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ABSTRACT

Nanobodies, a subclass of antibodies found in
camelids, are versatile molecular binding scaffolds
composed of a single polypeptide chain. The small
size of nanobodies bestows multiple therapeutic ad-
vantages (stability, tumor penetration) with the first
therapeutic approval in 2018 cementing the clin-
ical viability of this format. Structured data and
sequence information of nanobodies will enable
the accelerated clinical development of nanobody-
based therapeutics. Though the nanobody sequence
and structure data are deposited in the public
domain at an accelerating pace, the heterogene-
ity of sources and lack of standardization ham-
pers reliable harvesting of nanobody information.
We address this issue by creating the Integrated
Database of Nanobodies for Immunoinformatics
(INDI, http://naturalantibody.com/nanobodies). INDI
collates nanobodies from all the major public out-
lets of biological sequences: patents, GenBank, next-
generation sequencing repositories, structures and
scientific publications. We equip INDI with pow-
erful nanobody-specific sequence and text search
facilitating access to >11 million nanobody se-
quences. INDI should facilitate development of novel
nanobody-specific computational protocols helping
to deliver on the therapeutic promise of this drug
format.

INTRODUCTION

Antibodies are proteins capable of recognizing a specific
molecular site on a potentially noxious molecule (antigen),
starting an immune response (1). Because of their binding
malleability they are the primary class of biotherapeutics
(6 of 10 blockbusters and market worth ∼100b$). Clinical

development of an antibody-based drug is complex and ar-
duous, often taking years (2,3). The difficulties stem from
the complexity of antibodies: they are composed of two
polypeptide chains which need to be co-engineered and co-
expressed. The protein itself is large which makes delivery
difficult especially in challenging cases such as tumor pene-
tration. Therefore, there is a lot of interest in exploring al-
ternative antibody formats with more favorable therapeutic
properties. One of these is a subclass of antibodies discov-
ered in camelids - the nanobody (alternatively called the sin-
gle domain antibody or VHH) (4).

Nanobodies bear similarity to normal antibodies how-
ever their antigen binding region is composed of just one
polypeptide chain. Nanobodies retain molecular recogni-
tion advantages of antibodies and exhibit improved bio-
physical and therapeutic properties as a result of their
smaller size (5). Nanobodies are reported to be more stable,
soluble and able to recognize cryptic epitopes and penetrate
tissues inaccessible to normal antibodies (4,6). The interest
in this direction is reflected by multiple novel nanobodies in
either regulatory filing or in the late clinical-trial stages (7)
and an increasing volume of patents reporting nanobody se-
quences (8). In 2018 the first nanobody drug was approved
(Caplacizumab (9), by Ablynx), confirming the therapeutic
viability of such molecules. Developing nanobodies using
traditional laboratory approaches will still require years be-
fore they reach the clinic. Computational approaches could
accelerate this process, delivering life-saving therapeutics
faster and make them more affordable.

Computational methods to design antibodies are already
mature enough to provide value in monoclonal antibody
therapeutic pipelines (10). By contrast, though nanobodies
were discovered close to 30 years ago (11), they attracted less
attention in collating data and developing computational
protocols addressing these molecules (10). Development
of approaches enabling computational design of nanobod-
ies rely on ever deeper analysis of their sequence diversity
(12,13) structural conformations (14), antigen-binding pref-
erences (15), attempts at modifying their binding mode (16)
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and emerging deep-learning methods tackling this format
(17).

Successful computational protocols addressing
nanobodies rely on sound sequence and structure data
describing the biology of these molecules. A pioneering
effort in this direction was achieved by the iCAN (18) and
sdAB-DB (19) databases that to our knowledge were first
attempts at collection of nanobody-related data. These
databases focused on manual identification of antibodies.
As a result, they hold a relatively small number of publicly
available nanobody data, with sd-AB reporting 1452
sequences and iCAN 2391. Data collection frameworks
need to keep up pace with the ever-increasing amount of
biological sequence data in the public domain. To tackle
this, we created INDI- Integrated Nanobody Database for
Immunoinformatics. INDI is a novel nanobody database
that collates nanobody information from all major data
repositories in the public domain, chiefly in automated
fashion.

