognosis	 is	 correct),	 and	 negative	 predictive	 value	 (NPV;	
probability	negative	prognosis	is	correct).

2.7	 |	 Hyperparameter optimization

LR,	 SVM,	 and	 ANN	 contain	 a	 regularization	 parameter	
specifying	the	penalization	of	model	complexity	in	the	cost	
function,	and	RF	contains	a	number	of	model	structure	pa-
rameters	that	perform	a	similar	function	(number	of	trees	
in	the	forest,	maximum	depth,	number	of	features	per	split).	
These	 parameters	 are	 arbitrary	 but	 affect	 model	 perfor-
mance.	To	choose	the	best	hyperparameters,	we	optimized	
on	the	training	set	of	each	fold	of	the	parent	cross-	validation	
using	 a	 Bayesian	 search	 cross-	validation.	 This	 searches	
(hyper)parameter	 space	 using	 Bayesian	 optimization.	 For	
each	 hyperparameter	 set	 in	 the	 search,	 a	 fivefold	 cross-	
validation	was	used	to	measure	classification	performance.	
The	 following	 hyperparameter	 search	 spaces	 were	 speci-
fied:	LR,	penalty	term	(C)	=	.1–	10;	SVM,	penalty	term	(C)	=	
1–	10;	RF,	n_trees	=	3–	100,	maximum	(max)	depth	=	3–	30,	
max	features	=	sqrt(n	features)	or	n	features;	ANN,	L2	regu-
larisation	(l2)	=	.0001–	.01.	The	optimal	set	of	hyperparam-
eters	and	their	associated	model	weights	(parameters)	were	
used	to	measure	classification	performance	on	the	held-	out	
test	sample	of	the	parent	10 × 10-	fold	cross-	validation.

2.8	 |	 Model comparisons

We	hypothesize	that	(1)	machine	learning	algorithms	able	
to	detect	not	explicitly	hypothesized	interactions	between	

T A B L E  1 	 Overview	of	predictive	variables	for	seizure-	free	patients	(Engel	I)	and	non-	seizure-	free	patients	(Engel	II–	IV)

Variable Engel Class I Engel Class II– IV p

Presurgical

Volume	of	TL	hypometabolism,	mm3,	median	(IQR) 5.82	(2.62–	12.55) × 103 6.06	(2.77–	9.34) × 103 .710

Extratemporal	hypometabolism,	%,	median	(IQR) 54.2	(35.4–	70.1) 61.8	(40.0–	77.5) .180

Presence	of	contralateral	TL	hypometabolism,	n	(%) 10/58	(82.8) 11/24	(54.2) .012a

Presence	of	hippocampal	sclerosis,	n	(%) 53/58	(91.4) 17/24	(70.8) .034a

Laterality	of	seizure	onset,	left,	n	(%) 28/58	(48.3) 11/24	(45.8) 1.000a

Surgical

Volume	of	tissue	resected,	mm3,	median	(IQR) 20.66	(15.81–	24.14) × 103 14.77	(11.17–	21.34) × 103 .034

%	of	TL	hypometabolism	resected,	median	(IQR) 50.4	(34.5–	67.2) 32.9	(20.9–	61.3) .070

Note: Statistical	significance	of	group	differences	is	presented.
Abbreviations:	IQR,	interquartile	range;	TL,	temporal	lobe.
aFisher	exact	test,	otherwise	Mann–	Whitney	U	test.
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variables	(SVM,	RF,	ANN)	will	improve	predictive	perfor-
mance	 compared	 to	 logistic	 regression,	 (2)	 information	
on	 laterality	of	seizure	onset	 improves	predictive	perfor-
mance,	 and	 (3)	 including	 surgical	 information	 (volume	
of	 tissue	 resected,	percentage	of	TL	hypometabolism	re-
sected)	meaningfully	outperforms	models	using	presurgi-
cal	information	only.

