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Abstract: Biodegradable soft robots have been proposed for a variety of intelligent applications in
soft robotics, flexible electronics, and bionics. Biodegradability offers an extraordinary functional
advantage to soft robots for operations accompanying smart shape transformation in response to
external stimuli such as heat, pH, and light. This review primarily surveyed the current advanced
scientific and engineering strategies for integrating biodegradable materials within stimuli-responsive
soft robots. It also focused on the fabrication methodologies of multiscale biodegradable soft robots,
and highlighted the role of biodegradable soft robots in enhancing the multifunctional properties of
drug delivery capsules, biopsy tools, smart actuators, and sensors. Lastly, the current challenges and
perspectives on the future development of intelligent soft robots for operation in real environments
were discussed.

Keywords: stimuli-responsive materials; hybrid actuators; intelligent systems

1. Introduction

Multiscale stimuli-responsive hydrogel-based soft robots have demonstrated a va-
riety of intelligent applications in manipulators, wearable electronics, and healthcare
systems [1–7]. In general, stimuli-responsive soft robots have components made of elas-
tic materials and actuation is achieved through continuum material deformations [8–13].
Compared with rigid body systems, stimuli-responsive soft robots exhibit a high degree
of continuous shape deformation when triggered by external stimuli such as pneumat-
ics, heat, pH, light, or even biomaterials [7,14,15]. Most soft robots are composed of
stimuli-responsive hydrogel network systems (e.g., N-isopropyl acrylamide (NIPAM)),
which exhibit large swelling/deswelling in aqueous environments, owing to their inherent
porous nature [16]. NIPAM-based hydrogels, in particular, exhibit unique physicochemical
thermal property changes between 32 and 36 ◦C by adjusting the lower critical solution
temperature (LCST) [16,17]. In addition, more recent works have extensively hybridized
multi-functional additives (e.g., graphene, nanowires, and liquid crystals) with stimuli-
responsive hydrogel networks to develop multi-functional intelligent soft robots with
enhanced mechanical, electrical, and/or optical properties [18].

From another perspective of stimuli-responsive material selection and design, pat-
terning or structuring techniques constitute a critical aspect for precisely manufacturing
hydrogel-based soft robots. Some popular methods for creating 3D systems include top-
down approaches such as photolithography, electron beam, and replica patterning using
conventional thin-film additives and subtractive fabrication techniques [5,8,19,20]. Fur-
thermore, self-folding is an emerging innovative method to design 3D structures. The
self-folding approach mainly utilizes an out-of-place deformation associated with photo-
patterned 2D thin film structures, which turn into 3D folded, curved, or rolled shapes
upon encountering external triggers such as heat, pH, and light without any manual con-
trol [8,21]. This combination of self-folding and photolithographic strategies has been uti-
lized to develop intelligent soft robotic applications including actuators and sensors [22,23].
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In addition, 3D/4D printing has been highlighted as an innovative new technology for
patterning 3D structures and their time-dependent shape changes with an appropriate
external trigger [24–27]. The combination of stimuli-responsive materials and 3D/4D print-
ing techniques has also provided a new direction to the development of smart soft robot
design and operation.

Meanwhile, extensive comprehensive reviews and discussions of stimuli-responsive
materials, and their fabrications and applications have been presented [1,2,7]. More recently,
integrated hybrid stimuli-responsive hydrogel systems were actively highlighted for a
more comprehensive analysis of specific soft robotic viewpoints [2–4,6,18,28,29]; however,
most of them rarely discussed biodegradable soft robots. Addressing the same, this review
surveyed the recent advances in biodegradable soft robots. First, this review focused on
the biodegradable materials utilized in soft robotics that exhibit multi-functional properties
in response to stimuli such as heat, pH, light, and biomaterials (Section 2. Biodegradable
Materials for Soft Robots). Next, we categorized the various fabrication methods such as
3D/4D printing and photolithography to structure biodegradable soft robots accompanied
by external, stimuli-driven, smart shape transformation (Section 3. Fabrication Methods
for Soft Robots). Further, we discussed the diverse applications of biodegradable soft
robots in the form of actuators, sensors, drug delivery capsules, biopsies, etc. (Section 4.
Applications of Biodegradable Soft Robots). Lastly, we highlighted the current challenges
of biodegradable and stimuli-responsive soft robots and emphasized perspectives on
the future development of intelligent, multiscale, tethered/untethered soft robots for
their application in real environments (Section 5. Conclusion and Outlook). The overall,
comprehensive, biodegradable materials and their applications are schematically described
in Figure 1.
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2. Biodegradable Materials for Soft Robots

The variety of biodegradable materials described in Table 1 can be utilized to create
intelligent soft robots which can degrade after accomplishing their specified mechanical
locomotion and function in the fields of targeted drug delivery, microsurgery, localized
diagnosis, and smart actuators [24]. Biodegradable materials are mainly synthesized in the
form of polymers, which are categorized as natural and artificial soft matter [30,31]. Among
the many naturally derived biodegradable materials, protein-based polymers, chitosan,
cellulose, and gelatin are the most utilized natural polymers to construct intelligent soft
robots such as helical-shaped, small-scale swimmers and grippers [32,33]. Chitosan is a
natural cationic polymer obtained by the deacetylation of chitin, which is insoluble in
water, and alkaline and dissoluble in acidic solutions [34]. Specifically, chitosan can be
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enzymatically degraded by lysozyme and chitosanase enzymes [35]. These biodegradable
properties of chitosan make it a promising candidate in targeted drug/cell delivery in the
form of a 3D micro-swimmer in water [32]. In addition, cellulose/carboxymethylcellulose
(CMC) is an anionic, water-soluble cellulose polymer formed by the reaction between
alkali and chloroacetic acid [36]. CMC exhibits unique chemical and physical properties
such as biocompatibility, biodegradability, softness, transparency, high viscosity at low
concentrations, and swelling at high pH [32,37]. Furthermore, gelatin is another natural
protein obtained by either acid or alkaline hydrolysis of a collagen based on anionic and
cationic groups in a gel network, with low gelation temperature (e.g., spray-dried goat skin
gelatin, freeze-dried goat skin gelatin, and commercial bovine gelatin: 22.4–25.2 ◦C [38,39]).
Gelatin has diverse advantages, including non-toxicity, high water absorption, biocom-
patibility, and biodegradability, and is applicable in a variety of biomedical healthcare
systems [40–43].