DATA COLLECTION

We identified five major sources of biological sequence in-
formation: NCBI GenBank (20), Protein Data Bank (21),
patents (8), next-generation sequencing (NGS) repositories
(22,23) and scientific publications. These sources provide a
good coverage associated with systematic repositories col-
lecting protein information from scientific literature and
patent documents.

Because of the heterogeneity of the sources, we take the
variable sequence of the nanobody as the common denom-
inator between the datasets. Though in many cases, espe-
cially in scientific publications, only CDR-H3 sequences are
published, we decided to exclude such data from INDI. This
choice was taken as rational nanobody engineering requires
the entire variable region context for modeling endeavors
such as humanization (24) or structural modeling (25). We
require the nanobody sequences to have all three Comple-
mentarity Determining Regions (CDRs) present and only
contain 20 canonical amino acids. Sequences are linked with
metadata specific for the source dataset (Table 1).

Three of the datasets (PDB, GenBank and patents) are
suitable for automatic curation of the data (Figure 1). Here,
sequence entries are firstly analyzed for presence of anti-
bodies employing Hidden Markov Models trained on an-
tibody germline genes (26). Sequences where antibodies are
detected, are further filtered for presence of nanobodies and
thus inclusion in INDI. Accessions containing nanobod-
ies are identified by natural language processing. Through
analysis of nanobody-related keywords used in previous
studies and our own iterative analysis of nanobody acces-
sions we created a set of keywords relating to nanobod-
ies: vhh, nanobody, single domain antibody, domain antibody,
single variable domain. Arbitrary pieces of text from our
heterogenous sources were normalized by case-folding and
stemming and then checked for inclusion of the said key-
words.

NGS and scientific papers are curated manually because
of limited standardization. Though NGS depositions are
increasingly standardized as a result of the AIRR commu-
nity efforts (27), specific formats such as nanobodies need

to be treated in an ad-hoc manner. For instance, NGS study
descriptions need to be manually checked for inclusion of
nanobodies so as to avoid errors where single domain an-
tibodies are deposited alongside canonical antibodies (12).
Scientific publications containing nanobodies are identified
an ad-hoc manner and nanobody sequences found by a
human curator included in INDI as part of the ‘manual’
dataset.

In August 2021, INDI held more than 11 million
nanobody sequences spanning our five data sources (Table
1). Contents and specific data collection strategies for each
of the five datasets making up INDI are described below.

NCBI GenBank

We collected the protein sequences from the ftp facility of
NCBI GenBank in February 2021. Protein sequences were
identified as translation entries associated with each Gen-
Bank entry. We discarded sequences that were either too
short (<70 amino acids long) or too long (>600 amino acids
long), with both numbers chosen to capture the lengths of
the nanobody variable regions. In total, 16 271 610 entries
matched these criteria. Antibody sequences were identified
employing our adapted version of antibody numbering soft-
ware (8,26).

Individual GenBank entries were identified as contain-
ing nanobodies if their textual description contained a
set of nanobody-specific keywords (19,28) and if the de-
clared organism matched one of: ‘Lama glama’, ‘Camelus
dromedarius’, ‘Vicugna pacos’, ‘synthetic construct’,
‘Camelus bactrianus’, ‘Camelidae’ or ‘unidentified unclas-
sified sequences’. Employing this protocol, in August 2021,
we identified a total of 1,858 unique variable nanobody
sequences from a total of 2070 GenBank accessions.

Each sequence from GenBank is associated with text
metadata specific to this repository. These entries were Gen-
Bank ID, GenBank description/definition, reported or-
ganism, date, reference title, reference link/pmid, reference
journal and reference authors.

Patents

We extracted patent nanobody sequences from our Patented
Antibody Database (8) in February 2021. Patent families
containing nanobodies were identified by virtue of their
classifications C07K2317/569 (Single domain, e.g. dAb,
sdAb, VHH, VNAR or nanobody®), C07K2317/22 (from
camelids, e.g. camel, llama or dromedary) or if the title and
abstract contained one nanobody-specific keywords. A Total
of 1013 patent families satisfied the nanobody keyword or
category requirements.