To	test	each	of	our	hypotheses,	we	statistically	com-
pared	 the	 AUC,	 accuracy,	 sensitivity,	 specificity,	 PPV,	
and	 NPV	 of	 the	 classifier	 against	 a	 control	 classifier	
with	the	 feature	of	 interest	omitted	(Hypotheses	2	and	
3),	 or	 using	 a	 different	 algorithm	 (Hypothesis	 1;	 over-
view	of	model	comparisons	is	provided	in	Table	2).	The	
significance	 of	 differences	 between	 classifiers	 was	 as-
sessed	 using	 a	 one-	tailed	 paired	 t-	test	 on	 performance	
measures	 derived	 from	 repeated	 cross-	validation	 with	
10	 repeats	 of	 10	 folds,	 as	 recommended	 by	 Bouckaert	
and	 Frank,20	 due	 to	 its	 high	 replicability.	This	 method	
violates	 the	 independence	 assumption	 of	 the	 paired	
t-	test	 and	 has	 a	 high	 type	 1	 error	 rate.	To	 address	 this	
issue,	 we	 applied	 the	 Nadeau	 and	 Bengio21	 correction	
on	degrees	of	freedom.	Finally,	within	each	hypothesis,	
statistical	 significance	was	corrected	 for	multiple	com-
parisons	over	models	and	performance	measures	using	
the	false	discovery	rate	(FDR),22	and	an	FDR < .05	was	
considered	significant.

3 	 | 	 RESULTS

3.1	 |	 Patient characteristics and seizure 
outcomes

The	 patient	 characteristics	 and	 seizure	 outcomes	 of	 the	
82  MTLE	 patients	 who	 underwent	 an	 ATLR	 in	 this	 co-
hort	were	reported	 in	Cahill	et	al.15	 In	brief,	43	patients	
underwent	a	right	ATLR	and	39	patients	a	left	ATLR	with	
comparable	 gender	 composition,	 age	 at	 epilepsy	 onset,	
epilepsy	 duration,	 age	 at	 surgery,	 preoperative	 seizure	
frequency,	and	duration	of	postoperative	 follow-	up.	The	
median	postoperative	follow-	up	period	was	4 years	(range	
=	 2–	10  years)	 in	 patients	 who	 underwent	 a	 right	 ATLR	
and	5 years	(range	=	2–	14 years)	in	patients	who	had	a	left	
ATLR.	An	Engel	Class	I	outcome	was	achieved	in	58	of	82	
(70.7%)	patients,	which	did	not	differ	in	patients	who	had	
a	right	versus	left	ATLR	(p = .51).

3.2	 |	 Classification performance

Table	 3  shows	 the	 classification	 performance	 of	 each	
machine	 learning	 algorithm.	 Accuracy	 ranged	 between	
71%	 and	 80%,	 with	 AUCs	 ranging	 between	 .75	 and	 .81.	
Specificity,	 the	 proportion	 of	 non-	seizure-	free	 patients	

Hypothesis Model
Model 
variables Control model

Control 
model 
variables

1.1 SVM Presurgical
Surgical
Laterality

LR Presurgical
Surgical
Laterality

1.2 RF Presurgical
Surgical
Laterality

LR Presurgical
Surgical
Laterality

1.3 ANN Presurgical
Surgical
Laterality

LR Presurgical
Surgical
Laterality

2 LR
SVM
RF
ANN

Presurgical
Surgical
Laterality

LR
SVM
RF
ANN

Presurgical
Surgical

3 LR
SVM
RF
ANN

Presurgical
Surgical
Laterality

LR
SVM
RF
ANN

Presurgical
Laterality

Note: Presurgical	variables	are	percentage	of	extratemporal	hypometabolism,	presence	of	contralateral	
hypometabolism,	and	presence	of	hippocampal	sclerosis.	Surgical	variables	are	volume	of	tissue	resected	
and	percentage	of	temporal	lobe	hypometabolism	resected.
Abbreviations:	ANN,	artificial	neural	network;	LR,	logistic	regression;	RF,	random	forest;	SVM,	support	
vector	machine.