Lactic acid (LA, 2-hydroxypropionic acid, CH3CHOHCOOH), a naturally occurring
organic acid, exists in two enantiomeric forms: L- and D-LA. LA is a building block
of poly(lactic acid) (PLA) [44]. PLA is a thermoplastic aliphatic polyester derived from
renewable plant sources such as starch and sugar [45]. It is biocompatible with the human
body [46] and is easily degraded by the hydrolysis of ester bonds without requiring any
enzymes [44]. Owing to its simple degradation process and biocompatibility, PLA has been
widely utilized in diverse biomedical applications [47–50]. By chemically tuning the L and
D isomers of LA, LA can also be polymerized into a variety of poly-L-LA (PLLA), pure poly-
D-LA (PDLA), and poly-D,L-LA (PDLLA) [44], known as the isoforms of PLA [51]. These
LA-based hydrogels are biocompatible and biodegradable. However, PDLA and PDLLA,
upon degradation, produce D-lactic acid, which is slightly harmful to the human body [45].
In comparison, PLLA produces L-lactic acid, which is harmless to the human body [52].
Although PLA and its isoforms have many advantages, they have some limitations: (1) low
degradation rate; (2) hydrophobicity; and (3) low impact toughness associated with their
use [44]. To overcome these limitations, different physical blends of polymers [53] with the
addition of moieties [54,55] have been widely utilized.

Poly-L-lysine (PLL) polymer, composed of lysine amino acids, is hydrophilic, bio-
compatible, biodegradable [56], and a polypeptide isomer of polylysine [57]. Since PLL
is a biocompatible, biodegradable, and hydrophilic polypeptide [56], it is used in vari-
ous biomedical applications [58–61], especially gene delivery [59,62]. The repeating units
of PLL carry a positive charge on the ε-amine side chain at a physiological pH (≈7.4).
Therefore, PLL can concentrate plasmid DNA to varying degrees depending on the salt
concentration [59]. In addition, the gene delivery efficiency of PLL depends on its molecular
weight [62], increasing with it. However, its cytotoxicity also increases with its molecu-
lar weight [62]. Furthermore, an increase in the PLL length increases the cytotoxicity of
PLL [59]. Because of this problem, PLL modification is necessary to tune the properties of
PLL [59]. One example of PLL modification to enhance the efficacy of gene delivery is chemi-
cal modification, which is implemented by conjugating ligands, such as asialoorosomucoid,
transferrin, folate, monoclonal antibodies, and basic fibroblast growth factors with PLL [62].

Based on a different perspective of artificial biodegradable materials, gelatin methacry-
loyl (GelMA) is a synthetic, gelatin-based, biodegradable polymer, which is chemically
modified with methacrylic anhydride (MAA) [63]. Generally, GelMA supports good
cell attachment and growth, and is gradually degraded by cell-released enzymes during
the culture process [64]. From the viewpoint of GelMA-based soft robots, the degree of
methacryloylation and its concentration are key factors in providing effective manufactura-
bility, functionality, and degradability [64–67]. Furthermore, owing to its low mechanical
strength (~50 to 150 KPa) [63], short degradation time (~7 to 14 days) [63], and high swelling
ratio [68], the gelation and operation times of GelMA-based soft robots are essential to
avoid degradation and inflammation in tissue engineering [69].
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Table 1. Pros and cons of biodegradable materials and their applications.

Type Material Advantage Disadvantage Application

Natural polymer

Chitosan Enzymatically degraded by lysozyme
and chitosanase enzymes [35]

Water-insoluble, unstable, toxic
at hydrogel phase [70]

Targeted drug/cell delivery [32]
Gripper [33]

Cellulose/carboxymethylcellulose (CMC)
Biocompatible, soft, transparency,

high viscosity at low concentrations,
swelling at high pH [32,37]

Weak mechanical properties [71] Gripper [33]

Gelatin

Low gelation temperature:
22.4–25.2 ◦C [38,39]

Non-toxic, high water absorption,
biocompatible [40–42]

Weak mechanical properties [72] Tissue engineering [73]
Drug delivery [74]

Synthetic polymer

Poly(lactic acid) (PLA) Degraded by the hydrolysis of ester bonds
without requiring any enzymes [44]

Slow degradation rate, hydrophobicity,
low impact toughness [44]

Drug delivery [75]
Surgical implant [76]

Tissue engineering [76]

Poly-L-lysine (PLL) Hydrophilic, biocompatible [56] Cytotoxicity increases
with its molecular weight [62] Gene delivery [59,62]

Gelatin methacryloyl (GelMA) Degraded by cell-released enzymes [64] Low mechanical strength (~50 to 150 KPa),
short degradation time (~7 to 14 days) [63]

Drug delivery [64,65]
Tissue engineering [69,77]

Poly(ethylene glycol) (PEG) Non-ionic, low inflammation [78] Low mechanical strength [79] Tissue engineering [80]

Poly(ethylene glycol) diacrylate (PEGDA) Mechanical stability [79] Slow degradation rate in vivo [81] Drug delivery [82]
Tissue engineering [68]