In certain cases, claims are laid not only to nanobody se-
quences within a patent document but also to canonical an-
tibodies. Such families are characterized by a mix of heavy
chains aligning to camelid and non-camelid germlines and
presence of light chains. Total of 354 families contained
both nanobodies and heavy chains of canonical antibodies.
Without manual curation it was impossible to tell whether
the individual non-camelid heavy chains could function as
antibodies on their own. So as to maximize the precision of
automated identification, in INDI we only retain sequences
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Table 1. Contents of INDI in May 2021

Source
Unique

sequences Unique accessions Main source Metadata

Structures 535 804 PDB codes Protein Data Bank (21) PDB code, PDB title, authors,
resolution technique, text headers of
chain fasta files

NCBI GenBank 1858 2070 GenBank ids GenBank (20) GenBank ID, GenBank
description/definition, reported
organism, date, reference title
reference link/pmid, reference
journal, reference authors

Next-generation sequencing 11 228 600 Seven Bioproject ids Sequence Read Archive
(23)

BioProject id, SRA id

Patents 14 376 687 patent families Patented Antibody
Database (8)

Patent number, applicants, patent
title, patent abstract

Manual 1268 109 papers Scientific publications Publication title, publication
abstract, publication link

Data in INDI is divided into five distinct sources. For each source we provide the reference to the online resource we obtained the data from (with the
exception of scientific publications), metadata associated with accessions in source as well as August 2021 statistics of the number of nanobodies we
extracted.

Figure 1. Data sources and information organization in INDI. We obtain nanobody data from five distinct sources: structures, GenBank, patents, scientific
publications and NGS. Structures, GenBank and patents are suitable for automated identification divided into identification of antibody sequences and
subsequent filtering of nanobody sequences based on text. Scientific publications and NGS are not suitable for automated identification and they require
ad-hoc manual curation. Data from all sources are standardized into sequence and metadata indexes. The web-utility of INDI enables users to query
nanobody sequence and metadata indexes spanning all five repositories.

where the document declares presence of nanobodies and
we only detect heavy chain sequences aligning to camelid
germline genes. This resulted in a total of 14 376 unique
variable region sequences from 687 patent families.

Each nanobody patent sequence is associated with
metadata from the original document. These are patent
number, the applicants (e.g. company), patent title and
abstract.

Structures

We sourced nanobody structures from the Protein Data
Bank (PDB) ftp facility (21). Antibody sequences from
the PDB were identified according to the protocol of
the Structural Antibody Database (SAbDab (29)). We ex-
cluded sequences that had noncanonical amino acids in
their sequences (e.g. 1I3U, 6ULF, 6ANA or 6VLN). From
such a constrained set of antibodies, structures contain-
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ing nanobodies were identified by inclusion of nanobody-
specific keywords in text associated with the PDB, specifi-
cally descriptions of the chains.

Such targeted approach was necessary to distinguish be-
tween cases where canonical antibodies might be present
alongside nanobodies (e.g. 6ZCZ, 7JOO). Furthermore, it
allows us to weed out cases such as 6QKD that reports
a VHH-based antibody or 4O9H, which is a camelid Fab
rather than a nanobody. Here we also detect human-only
single domain antibodies such as 5N88. In May 2021, this
extraction approach identified 535 unique nanobody chains
from 804 PDBs.

Each structural nanobody entry is linked to metadata
originating from the PDB accession. These entries are the
PDB code, accession title, authors, resolution, technique
(e.g. X-ray) and text headers of FASTA files associated with
individual chains.

Next generation sequencing

We identified eight bioprojects reporting next-generation
sequencing of nanobodies by employing the text-
search utility at NCBI: PRJDB2382, PRJEB7678, PR-
JNA642677, PRJDB7792, PRJEB25673, PRJNA516512,
PRJNA638614 and PRJNA321369. We extracted the
nanobody sequences contained within the bioprojects as
described previously (22). In brief, SRA files containing
raw reads are analyzed using IgBlast (30) that translates
the nucleotide sequences into amino acids. Sequences that
are free of stop codons and that contain all three CDRs are
retained.