T A B L E  2 	 Description	of	models	
compared	for	hypothesis	testing
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correctly	predicted,	ranged	from	.61	to	.73,	suggesting	that	
the	algorithm	could	deter	the	decision	to	undergo	surgery	
for	up	to	73%	of	patients	for	whom	surgery	will	not	result	
in	seizure	freedom.	However,	the	NPV	was	lower,	at		.53–	
.72.	The	best	performing	(highest	AUC	and	accuracy)	al-
gorithm,	 RF,	 correctly	 predicted	 (on	 average)	 49.9	 of	 58	
(86%)	patients	with	an	Engel	Class	I	outcome	with	respect	
to	seizures	at	2 years,	and	15.6	of	24	(65%)	patients	with	an	
Engel	Class	II–	IV	outcome.

3.3	 |	 Model comparisons

SVM	and	RF	had	higher	AUCs,	accuracies,	 sensitivities,	
and	specificities	than	LR	(Table	3),	but	these	were	not	sta-
tistically	significant	after	correction	for	multiple	compari-
sons.	 Likewise,	 ANN	 had	 no	 significant	 improvements	
compared	 to	 LR.	 Omission	 of	 laterality	 (Table	 4,	 FIgure	
2)	did	not	significantly	reduce	any	performance	measure.	
Omission	 of	 surgical	 information	 substantially	 reduced	
all	performance	measures.	AUC	and	specificity	for	SVM,	
accuracy	for	RF,	and	AUC	for	ANN	were	statistically	sig-
nificantly	 lower	 (after	 FDR	 correction)	 with	 surgical	 in-
formation	omitted	(Table	5).

4 	 | 	 DISCUSSION

In	this	study,	we	applied	a	range	of	the	most	widely	used	
machine	 learning	 algorithms	 to	 the	 problem	 of	 surgical	
candidate	selection	 in	a	well-	characterized	cohort	of	pa-
tients	with	drug-	resistant	MTLE	who	had	undergone	an	
ATLR	 with	 at	 least	 2  years	 of	 postoperative	 follow-	up.	
Many	advances	have	been	made	in	surgical	candidate	se-
lection	 and	 surgical	 outcomes	 since	 the	 advent	 of	 brain	
imaging.23–	26	A	substantial	proportion	of	patients	under-
going	 an	 ATLR	 for	 drug-	resistant	 MTLE,	 however,	 do	
not	 achieve	 postoperative	 seizure	 control	 (29.3%	 in	 this	

cohort).	A	tool	enabling	the	reliable	detection	of	such	pa-
tients,	 utilizing	 clinically	 well-	established	 indicators	 of	
likely	 seizure	 freedom,	could	optimize	 the	 identification	
of	those	patients	who	would	(and	would	not)	benefit	from	
invasive	surgical	intervention.