Poly(propylene fumarate) (PPF) Biocompatible, non-toxic [83–87] Mechanical strength loss,
brittleness during degradation [83] Gripper [88,89]

Poly(aspartic acid) (PASP) Smooth, intact, robust [90] Complex synthesis [91] Drug delivery [90]
Tissue engineering [91]

Poly(acrylic acid) (PAAc) Water-soluble, high molecular-weight,
pH-responsive [92] Low mechanical strength [92] Drug delivery [93]

Poly(ε-caprolactone) (PCL) Semi-rigid at room temperature [94] Slow degradation rate, low stiffness [95] Tissue engineering [96]
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Poly(ethylene glycol) (PEG) is another synthetic, biodegradable polymer suitable for
undergoing limited metabolism in a physiological environment and exhibits excellent
biocompatibility, including non-ionic and low inflammation [78]. Particularly, to enhance
the mechanical properties of PEG, poly(ethylene glycol) diacrylate (PEGDA) can be synthe-
sized by combining PEG with acryloyl chloride [79]. PEGDA has a higher shear storage
modulus (e.g., 68 KPa at 20 wt% [79]) than PEG (e.g., 13.7 KPa at 20 wt% Pluronic [79]);
therefore, the mechanical stability of PEGDA-based soft robots is higher than its PEG-based
counterparts. However, PEGDA degrades slowly in vivo, so it is not suitable for long-term
implantable applications [81]. Lately, PEG- or PEGDA-based soft robots have been ex-
tensively utilized as biodegradable microrobots [82,97,98], as micro-swimmers [82,99] for
targeted therapeutic healthcare applications and tissue engineering [80].

Poly(propylene fumarate) (PPF) is a biodegradable and non-swellable, segmented
polymer [89]. Similar to PLA, PPF is also an aliphatic polyester, which degrades via the
hydrolysis of its ester bonds [83], and is affected by the molecular mass of the backbone
chain, types of cross-linkers, and cross-linking density [100–102]. PPF is also biocompati-
ble and non-toxic, confirmed by the cellular cytotoxicity standards (ISO 10993-5) [83–87].
Thus, PPF-based soft robots have been proposed as photolithographically patterned, self-
folding healthcare theragrippers [88] and stimuli-responsive grippers [89]. In addition,
poly(aspartic acid) (PASP) is a water-soluble and pH-responsive biodegradable poly-
mer [103,104]. In general, PASP is a smooth, intact, and robust material that cannot be
destroyed by an organic solvent, acid, or base solution [90]. PASP has various side-chain
functional groups (e.g., amino, carboxyl, and hydroxyl) [90]. Owing to the carboxyl group
in PASP, electrostatic interactions can occur with the amino groups of other materials [90].
These interactions facilitate the bonding of PASP with materials bearing amino groups, such
that PASP-based micro-composites can serve as drug delivery microcarriers [90]. Despite
this advantage, PASP has a limitation: the synthesis of PASP-based hydrogels is relatively
more complicated than that of other anionic hydrogels [91].

Moreover, poly(acrylic acid) (PAAc) is a water-soluble, biodegradable, and high-
molecular-weight polymer that is polymerized by the monomer, acrylic acid [92]. In
particular, the carboxylic acid in the PAAc network makes it suitable for manufacturing
a pH-responsive drug delivery system [92]. This unique characteristic of pH-responsive
PAAc, combined with polyacrylamide (PAAm), provides a lipophilic drug delivery mi-
crorobot, which can be utilized in a wide range of pH such as in the stomach (pH = 2)
and intestines (pH = 8) [93]. Poly(ε-caprolactone) or polycaprolactone (PCL) is another
biodegradable semi-crystalline polymer, which is semi-rigid at room temperature [79,94,95].
Normally, PCL is degraded by enzymes or fungi for 1 to 2 years and has a relatively high
stiffness with an elastic modulus of ~0.21 to 0.44 GPa compared to other biodegradable
materials [95]. To improve its degradation rate and mechanical properties, PCL is blended
with lactic acids (e.g., PLA, PLLA, PLGA, and polyethers) [79,105]. Moreover, it has recently
been noted that PCL has a high tensile strength (~23 MPa) and elongation before breaking
(more than 4700%) [79].

3. Fabrication Methods for Soft Robots

After tailoring biodegradable materials, suitable fabrication techniques must be devel-
oped to manufacture biodegradable 3D soft robots. Various fabrication strategies such as
photolithography and 3D/4D printing have been employed to manufacture biodegradable
3D soft robots.

3.1. Photolithography

Several innovative fabrication methods have been proposed to construct multiscale,
complex 3D structures, including additive and subtractive, process-based, lithographic
approaches (e.g., photo [106–108], two-photon [32,64], and electron beam [109,110]). In
particular, lithographic patterning technique is highly parallel and precise for manufactur-
ing micro- and nano-semiconductor chips [111]. The photolithographic patterning process
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generally involves transferring the designed pattern from the mask or reticle to the pho-
toresist on the wafer surface [111]. However, photolithographic techniques involve several
two-dimensional (2D), planar, additive and subtractive, serial deposition and removal pro-
cesses. Thus, complex and shape-changing 3D soft robots can be manufactured by utilizing
a combined photolithography and self-folding strategy, which subjects a 2D thin film to
3D bent, curved, rolled, or folded shape changes without any manual control [107,108].
For example, Zakharchenko et al. have proposed thermoresponsive, shape-transformable,
and partially biodegradable bilayer microtubes composed of poly(N-isopropylacrylamide)
copolymer, containing 1 mol% of 4-acryloylbenzophenone comonomer (poly(NIPAM-ABP))
and polycaprolactone (PCL) (Figure 2A) [107]. In addition, Kobayashi et al. fabricated
fully biodegradable (poly[oligo (ethylene glycol) methylether methacrylate] (POEGMA)
and poly(di(ethylene glycol) methyl ether methacrylate) (PDEGMA) soft robots using a
combined self-folding and photolithography strategy (Figure 2B) [108]. Photolithographic
bilayering or panel-hinge patterning, comprising active and passive stimuli-responsive
properties, have been primarily selected for converting 2D thin films into self-folded (e.g.,
self-curved, -rolled, -bent, and -twisted) 3D structures [88,112,113].