In the case of the Bactrian camel study that con-
tained samples of both nanobodies and canonical antibod-
ies, we only made the VHH samples part of INDI that
corresponded to SRAs SRR3544218, SRR3544220 and
SRR3544222. Though, PRJNA516512 advertised presence
of nanobodies, the resulting IgBlast processed sequences
did not satisfy our inclusion criteria due to incompleteness
of chains. The remaining seven bioprojects contributed a to-
tal of 11 228 600 unique variable region sequences. Each
NGS nanobody sequence is associated with the SRA file it
originated from and metadata of the Bioproject.

Manual curation

In certain cases individual nanobody sequences that are
reported in publications are not deposited in systematic
repositories such as GenBank or the PDB. Such sequences
are typically contained in supplementary materials. The re-
porting is not standardized and therefore challenging for
automated approaches. Therefore, we created a ‘manual’
category for all sequences that are obtained by human cu-
ration of sequences originating directly from scientific pub-
lications. Because of lack of automated means, data in this
database will be updated in an ad-hoc way. In each case,
the variable region sequences of nanobodies are manually
identified by a human curator and automatically filtered
for presence of all three CDRs and lack of non-canonical
amino acids. The variable region sequences are associated
with the metadata of the original publication in the form of
its title and abstract.

Content analysis

We analyzed the contents of our database to offer an
overview of nanobody-specific features as reported in het-
erogenous sources integrated within INDI.

Nanobodies are known to differ from canonical heavy
chains by presence of hallmark residues in framework re-
gion 2 positioned on the VL interface in canonical antibod-
ies (31). Hydrophilic character of certain hallmark motifs is
thought to increase the solubility on the interfaces exposed
by lack of the light chain. Hallmark residues are IMGT po-
sitions 42, 49, 50 and 52. We analyzed the amount of hall-
mark motifs across the heterogeneous datasets and in sdab-
DB (Table 2).

We note a large number of possible hallmarks in each
dataset that is dominated by several motifs. The most com-
mon motifs are FERF, FERG, VGLW and YQRL. The
FERF motif is typical of more soluble nanobodies (32). The
VGLW motif resembles human heavy chains but can be ob-
tained from native llama repertoires (32). Altogether, the
only outlier dataset considering abundance of motifs is the
most sequence-abundant dataset: NGS. Here the most com-
mon motif across all other sources (FERF, with least fre-
quency of 20%) occurs only in 9% of sequences, with FERG
motif dominating. We checked whether this could be an ef-
fect of a single NGS study biasing the statistic and we plot-
ted the top 10 motifs for each NGS study in Table 3. We note
that FERG motif is indeed the most common in five out
of seven NGS studies. The only obvious outlier is biopro-
ject PRJDB2382, where top motifs do not find correspon-
dence with any other source. This could be an effect of bias-
ing the library by immunization with IZUMO1. Altogether,
discrepancies between the NGS datasets and other sources
in INDI shows that there is a difference in top hallmark mo-
tifs as seen from sources containing greater number of ar-
tificially developed sequences (e.g. structures, patents, Gen-
Bank) and naturally-sourced ones (NGS). This speaks in fa-
vor of informed selection of the data from a specific source
so as not to bias immunoinforamtics methods.

To offer a more granular view of the relationship between
sequences in the five sources in INDI, we performed a clus-
tering analysis. We used CD-HIT to cluster all the sequences
we can find in INDI at 70% sequence identity, to reveal
broad-brush overlaps between all the datasets. Clustering
all INDI sequences at 70% sequence identity resulted in 75
384 clusters. Most of the sequences fall into a smaller (rela-
tive to 75,384) number of clusters (Table 4). The top 8, 41,
227 and 1148 clusters with most sequences, respectively ac-
count for 20%, 40%, 60% and 80% of all sequences in INDI.
Majority of remaining clusters is composed of singletons
originating from NGS datasets.