The	 accuracies	 of	 our	 machine	 learning	 algorithms	
based	 on	 MRI	 and	 FDG-	PET	 features	 ranged	 between	
70%	and	80%,	a	modest	improvement	from	the	71%	rate	of	
Engel	Class	I	outcomes	in	this	cohort,	and	AUCs	ranged	
between	 .75	 and	 .81,	 which	 is	 roughly	 considered	 to	 be	
"acceptable"	 to	 "good"	 discrimination.27	 Although	 these	
are	 lower	 than	 the	 levels	 generally	 considered	 to	 have	
clinical	 utility,	 it	 should	 be	 noted	 that	 the	 starting	 sam-
ple	 is	 already	 highly	 filtered	 (patients	 considered	 suit-
able	 for	 surgery	 by	 the	 multidisciplinary	 team	 members	
based	 on	 the	 outcome	 of	 phase	 I	 evaluation,	 including	
electroclinical	evaluation,	structural	MRI,	FDG-	PET,	and	
single	photon	emission	computed	tomography,	where	in-
dicated).	 As	 such,	 it	 is	 important	 to	 emphasize	 that	 the	
performance	 measures	 reported	 correspond	 to	 patients	
already	approved	for	surgery,	and	not	to	all	potential	sur-
gical	candidates.	This	is	a	more	difficult	classification	task,	
because	patients	with	obvious	indications	of	being	unsuit-
able	for	surgery	are	not	available	to	classify.	To	them	put	
into	context,	the	accuracies	of	70%–	80%	mean	that	if	this	
algorithm	were	to	be	used	in	isolation	(which	we	do	not	
recommend)	 to	 select	 the	 best	 treatment	 option	 for	 this	
subset	of	patients	after	the	referral	to	surgery,	the	“correct	
treatment”	would	be	administered	up	to	80%	of	the	time,	
compared	to	the	current	~70%	of	the	time.	Given	that	the	
causes	 of	 unsuccessful	 ATLR	 remain	 unclear,	 any	 mar-
ginal	 increase	 in	 correct	 treatment	 administration	 is	 of	
value	and	merits	further	consideration.

The	 algorithms	 were	 able	 to	 detect	 up	 to	 73%	 of	 pa-
tients	who	would	not	achieve	seizure	freedom.	If	used	as	
a	clinical	tool,	this	could	potentially	help	stratify	patients	
and	assist	with	decision-	making	and	presurgical	counsel-
ing	 to	 set	 realistic	 expectations.	 However,	 the	 trade-	off	

T A B L E  3 	 Classification	performance	measures	for	each	model	with	all	variables	included,	and	statistical	comparison	of	hypothesis-	free	
models	(SVM,	RF,	ANN)	against	hypothesis-	driven	logistic	regression

Variables Performance LR SVM RF ANN

SVM > LR RF > LR ANN > LR

t p t p t p

Presurgical + surgical + laterality AUC .75 .78 .81 .76 .64 .262 .95 .172 .32 .374

Accuracy .71 .75 .80 .70 .84 .203 1.60 .057 −.36 .639

Sensitivity .75 .78 .86 .69 .38 .352 1.77 .040 −1.53 .936

Specificity .61 .71 .65 .73 .86 .195 .20 .420 1.32 .094

PPV .83 .87 .86 .87 .76 .223 .59 .279 .97 .168

NPV .54 .60 .72 .53 .54 .294 1.44 .076 −.33 .629

Abbreviations:	ANN,	artificial	neural	network;	AUC,	area	under	receiver	operating	characteristic	curve;	LR,	logistic	regression;	NPV,	negative	predictive	value;	
PPV,	positive	predictive	value;	RF,	random	forest;	SVM,	support	vector	machine.
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is	 that	 a	 substantial	 proportion	 (14%–	31%)	 of	 successful	
surgeries	 were	 predicted	 by	 the	 algorithms	 to	 be	 unsuc-
cessful,	 and	 would	 thus	 potentially	 deny	 these	 patients	
a	 beneficial	 and	 life-	changing	 procedure.	 Although	 the	
risks	from	surgery	can	be	severe,	the	risks	from	not	doing	
surgery	(continued	seizures	and	associated	comorbidities	
and	 side	 effects)	 are	 equally	 severe.	Therefore,	 although	
this	 tool	 could	 prove	 helpful	 in	 guiding	 risk	 assessment	
and	decision-	making,	the	final	decision	to	proceed	to	ep-
ilepsy	surgery	would	ultimately	be	shared	and	guided	by	
the	 patient's	 choice	 based	 on	 individual	 circumstances	
and	expectations	related	 to	 the	outcome	of	epilepsy	sur-
gery.	It	is	also	important	to	note	that	in	a	clinical	setting,	to	