Polymers 2022, 14, x FOR PEER REVIEW 6 of 20 
 

 

primarily selected for converting 2D thin films into self-folded (e.g., self-curved, -rolled, -
bent, and -twisted) 3D structures [88,112,113].  

 
Figure 2. Microscale biorobots fabricated by photolithography and two photon polymerization 
processes. (A) Photolithography: Scheme of the capture and release of microparticles by self-rolling 
microtubes (upper) and images of the encapsulation and release of microparticles from microtubes at 
different temperatures (lower). Reproduced with permission [107]. Copyright 2010, The Royal Society 
of Chemistry. (B) Photolithography: Schematic representation of the fabrication process for four-state, 
thermally responsive grippers (upper) and representative images of grippers (lower). Reproduced 
with permission [108]. Copyright 2018, Wiley-VCH. (C) Two-photon lithography: Fluorescent image 
of helical microstructures with different sizes (left) and optical image of helical micro-swimmers 
decorated with magnetic nanoparticles (right). Reproduced with permission [64]. Copyright 2018, 
Wiley-VCH. (D) Two-photon lithography: Optical microscopy image of 3 × 3 array of the micro-
swimmers. Reproduced with permission [32]. Copyright 2018, The American Chemical Society. 

More recently, to create more complex micro- or nanoscale 3D structures, advanced 
fabrication technologies, such as two-photon polymerization (TPP) and two-photon 
lithography (TPL), have been widely developed [64,114–116]. TPP, also known as direct 
laser writing (DLW), has high spatial resolution and ultra-precision in micro- and 
nanoscale fabrication [104]. In short, TPP is a layer-by-layer method, which, unlike 
lithographic patterning which requires a mask, does not require the need to use a mask to 
fabricate complex structures [116]. Furthermore, different from conventional single-
photon polymerization, TPP allows the photoinitiator (PI) molecule contained in the 
polymerization resist to absorb two photons and cause polymerization in a highly 
localized area [116]. This method has advantages in manufacturing multiscale 3D micro- 
or nanostructures of various materials such as polymers or hybrid metals with a 
subdiffraction-limit resolution (< 100 nm) [114]. Specifically, TPP-driven, helical-shaped, 
microscale soft robots have been extensively developed as non-invasive biomedical 
devices (e.g., gelatin methacryloyl (GelMA)-based biodegradable micro-swimmers 
(Figure 2C) [64], and chitosan drug delivery micro-swimmers (Figure 2D) [32]). 

3.2. 3D/4D Printing 
3D printing methods have also been widely utilized for manufacturing 

biodegradable soft robots applicable in biomedical engineering fields, including targeted 

Figure 2. Microscale biorobots fabricated by photolithography and two photon polymerization
processes. (A) Photolithography: Scheme of the capture and release of microparticles by self-rolling
microtubes (upper) and images of the encapsulation and release of microparticles from microtubes
at different temperatures (lower). Reproduced with permission [107]. Copyright 2010, The Royal
Society of Chemistry. (B) Photolithography: Schematic representation of the fabrication process
for four-state, thermally responsive grippers (upper) and representative images of grippers (lower).
Reproduced with permission [108]. Copyright 2018, Wiley-VCH. (C) Two-photon lithography:
Fluorescent image of helical microstructures with different sizes (left) and optical image of helical
micro-swimmers decorated with magnetic nanoparticles (right). Reproduced with permission [64].
Copyright 2018, Wiley-VCH. (D) Two-photon lithography: Optical microscopy image of 3 × 3
array of the micro-swimmers. Reproduced with permission [32]. Copyright 2018, The American
Chemical Society.

More recently, to create more complex micro- or nanoscale 3D structures, advanced
fabrication technologies, such as two-photon polymerization (TPP) and two-photon lithog-
raphy (TPL), have been widely developed [64,114–116]. TPP, also known as direct laser
writing (DLW), has high spatial resolution and ultra-precision in micro- and nanoscale
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fabrication [104]. In short, TPP is a layer-by-layer method, which, unlike lithographic
patterning which requires a mask, does not require the need to use a mask to fabricate
complex structures [116]. Furthermore, different from conventional single-photon poly-
merization, TPP allows the photoinitiator (PI) molecule contained in the polymerization
resist to absorb two photons and cause polymerization in a highly localized area [116].
This method has advantages in manufacturing multiscale 3D micro- or nanostructures of
various materials such as polymers or hybrid metals with a subdiffraction-limit resolu-
tion (<100 nm) [114]. Specifically, TPP-driven, helical-shaped, microscale soft robots have
been extensively developed as non-invasive biomedical devices (e.g., gelatin methacry-
loyl (GelMA)-based biodegradable micro-swimmers (Figure 2C) [64], and chitosan drug
delivery micro-swimmers (Figure 2D) [32]).