Because of the lack of size balance between NGS datasets
with 11 228 600 sequences and other components of INDI
with 18,037 sequences, we clustered the four remaining
components, patent, manual, GenBank and structural se-
quences separately. Clustering was performed using CD-
HIT at 70%, 80%, 90% and 99% sequence identity to stratify
fine sequence differences between the datasets with results
in Table 5. For each clustering, we noted the percentage of
all sequences from a given source that were found in clus-
ters with each other source. For instance in Table 5 at 70%
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Table 2. The most common hallmark residue motifs across five INDI datasets and sdab-DB. We calculated the statistics of combination of amino acids
in IMGT positions 42, 49, 50 and 52 in all INDI datasets as well as sdab-DB

Manual (126 motifs) Structures (83 motifs) Patents (452 motifs) NGS (12,307 motifs) GenBank (206) sdab-DB (152)

Motif % total Motif % total Motif % total Motif % total Motif % total Motif % total

FERF 24% FERF 27% FERF 30% FERG 30% FERF 20% FERF 33%
FERG 16% FERG 15% YQRL 15% VGLW 10% FERG 17% FERG 14%
YERW 10% YQRL 9% FERG 11% YQRL 9% VGLW 13% YQRL 8%
VGLW 5% VGLW 6% VGLW 4% FERF 9% YQRL 7% VGLW 8%
YQRL 5% YERL 4% FERL 2% FERA 2% YERL 3% YERL 4%
YERL 2% YERW 3% YKRL 1% YERL 2% YERF 2% FERA 2%
YERF 1% FERW 1% YERL 1% FGRG 1% IGLW 1% YERW 1%
YQRW 1% FERA 1% FGRF 1% FERE 1% FERA 1% YERF 1%
FERA 1% YERG 1% YQRF 1% FARG 1% FERL 1% FERL 1%
WQRL 1% YERF 1% IGLW 1% FERR 1% FERV 1% YQRW 1%

The percentage of each motif is given with respect to the total number of sequences in any given source.

Table 3. The most common hallmark residue motifs across the seven NGS datasets in INDI

PRJDB7792 (869)
PRJNA638614

(6061)
PRJNA321369

(5722) PRJEB7678 (4525)
PRJNA642677

(5478)
PRJEB25673

(1423) PRJDB2382 (1984)

Motif %Total Motif %Total Motif %Total Motif %Total Motif %Total Motif %Total Motif %Total

FERG 46% FERG 37% FERG 32% YQRL 26% FERG 33% FERG 44% VALW 27%
FERA 8% FERA 5% VGLW 21% FERG 17% FERF 13% VGLW 14% YQRL 16%
FKRG 5% VGLW 5% FERA 3% FERF 15% VGLW 8% YERW 6% YERL 13%
YQRL 4% FERF 4% YECL 1% VGLW 9% YQRL 8% FERA 5% VGLW 3%
FGRG 2% YERL 4% FGLW 1% YERL 2% FERA 2% FERF 3% FERG 2%
FQRG 2% FARG 3% FGRG 1% FQRL 2% YERL 1% AGLW 2% FERF 1%
SERG 1% FERE 2% FERR 1% VGPW 1% FGRG 1% FERE 2% YQRM 1%
YERG 1% FERW 1% FARG 1% FERL 1% FERR 1% FKRG 1% YQRV 1%
VERG 1% FGRG 1% FERE 1% FERW 1% FERE 1% VERG 1% YQRW 1%
FDRG 1% VGPW 1% FQRG 1% YERG 1% FERV 0% VGPW 1% YQRF 1%

We calculated the statistics of combination of amino acids in IMGT positions 42, 49, 50 and 52 in the seven INDI NGS bioprojects. The percentage of
each motif is given with respect to the total number of sequences in any given bioproject.