influence	the	decision	not	to	proceed	to	surgery,	a	classifi-
cation	algorithm	should	ideally	have	a	high	NPV.	For	this	
analysis	on	the	current	dataset,	the	NPV	was	the	lowest	of	
the	performance	measures	at	between	.53	and	.72,	mean-
ing	that	if	a	patient	were	told	that	the	surgery	would	not	
yield	seizure	freedom,	there	is	an	up	to	72%	chance	of	this	
being	a	correct	prognosis.	Although	this	is	less	than	ideal,	
it	is	still	high	enough	to	provide	value	in	the	presurgical	
discussion	with	the	patient.	However,	clearly	a	72%	NPV	
is	not	high	enough	to	delegate	the	decision	to	proceed	to	
surgery	entirely	to	this	algorithm,	and	if	it	were	to	be	used	
clinically,	it	should	only	be	as	an	additional	source	of	in-
formation	to	take	into	consideration.

T A B L E  4 	 Classification	performance	measures	for	each	model	with	laterality	of	seizure	onset	omitted,	and	statistical	comparison	of	
models	including	laterality	to	those	without	laterality	(Table	3)

Variables Performance LR SVM RF ANN

Laterality > no laterality

LR SVM RF ANN

t p t p t p t p

Presurgical + surgical AUC .75 .79 .81 .75 −.64 .739 −.29 .615 .01 .498 .03 .486

Accuracy .71 .76 .78 .69 −.22 .585 −.45 .675 .23 .410 .11 .455

Sensitivity .75 .80 .84 .68 −.10 .539 −.80 .788 .56 .289 .19 .427

Specificity .61 .69 .65 .73 −.07 .528 .34 .368 −.35 .636 .00 .500

PPV .83 .87 .86 .87 −.20 .58 .19 .426 −.15 .561 .02 .492

NPV .55 .62 .67 .52 −.18 .571 −.40 .657 .62 .270 .17 .431

Abbreviations:	ANN,	artificial	neural	network;	AUC,	area	under	receiver	operating	characteristic	curve;	LR,	logistic	regression;	NPV,	negative	predictive	value;	
PPV,	positive	predictive	value;	RF,	random	forest;	SVM,	support	vector	machine.

F I G U R E  2  Classification	performance	for	each	machine	learning	algorithm:	area	under	receiver	operating	characteristic	curve	(AUC),	
accuracy,	sensitivity,	specificity,	positive	predictive	value	(PPV),	and	negative	predictive	value	(NPV).	Colors	indicate	inputs	to	model	(see	
legend).	ANN,	artificial	neural	network;	LR,	logistic	regression;	RF,	random	forest;	SVM,	support	vector	machine
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Only	one	study	has	previously	used	machine	learning	
on	 PET	 data	 to	 predict	 surgical	 outcome	 in	 epilepsy.28	
Using	 RF	 classifiers	 on	 16  surgical	 patients,	 it	 reported	
a	62.5%	accuracy	using	FDG-	PET,	and	a	87.5%	accuracy	
using	 a	 [11C]flumazenil	 (FMZ)	 PET	 tracer.	 Our	 study	
achieved	 greater	 accuracy	 with	 FDG-	PET,	 likely	 due	 to	
the	larger	sample	size.	The	higher	accuracies	reported	for	
[11C]FMZ	PET	are	intriguing	and	worthy	of	further	study,	
but	[11C]FMZ	PET	is	not	routinely	used	in	presurgical	as-
sessment	 of	 potential	 epilepsy	 surgical	 candidates,	 and	
thus	would	be	harder	to	translate	to	clinical	application.