3.2. 3D/4D Printing

3D printing methods have also been widely utilized for manufacturing biodegradable
soft robots applicable in biomedical engineering fields, including targeted drug delivery,
biopsy, and tissue engineering [78,117]. In general, 3D printing techniques such as fused
deposition modeling (FDM) [117–119], 3D plotting [78,120], inkjet [78,121–124], and Poly-
Jet [125,126] possess the advantages of a high resolution and accuracy for pattern structures
with automatically programmed geometry and repeatability. Among the several 3D print-
ing techniques, FDM is most widely used [127]. FDM is a type of extrusion fabrication,
which uses thermoplastic polymers in the form of filaments. To print a 3D structure di-
rectly, the filaments are melted in a nozzle, and the melted material is extruded to deposit
onto the build platform with repeated, layer-by-layer processes until the layers fuse and
solidify [117,119]. For example, Figure 3A shows biodegradable polymer microneedles
for transdermal drug delivery printed using the FDM method. This FDM-based 3D mi-
croneedle pattern was designed using 1 to 55 µm printing tip sizes, which successfully
broke into porcine skin [118]. As another example, bone tissue engineering scaffolds can
be precisely patterned using the FDM strategy. Specifically, poly(D,L-lactide:glycolide)
(DL-PLGA) and β-tricalcium phosphate (β-TCP) nanocomposites have been FDM-based
3D printed with hydroxyapatite (HA) coating on surfaces [119]. In addition, 3D plotting is
another FDM-based 3D printing technique that extrudes viscous materials such as liquids
or pastes [78]. For a specific example, Dávila et al. fabricated a biodegradable PCL/β-TCP
scaffold, with improved hydrophilic cell adhesion and compressive strength, via 3D mini-
screw extrusion printing, based on FDM printing [120]. The advantage of 3D mini-screw
printing is that it can program diverse ratios of compositions of materials during 3D print-
ing which simultaneously display different mechanical, chemical, and physical properties
(Figure 3B) [120].

Furthermore, inkjet printing can be classified into continuous and drop-on-demand
(DOD) systems [78,121,122]. In a continuous ejection system, the pressure of the print
head is controlled, and the nozzle continuously generates jets. The jet then breaks into
droplets of a uniform size and spacing. The DOD system differs from the continuous
system in that it ejects ink droplets (when required) through thermal or piezoelectric
heads [78]. Using a piezoelectric inkjet printer controlled by a jetting voltage waveform,
Boehm et al. fabricated a miconazole-loaded microneedle (Figure 3C) [123]. In addition,
PolyJet printing is another additive manufacturing (AM) material jetting process in which
liquid photopolymer droplets are deposited directly onto an elevator substrate [125]. The
PolyJet process is particularly capable of using both stiff and flexible materials, and printing
complex multi-material structures, by depositing two different materials on a pixel-by-pixel
basis [125]. Using this PolyJet printing, flexible and biocompatible, bat-shaped 3D polymer
structures can be fabricated, as shown in Figure 3D [126].
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Figure 3. Biomedical applications fabricated by 3D/4D printing. (A) 3D Extrusion: Optical images
of microneedles fabricated by FDM. Reproduced with permission [118]. Copyright 2018, The Royal
Society of Chemistry. (B) 3D Extrusion: Scaffolds fabricated by 3D plotting. Reproduced with
permission [120]. Copyright 2016, Wiley Periodicals. (C) 3D Jetting: Miconazole-loaded Gantrez AN
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printing: A self-folding and -opening box. Reproduced with permission [26]. Copyright 2013, AIP
publishing. (F) 4D printing: Octopus-shaped soft robot exhibiting a forward movement. Reproduced
with permission [128]. Copyright 2019, Wiley-VCH.

3D printing can create precise 3D structures using various types of materials and has
been extended to biomedical applications. However, one disadvantage of 3D printing
is that it only considers the primary state of the printed structures, which is static and
inanimate [129]. Recently, four-dimensional (4D) printing technology has emerged to
overcome this limitation [130,131]. 4D printing is based on the ability to change shapes
or functions over time upon exposure to internal or external stimuli [130]. Owing to
their simple manufacturing process, flexibility, and low cost, shape memory polymers
(SMP) have been widely utilized as one of the main 4D printing materials [131]. Specifi-
cally, Ge et al. proposed a self-folding box by printing active SMP composites on hinges
connected to inactive stiff panels (Figure 3E) [26]. They demonstrated that the box was
thermally responsive to attain biaxially stretched open (heat-up) and closed (cool-down)
states reversibly [26]. Recently, 4D printing technology has expanded by utilizing advanced
material properties and systems to create more complex and multi-functional soft robots.
Figure 3F demonstrates the movement of a 4D printed magnetic, hydrogel-based, octopus-
shaped soft robot from left to right, corresponding to a programmed magnetic field [128].
Particularly, the octopus-shaped robot was printed by using dual hydrogels composed
of acrylamide-carbomer (AAm-carbomer) and an AAm-carbomer-ferromagnetic particle
(Fe3O4) bilayer. The bottom part of the robot is printed by using AAm-carbomer ink, while
the upper part is printed by using AAm-carbomer ink mixed with magnetic particles. The
octopus robot moves forward under the drive of a magnetic field programmed to move
from left to right [128].