Table 4. Number of clusters and sequences falling within the same clusters
at 70% sequence identity

#Sources in clusters Clusters Sequences

1 73 479 3 702 072
2 1245 1 275 004
3 410 914 843
4 161 1 050 308
5 89 4 303 563

For each cluster we noted the number of sources that contributed se-
quences – with the maximum number being five (NGS, patents, GenBank,
structures and manual).

CD-HIT cutoff, 89% of nanobody sequences from struc-
tures are found in clusters with nanobody sequences that
were manually curated. Table 5 indicates that at sequence
cutoffs of 70% and 80% where framework plays a dominant
role, majority of sequences from four sources overlap with
each other. At sequences identities of 90 and 99% which re-
quire high level of sequence identity both in framework and
paratope, the overlaps are chiefly single digit percentages.

CDR-H3 is the most variable portion of the paratope,
providing the biggest differentiating factor between im-
munoglobulins. In nanobodies particularly, CDR-H3 is
longer than in normal antibodies to account for the lack
of the light chain (12,14,15). We plotted the IMGT-defined
CDR-H3 distribution across five of INDI sources in Fig-

ure 2. The most common length across GenBank, manual
and NGS datasets is 18 and in patents and structures 17 in
line with previous estimates (13). The smoothest distribu-
tion can be attributed to NGS sequences that are the most
voluminous. Certain sequences in our datasets are based on
canonical antibodies that were produced without the light
chain, reflected in a large number of manual and structural
CDR-H3s with length of 14.

Altogether, our contrast of the five sources of sequences
in INDI indicates previously known features associated
with nanobodies, such as hallmark motifs or distinct CDR-
H3 distribution. There are distinctions between the datasets
as indicated by our clustering which speaks in favor of care-
ful selection of correct datasets for immunoinformatic anal-
yses.

Comparison to other databases

In order to ensure that we capture nanobody information
reliably, we performed a contrast to other resources that
collect these molecules. We compared entries from INDI
to those in sdAB-DB (20), structural nanobody entries cu-
rated by the Structural Antibody Database (SAbDab) (29),
and the CoV-AbDab that curates some COVID-19-related
nanobodies alongside canonical antibodies (33).

We checked whether all the PDB codes that we identified
as nanobodies have the same annotation in SAbDab. All of
the February 10th version of SAbDab nanobody-annotated
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Table 5. Clustering analysis of non-NGS components of INDI

Manual Structure GenBank Patent

CD-HIT sequence
identity cutoff Database

%Row
sequences

%Column
sequences

%Row
sequences

%Column
sequences

%Row
sequences

%Column
sequences

%Row
sequences

%Column
sequences

70 Manual - - 79 89 86 77 94 83
Structure 89 79 - - 93 71 95 76
GenBank 77 86 71 93 - - 93 85

Patent 83 94 76 95 85 93 - -
80 Manual - - 44 49 34 29 48 33

Structure 49 44 - - 53 28 69 34
GenBank 29 34 28 53 - - 69 40

Patent 33 48 34 69 40 69 - -
90 Manual - - 11 9 6 4 14 1

Structure 9 11 - - 16 4 32 4
GenBank 4 6 4 16 - - 49 8

Patent 1 14 4 32 8 49 - -
99 Manual - - 2 5 4 2 8 0

Structure 5 2 - - 11 3 27 1
GenBank 2 4 3 11 - - 38 6

Patent 0 8 1 27 6 38 - -

We clustered nanobody sequences from manual curation, structures, patents and GenBank using CD-HIT at 70%, 80%, 90% and 99% sequence identity.
For each clustering cutoff we indicate the percentage of sequences from any given source that were clustered together with any sequences from another
source. For instance, at clustering cutoff 80%, 49% of sequences from structures cluster with manually curated sequences.

Figure 2. Distribution of IMGT CDR-H3 lengths in INDI. We extracted unique IMGT-defined CDR-H3 sequences from each dataset in INDI and noted
their lengths.

sequences were found in INDI. The only exceptions were
PDB codes that were subsequently changed in the PDB
(e.g. 6h7k→ 6ibl, 6csy→6mxt). Entries from CoV-AbDab
(17th March version) and sdAB-DB that were manually ex-
tracted from the literature were not found in INDI. All the
entries that could be obtained by automatic means from the
PDB or GenBank were shared between INDI, CoV-AbDab
and sdAB-DB.