Other	studies	have	used	machine	learning	algorithms	
to	predict	TLE	surgical	outcome	on	a	range	of	other	im-
aging	and	nonimaging	modalities,29,30	and	report	a	wide	
range	of	predictive	performances	of	.63–	.98.	To	our	knowl-
edge,	 the	highest	performance	using	 imaging	data	alone	
was	published	by	Feis	et	al.31	These	authors	used	SVM	on	
voxelwise	white	matter	volumes,	which	gave	a	classifica-
tion	accuracy	of	95%.	Munsell	et	al.32	and	Gleichgerrcht	
et	 al.33	 used	 connectivity	 maps	 based	 on	 diffusion	 MRI	
tractography	to	predict	surgical	outcome,	achieving	clas-
sification	performances	of	70%	and	79%–	88%	using	SVM	
and	deep	neural	networks	respectively.	This	is	similar	to	
performance	observed	in	our	study,	but	using	only	presur-
gical	 information.	 The	 lower	 classification	 performance	
in	the	present	study	compared	to	the	highest	performing	
algorithms	in	the	literature	may	be	due	to	the	modalities	
used	(i.e.,	PET	hypometabolism,	resection	regions,	visual	
MRI	inspection),	which	contain	less	prognostic	informa-
tion	than	more	derivative	measures	(i.e.,	voxelwise	volu-
metry	 or	 whole	 brain	 connectomics).	 Alternatively,	 the	
particular	 features	employed	(i.e.,	PET	hypometabolism,	
hippocampal	sclerosis,	etc.)	may	have	introduced	the	po-
tential	 for	 pretest	 selection	 bias.	 That	 is,	 having	 already	
been	considered	by	multidisciplinary	clinical	teams	when	
selecting	surgical	candidates,	the	variability	in	these	fea-
tures	was	reduced	in	the	dataset	upon	which	we	trained	
our	 models.	 These	 features,	 therefore,	 had	 lower	 mar-
ginal	 prognostic	 value	 on	 the	 specific	 filtered	 set	 of	 pa-
tients	we	considered	than	features	that	had	not	been	used	
to	 select	 surgical	 candidates	 (e.g.,	 voxelwise	 volumetry,	
connectomics).	 A	 final	 consideration	 is	 that	 our	 models	
were	 trained	 on	 only	 seven	 predictive	 variables	 selected	
via	 domain-	specific	 knowledge	 compared	 to	 the	 hun-
dreds	to	thousands	of	 input	features	used	in	those	more	
exploratory	analyses.	It	may	be	that	the	more	exploratory	
analyses	are	picking	up	high-	dimensional	hidden	features	
pertinent	to	surgical	outcome,	or	it	may	be	that	they	are	
overfitting.	In	the	future,	we	aim	to	conduct	exploratory,	
voxelwise	analyses	on	our	PET	and	MRI	datasets.

SVM	 and	 RF	 had	 higher	 classification	 performance	
than	LR.	However,	these	differences	were	not	statistically	
significant	 after	 correction	 for	 multiple	 comparisons,	T
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perhaps	indicating	that	a	simple	model	is	sufficient	for	ob-
taining	the	classification	performance	reported	here.	SVM	
and	RF	have	an	advantage	over	LR	 in	 that	 they	are	 less	
hypothesis	driven	and	are	able	to	detect	unhypothesized	
interactions	between	variables	affecting	surgical	outcome.	
The	higher	accuracies	of	these	models	may	indicate	that	
there	are	such	hidden	interactions	between	our	predictor	
variables.	The	black-	box	nature	of	SVM	and	RF,	however,	
makes	it	difficult	to	discern	what	these	are.