4. Applications of Biodegradable Soft Robots
4.1. Drug Delivery Carriers

Drug delivery is a method of administering drugs to achieve therapeutic effects
in humans or animals [132]. Drug delivery studies have been directed toward contin-
uously developing non-invasive, non-toxic, and safe-acting systems in humans [133].
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Non-biodegradable drug delivery machines require removal via endoscopes or surgeries
after releasing the drugs at the desired target areas [134]. To overcome this technical
limitation, several biodegradable materials have been utilized to create biodegradable
drug delivery machines that degrade automatically after a certain duration, without re-
quiring any manual intervention [134,135]. Biodegradable drug delivery carriers have
shown advanced functionalities in diverse forms of micro-rockets, micro-swimmers, and
microcapsules [58,65,75,90,93,136,137]. For example, cylinder-shaped micro-rockets have
been utilized as drug delivery carriers (Figure 4A,B) [58,90]. A micro-rocket is a microscale
actuator, which can derive the fuel for its actuation from the human body (e.g., hydrogen
peroxide (H2O2) [58] and gastric acid [90]). For specific examples, Figure 4A shows a
micro-rocket composed of biodegradable bovine serum albumin (BSA) and poly-lysine
(PLL) [58]. This micro-rocket is propelled by hydrogen peroxide (H2O2) and releases the
drug, doxorubicin (DOX), at the desired site as a response to light in the near-infrared (NIR)
region [58]. In addition, Figure 4B shows a micro-rocket manufactured using biodegradable
poly(aspartic acid) (PASP) combined with a thin Fe intermediate layer and Zn core. This
micro-rocket uses human gastric acid as its fuel for self-propulsion [90].
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Figure 4. Biodegradable drug delivery carriers. (A) Fabrication and light-triggered drug release
process of biodegradable (PLL/BSA)10-DOX-CAT-AuNPs-gelatin-based drug delivery rockets. Re-
produced with permission [58]. Copyright 2015, The American Chemical Society. (B) Magnetic
guidance of a single DOX/PASP/Fe-Zn MR in vitro for effective localization in the stomach. Re-
produced with permission [90]. Copyright 2019, The American Chemical Society. (C) Microscale
biodegradable swimmer array in the presence of an enzyme for drug release. Reproduced with per-
mission [65]. Copyright 2019, The American Chemical Society. (D) Algal (Chlamydomonas reinhardtii)
micro-swimmer’s propulsion trajectories under 26 mT of uniform magnetic field. Reproduced
with permission [136]. Copyright 2018, Wiley-VCH. (E) SEM and optical images of a PLA-based
microcapsule (left) and schematic image of the microcapsule (right). Reproduced with permis-
sion [75]. Copyright 2017, The Royal Society of Chemistry. (F) Actuator-controlled drug release
model fabricated with a polyacrylic acid (PAAc) and polyacrylamide (PAAm) bilayer (left), and the
PAAcPAAm bilayer soaked in different aqueous solutions of pH 2, 6, and 8 (right). Reproduced with
permission [93]. Copyright 2017, The Royal Society of Chemistry.

Micro-swimmers are micro/nanoscale devices with the ability to move in liquid
environments [138]. One of the most commonly used forms is the helical-shaped micro-
swimmer [32,64,65,139]. A helical microstructure can generate the required propulsive
force by using an external rotating magnetic field (RMF) in a low-Reynolds-number en-
vironment [82]. This characteristic highlights the higher efficiency of magnetic torque
compared to that of magnetic gradient pulling for microscale actions [140]. Therefore, heli-
cal micro-swimmers have received considerable attention for biomedical applications [32].
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Figure 4C shows an example of a helical micro-swimmer composed of a biodegradable
gelatin methacryloyl (GelMA) hydrogel for biomedical drug delivery and release at the
target areas [65]. This GelMA-based micro-swimmer is combined with biofunctionalized
superparamagnetic iron oxide nanoparticles for locomotion control via external magnetic
guidance [65]. Biohybrid micro-swimmers that include organisms have been proposed
as multi-functional and smart, small-scale soft robots [136,141]. Moreover, biohybrid sys-
tems enable the simultaneous achievement of advanced-level functions [141]. Besides the
simple biohybrid system focusing on bacterial utilization for micro-swimmers [142–146],
Yasa et al. proposed another advanced microalga-based biohybrid cargo delivery system
(Figure 4D) [136]. This partially biodegradable, biohybrid micro-swimmer, comprised the
unicellular, freshwater, green microalga, Chlamydomonas reinhardtii, and polyelectrolyte
(PE)-functionalized 1 µm-diameter magnetic polystyrene (PS) particles [136]. The microalga-
based biohybrid micro-swimmer exhibited high propulsion ability (>100 µm s−1), autofluo-
rescence, and phototactic guidance capability [136].

Capsule-shaped carriers are also a type of drug delivery carrier used to encapsulate
drugs and release them at targeted locations [75]. Drug delivery microcapsules must
be encapsulated for long periods, and a sufficient durability and stability are essential.
Poly(lactic acid) (PLA)-based capsules have been widely used because of their gradual
degradation (Figure 4E) [75]. In addition, PLA microcapsules can be fabricated using
electrospray (ES) [75] or lithography [137]. Another capsule-shaped drug delivery carrier
composed of a spherical polyethylene structure with a polyacrylamide-polyacrylic acid
(PAAm-PAAc) bilayer patch on top has been proposed (Figure 4F) [93]. PAAm (microbial-
degradable [147]) and biodegradable PAAc [92] are pH-responsive hydrogels. When the pH
< 6, the swelling ratio of PAAm is relatively large, whereas PAAc is dominantly expanded
in a pH > 6 environment [93]. Thus, PAAc is attached to the capsule directly, while PAAm is
attached to the capsule in the opposite direction, such that the bilayer bends in an alkaline
environment [93].