One	 such	 expected	 interaction	 between	 the	 variables	
was	that	between	laterality	with	presence	of	contralateral	
hypometabolism,	and	laterality	with	volume	of	tissue	re-
sected	 and	 percentage	 of	 TL	 hypometabolism	 resected.	
Our	previous	study15 showed	 that	presence	of	contralat-
eral	hypometabolism	on	FDG	PET	was	significantly	asso-
ciated	with	a	poorer	chance	of	seizure	freedom	for	right	
MTLE	patients	but	not	left	MTLE	patients.	Furthermore,	
the	volume	of	TL	tissue	resected	and	percentage	of	TL	hy-
pometabolism	resected	were	significantly	associated	with	
higher	chance	of	seizure	freedom	following	left	ATLR	but	
not	 right	 ATLR.	 In	 the	 present	 study,	 we	 found	 that	 in-
cluding	laterality	as	a	predictor	variable	did	not	improve	
the	 classification	 performance	 (slight	 decreases	 were	
observed).	 In	contrast	 to	 regression	analysis,	addition	of	
predictor	 variables	 can	 reduce	 performance	 in	 machine	
learning	due	to	overfitting.	The	apparent	discrepancy	be-
tween	the	importance	of	laterality	in	this	study	compared	
to	Cahill	et	al.15	is	most	likely	due	to	the	high	colinearity	
between	 laterality	 and	 other	 predictor	 variables,	 which	
would	impact	our	machine	learning	models,	but	not	the	
two-	sample	(Engel	Class	I	vs.	Engel	Class	II–	IV	postsur-
gical	 outcomes)	 t-	tests	 in	 Cahill	 et	 al.15	 For	 example,	 in	
our	sample,	laterality	is	correlated	with	percentage	extra-
temporal	hypometabolism	(ρ = .63)	and	volume	of	tissue	
resected	 (ρ  =  .43),	 reflecting	 the	 more	 focal	 distribution	
of	hypometabolism	 in	 left	MTLE	patients,	and	 the	spar-
ing	 of	 critical	 language	 regions	 in	 left	 ATLR.	 Based	 on	
these	two	predictor	variables	alone,	our	machine	learning	
algorithms	are	 likely	 to	already	have	a	representation	of	
laterality,	without	this	variable	being	explicitly	specified,	
meaning	 that	 the	 inclusion	 of	 laterality	 in	 our	 models	
does	not	add	substantial	marginal	predictive	information.

Finally,	 predictive	 performance	 was	 found	 to	 be	 sub-
stantially	 worse	 when	 using	 presurgical	 information	
alone,	compared	to	using	surgical	information.	This	indi-
cates	that	for	use	as	a	presurgical	tool,	some	information	
about	the	surgical	resection	region	will	likely	be	necessary.	
This	could	be	achieved	by	utilizing	surgical	planning	soft-
ware34	or	even	conceivably	using	machine	learning	itself	
to	calculate	the	region	of	resection	most	likely	to	result	in	
positive	surgical	outcome.35,36

The	 current	 study	 has	 several	 limitations.	 Although	
82	patients	are	a	 relatively	 large	cohort	 in	 the	context	of	