4.2. Grippers

Multiscale soft grippers have been significantly developed over the past few decades [148].
A variety of tethered and untethered soft grippers has been designed and controlled by the
stimuli-on-off process. Stimuli-responsive soft grippers exhibit smart shape reconfigurations
or movements such as pick-and-place, biopsy, and actuator tasks [5]. More recently, biodegrad-
able, stimuli-responsive soft grippers demonstrated several multi-functional pick-and-place,
biopsy, and actuating tasks under autonomously programmed thermal, magnetic, or light
on-off triggers in unstructured aqueous environments (Figure 5) [33,67,88,98,135,149]—
specifically, biodegradable poly(ethylene glycol) diacrylate (PEGDA), thermally respon-
sive poly(N-isopropylacrylamide) (PNIPAM), and magnetic alginate composite gripper-
encapsulated microbeads via the NIR laser irradiation on-off process, as demonstrated
in Figure 5A [98]. The light-driven open and close actuation of the gripper has shown
significant potential for targeted therapeutic drug delivery [98]. In addition, Figure 5B
shows another thermoresponsive drug-loaded theragripper composed of biodegradable
polypropylene fumarate (PPF) and a thermally responsive poly(N-isopropyl acrylamide-
co-acrylic acid) (pNIPAM-AAc) bilayer [88]. Responding to temperature changes, at 4 ◦C,
the closed theragripper opens its hands gradually as the temperature increases and closes
in the opposite direction when the temperature reaches 37 ◦C (i.e., physiological body
temperature) [88]. Another partially biodegradable and thermoresponsive, star-shaped
poly(NIPAM-ABP)/ polycaprolactone (PCL) bilayer gripper is shown in Figure 5C [149].
Responding to low temperatures (T < 10 ◦C), the poly(NIPAM-ABP) layer swells and
the gripper folds; as the temperature increases, the poly(NIPAM-ABP) layer shrinks and
the gripper unfolds. The gripping and releasing motions of the gripper are completely
reversible in response to the temperature signal. Moreover, the gripper exhibits different
folding temperatures and degradation rates depending on the thickness of each layer [149].
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In addition to thermally responsive biodegradable grippers, various magnetically
responsive biodegradable grippers have been proposed [67,135]. The use of magnetic
nanoparticles allows the gripper to deform its shape and actuate in response to an applied
magnetic field. For example, a magnetically responsive, biodegradable, collagen-based hy-
drogel milli-gripper, with embedded superparamagnetic iron oxide nanoparticles (SPIONs),
is shown in Figure 5D [67]. By modulating the magnetic field within the 5–25 mT range,
both the folding and movement of the gripper was controlled. After completing a pick-
and-place task via a magnetic field on-off process, the gripper completely biodegraded
using the matrix metalloproteinase-2 enzyme [67]. Another magnetically guided and
thermally actuated, biodegradable soft gripper is shown in Figure 5E [135]. The gripper
consists of thermally responsive high-swelling poly(oligoethylene glycol methyl ether
methacrylate (Mn = 500)-bis(2-methacryloyl)oxyethyl disulfide) (P(OEGMA-DSDMA)) and
low-swelling poly(acrylamide-N,N′-bis(acryloyl)cystamine) (P(AAm-BAC)) gels doped
with Fe2O3 nanoparticles. Owing to the difference in the swelling rate of each layer, the
shape of the gripper transformed within a 50–70 ◦C temperature range. The P(OEGMA-
DSDMA) layer degraded completely in 4 h, while the P(AAm-BAC) layer degraded in
20 days in an acidic environment (pH = 3) [135]. Furthermore, a pH-responsive biodegrad-
able soft chitosan and carboxymethylcellulose (CMC) bilayer grippers have been introduced
(Figure 5F) [33]. Chitosan and CMC exhibit high swelling in low pH and high pH environ-
ments, respectively. Using the characteristics of the different pH responses of chitosan and
cellulose/CMC, the gripper is opened and closed reversibly in response to different pH
environments. In a 0.1 M HCl aqueous solution, the arms of the gripper were bent to grip
the target. Subsequently, the gripper lifted the cargo and opened its arms to release it in a
0.1 M NaOH solution [33].
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4.3. Tissue Engineering

Tissue engineering incorporates biology into engineering to create or repair tissue or
cell products either in vitro or in vivo [150]. One of the ultimate goals of tissue engineering
is to improve or replace biological tissues. The biocompatible scaffold to which stem cells
are attached must be moved to the target body area to allow the stem cells to settle in
that area, after which the scaffold must be biodegraded. For this operation, the chemistry,
porosity, and biodegradability must be adjusted according to the biomaterial required for
scaffold fabrication [151]. Biodegradable soft robots have been extensively utilized in tissue
engineering. For example, Figure 6A shows a burr-like, porous, spherical micro-swimmer
loaded with mesenchymal stem cells (MSCs) in its pores [152]. This micro-swimmer is
composed of biodegradable poly (ethylene glycol) diacrylate (PEGDA) and pentaerythritol
triacrylate (PETA). Since this tissue engineering system has a burr-like spherical geometry,
the number of cells loaded is greater than that of a typical porous spherical structure (such
as in advanced cancer therapeutic soft robots) [152]. Figure 6B shows another biodegrad-
able microrobot for stem cell delivery [77]. This microrobot was fabricated using gelatin
methacrylate (GelMA) and superparamagnetic iron oxide nanoparticles (SPIONs), Fe3O4,
owing to their biodegradability, biocompatibility, and magnetic-based cell delivery system.
Previous research regarding GelMA microrobots chose conventional fabrication methods,
such as two-photon polymerization. Two-photon polymerization is capable of manufac-
turing sophisticated micro- or nanorobotics; however, it has a long fabrication cycle for a
single microrobot, so mass producing diverse applications is difficult. Furthermore, resins
containing magnetic nanoparticles (MNPs) are hard to polymerize during the laser writing
process. Reducing the number of MNPs is inappropriate to overcome the polymerization
limitation because a small number of MNPs may cause ineffective manipulation of the
robot. To make the mass production of GelMA microrobots possible as well as maintaining
the proper amount of MNPs, Noh et al. selected a microfluidic channel mass production
method to manufacture GelMA microrobots. Human nasal turbinate stem cells (hNTSCs)
were cultured in this GelMA microrobot. It was precisely controlled to reach the target area
via an external rotating magnetic field, upon which the hNTSCs were finally released into
the neuronal cells [77].

Another scaffold loaded with stem cells and drugs is shown in Figure 6C [80]. Specif-
ically, desferrioxamine (DFO) and human umbilical vein endothelial cells (HUVECs)
were combined with biodegradable poly(DL-lactide-co-glycolide)-b-polyethylene glycol-
b-poly(DL-lactide-co-glycolide) (PLGA-PEG-PLGA) to create smart scaffolds to promote
vascularization in in vivo tissue engineering applications [80]. Additionally, Figure 6D de-
scribes another human umbilical arterial smooth muscle cells (vSMCs)-loaded, biodegrad-
able, hydrogel-based scaffold, which can be utilized to effectively repair tissue defects
via tissue engineering [153]. The cell-loaded scaffold was fabricated using poly(ester-
ether-urethane)ureas (PEEUUs), polyurethane (PU)-based polymers, synthesized through
a two-step solution polymerization using polycaprolactone (PCL) diol and polyethylene
glycol (PEG). Owing to its significant characteristics of biodegradability and biocompat-
ibility [153], PU has been widely used in tissue engineering [154–157]. The majority of
current research studies related to biodegradable PU scaffolds have focused on adjusting
their chemical and mechanical properties at the molecular level to enhance the geometric
stability and biocompatibility of the scaffolds [153,158,159].
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Figure 6. Biodegradable tissue engineering. (A) SEM images of a PEGDA-PETA microrobot struc-
ture (left), cell-loaded microrobot (middle), and confocal scan of green fluorescent protein (GFP)-
labeled MSCs (GFP-MSCs) cultured on the microrobot (right). Reproduced with permission [152].
Copyright 2020, Wiley-VCH. (B) Magnetic actuation of the microrobot in a confined microfluidic
channel (i–iii), and the magnetic manipulation of the GelMA microrobot to write “MR”. Reproduced
with permission [77]. Copyright 2022, Wiley-VCH. (C) Representative CLSM images of DFO (0.1%)
and HUVEC (5 × 105, 1 × 106, and 3 × 106)-laden P5L1.1 gels (nanocomposite gels containing
5.0% (w/v) PLGA-PEG-PLGA and 1.1% (w/v) laponite), formed in the subcutaneous tissue of mice.
Reproduced with permission [80]. Copyright 2022, The American Chemical Society. (D) Immunoflu-
orescence images of vSMCs cultured on PEUU, PEEUU85, PEEUU65, and PEEUU5 with the labeling
of the cytoskeleton (green) and nucleus (blue) after 1 and 4 days, respectively. Reproduced with
permission [153]. Copyright 2022, The American Chemical Society. (E) SEM images of colonized,
bioactive glass-based scaffolds. BG, 1P, 2P, and 3P mean the pure bioactive glass, single, twofold, and
threefold PLGA infiltrations. Reproduced with permission [160]. Copyright 2022, MDPI.

Figure 6E describes a poly(D-L-lactide-co-glycolide) (PLGA)-infiltrated bioactive glass
scaffold cultivated with human mesenchymal cells (hMSCs) for cartilage regeneration [160].
Silicon dioxide or silicate-based bioactive glasses are nonporous, bioceramic, hard material
comprising three basic components (e.g., sodium dioxide, calcium oxide, and phospho-
rous) [161]. This bioactive glass has mainly been used for bone regeneration and has
recently been extended to various tissue engineering fields [162–165]. Bioactive glass was
developed to provide cells with the ability to adhere, survive, and proliferate, but was too
brittle to endure the mechanical load of the human knee joint [160]. Unlike conventional
bioactive glass composite scaffolds [166,167], biodegradable and biocompatible PLGA-
infiltrated bioactive glass can improve scaffold stability and biocompatibility by using
PLGA infiltration [160,168]. This scaffold maintained a stable shape and performed a de-
cent cell culture even in a 35-day cell cultivation process without showing any degradation.
Although PLGA is a biodegradable material [168], it has a relatively long biodegradation
period of at least 18 months [160].
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5. Conclusions and Outlook

In summary, significant advances in stimuli-responsive biodegradable soft robots were
discussed in terms of their design, fabrication, and application of biodegradable materials.
A variety of biodegradable materials have shown extensive potential in biomedical applica-
tions such as multi-functional drug delivery carriers, grippers, and tissue engineering. To
create complex, biodegradable 3D soft robots for biomedical applications, highly precise 3D
fabrication methods have been developed along with advances in biodegradable material
synthesis strategies. Owing to their scalability and manufacturability, photolithographic
and 3D/4D printing methods have been preferentially adapted over the past few decades
to develop multiscale and multi-functional 3D soft robots.

Despite the significant development of stimuli-responsive, biodegradable soft robots,
most of them remain in the conceptual stages. First, naturally synthesized biodegradable
materials have superior biocompatibility; however, their poor mechanical properties limit
their wide range of application. In addition, artificially synthesized biodegradable materials
can provide more improved mechanical properties than natural biodegradable matters.
Nevertheless, most of them are sensitive to temperatures, solvents, or water, such that
they pose other challenges to selecting suitable fabrication strategies [169]. More recently,
smart, hybrid, biodegradable materials have shown another possibility to developing multi-
functional, intelligent, soft robots in the near future [170,171]. In addition, to overcome the
limitations of biodegradable soft robots, precise and selective magnetic, electric, thermal,
or pH control systems have accompanied the developments of biodegradable material
syntheses and high-throughput fabrication methodologies. Furthermore, biodegradable
stimuli-responsive soft robots have rarely been explored in real in vivo environments for
intelligent clinical drug delivery, biopsy, or tissue engineering. To successfully develop
real in vivo models, the autonomous and precise navigation and manipulation of stimuli-
responsive, biodegradable soft robots must be confirmed in the near future. In conclusion,
the new perspective of smart, biodegradable soft robots has aligned well with all the
developments in multidisciplinary materials science, and the mechanical, electrical, and
biomedical engineering fields.
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