epilepsy	surgery	studies,	and	 is	one	of	 the	 larger	cohorts	
used	to	apply	machine	learning	algorithms	to	the	problem	
of	 predicting	 postsurgical	 outcome	 with	 respect	 to	 sei-
zures,29	the	sample	size	is	smaller	than	typically	required	
for	machine	learning.	A	second	consideration,	which	may	
be	a	limitation	or	a	strength,	is	that	the	predictor	variables	
derived	(e.g.,	 localization	of	hypometabolism	within	TLs,	
presence	of	contralateral	hypometabolism,	etc.)	are	based	
on	clinical	domain	knowledge;	they	are	those	considered	
important	 when	 assessing	 surgical	 suitability.	 For	 our	
study,	this	was	necessary	to	reduce	dimensionality	with	low	
sample	sizes,	and	could	improve	classifier	performance	by	
selecting	the	most	pertinent	clinical	variables.	Conversely,	
it	may	reduce	classification	performance:	 first,	because	it	
removes	much	information	available	in	the	raw	data;	and	
second,	because	these	predictors	or	related	features	(such	
as	 localization	 of	 hypometabolism	 within	TLs)	 are	 likely	
to	have	influenced	the	decision	to	perform	surgery,	leaving	
a	sample	with	less	variance	and	predictive	power	in	these	
predictor	variables.	Similarly,	our	predictor	variables	con-
tained	little	localizing	information,	limited	to	laterality	of	
hypometabolism,	 temporal	 versus	 extratemporal	 location	
of	the	hypometabolism,	and	overlap	between	PET	and	MRI	
features.	The	precise	anatomical	locations	of	resection	have	
been	reported	to	have	important	associations	with	seizure	
outcome,	 with	 targeting	 of	 the	 hippocampus,	 amygdala	
piriform	 cortex	 complex,	 and	 entorhinal	 cortex	 associ-
ated	 with	 seizure	 freedom.37,38	 With	 larger	 datasets,	 we	
will	advance	this	approach	to	using	whole	brain	images	as	
input,	rather	than	only	derived	information	as	used	in	this	
study,	allowing	more	information	from	the	raw	data	to	be	
extracted	and	included	in	the	predictive	modeling.	A	final	
consideration	pertains	to	the	statistical	methods	employed	
in	this	study.	To	test	our	hypotheses,	we	compared	models	
using	repeated	k-	fold	cross-	validation	with	a	paired	t-	test.	
This	 method	 is	 widely	 used,	 but	 violates	 independence	
assumptions	of	the	t-	test,	and	has	an	inflated	type	1	error	
rate.	We	 have	 mitigated	 this	 somewhat	 with	 the	 Nadeau	
and	Bengio21	correction,	but	 the	 findings	should	be	eval-
uated	 with	 this	 limitation	 in	 mind.	 Other	 considerations	
include	 those	 pertaining	 to	 the	 use	 of	 machine	 learning	
algorithms	in	general.	Validation	of	the	predictive	value	of	
the	machine	 learning	approaches	tested	here	on	external	
datasets	is	necessary	prior	to	establishing	their	utility	to	be	
incorporated	 into	 clinical	 practice,	 internal	 validation	 in	
a	single	dataset	usually	underestimates	the	out-	of-	sample	
error,	and	external	validation	gives	a	better	insight	on	gen-
eralizability	and	domain	relevance	of	the	model.39	We	have	
not	yet	performed	such	validation	and	will	seek	to	do	so	in	
the	future.	Furthermore,	our	machine	learning	algorithms	
were	trained	on	seizure	freedom	alone.	It	 is	 important	to	
note	 that	 although	 the	 analyses	 in	 this	 study	 focused	 on	
postoperative	seizure	control,	this	is	not	the	only	outcome	
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of	 importance.	Minimizing	postoperative	 functional	defi-
cits,	such	as	visual,	neurocognitive,	and	neuropsychiatric	
deficits,	along	with	risk	of	surgical	complications,	are	all	
important	 considerations	 affecting	 the	 decision	 to	 oper-
ate	and	the	extent	of	tissue	to	resect.	Future	applications	
of	machine	learning	approaches	to	predict	outcomes	from	
epilepsy	surgery	could	incorporate	these	postoperative	out-
comes	in	addition	to	seizure	control.

5 	 | 	 CONCLUSIONS

This	study	showed	that	machine	learning	algorithms	are	
able	to	provide	additional	prognostic	value	from	clinically	
available	 neuroimaging	 features	 already	 incorporated	 in	
initial	evaluation	of	epilepsy	surgery	candidates.	Most	no-
tably,	 up	 to	 73%	 of	 patients	 with	 poor	 surgical	 outcome	
were	 predicted,	 potentially	 providing	 additional	 infor-
mation	to	incorporate	into	surgical	decision-	making	and	
patient	 counseling.	 Of	 our	 secondary	 hypotheses,	 the	
strongest	finding	was	that	performance	was	substantially	
reduced	 without	 knowledge	 of	 the	 resection	 region,	 in-
dicating	 that	 prospective	 incorporation	 of	 the	 planned	
surgical	resection	into	the	machine	learning	approach	is	
necessary	for	the	optimum	prognostication	value.
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