Entries from sdAB-DB that could have been obtained by
automatic means but were not present in our database could
be divided between light chain single-domain antibod-
ies (e.g. sdAB-DB sdAb 2370 Sy, GenBank AAG49009,
AAG49011) or single chain Fv (scFv) fragments that were
deposited as separate chains (e.g. sdAb 1934 Sy, GenBank
AKR15657). Certain entries that were present in sdAB-
DB contained non-canonical amino acids which we do not
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Table 6. Clustering contrast of INDI, sdAB-DB and iCAN

CD-HIT sequence
identity cutoff

Total
clusters

Clusters without
sdAB-DB nor iCAN

sequences

#sequences from clusters
without sdAB-DB nor

iCAN sequences

Clusters with
sequences only from

sdAB-DB

Clusters with
sequences only from

iCAN

70% 784 444 1453 27 11
80% 3903 2577 7493 45 57
90% 7725 5528 12 356 59 125
99% 13 285 10 041 13 456 73 251

We clustered 1452 sequences from sdAB-DB and 2391 sequences from iCAN together with three automatically-obtainable subsets of INDI: patents,
structures and GenBank. Manual sequences and NGS were left out from this comparison so as not to saturate the clustering with 11 million NGS sequences
and to avoid non-automatically obtained manual sequences. A total of 17 645 sequences were clustered together using CD-HIT. The columns indicate the
number of clusters and the clusters and numbers of sequences without any sdAB-DB sequences as well as number of clusters with only sdAB-DB sequences.

include in INDI (e.g. sdAb 1339 Lg CAH60929). All the
literature entries that were not found in INDI were sub-
sequently entered – because of the comparison to CoV-
AbDab, 18 of 109 manually documents and 384 of 1268
manually curated sequences are related to coronavirus.

We further compared the contents of INDI to sdAB-
DB and iCAN by means of clustering. We employed CD-
HIT (34) to cluster non-NGS and non-manual sequences
in INDI together with these from sdAB-DB and iCAN.
Clustering was performed at four levels of sequence iden-
tity 70%, 80%, 90% and 99%. This procedure and exclu-
sion of significant parts of INDI was designed to contrast
the increase in the volume of INDI data with respect to
sdAB-DB an iCAN regarding data sources that were ini-
tially used to compile it. We clustered a total of 20 036 se-
quences (2391 from iCAN, 1452 from sdab-DB and rest
from INDI) and we give the statistics from this clustering
in Table 6. For each cutoff, we noted the number of clus-
ters where we did not have any sdAB-DB nor iCAN se-
quences and thus calculated the number of INDI-only se-
quences from such groups. Table 6 demonstrates that even
at the lowest sequence identity of 70%, that mostly encom-
passes framework differences, there are 1,453 INDI-only se-
quences. At higher sequence identity cutoffs (>80%) that
increasingly take paratope differences into account, INDI-
only sequences account for majority of all clustered se-
quences.

USAGE

We mapped the most common retrieval tasks to facilitate
interaction with INDI online and offline. Through our web-
site (http://naturalantibody.com/nanobodies) users are able
to perform nanobody-specific sequence-based searches and
metadata retrieval. To facilitate offline immunoinformatic
analyses, we make the data available for bulk download.

Sequence-based search

We make two nanobody-specific sequence search func-
tions available to facilitate interaction with the data in
INDI––Variable Region Search and CDRH3 search. The
division reflects the two-common use-cases of nanobody
sequence identification. The former addresses retrieval of
the entirety of the variable region. The latter addresses
specific searches of the most variable portion of the
nanobody responsible for most of the antigen-contacts,
namely CDRH3.

Variable Region Search addresses retrieval of the entire
nanobody sequences that are best matched to the query. In
order to reflect the nanobody-specific nature of the search,
we compare nanobody sequences using the IMGT scheme,
which provides an immunoglobulin-specific framework for
alignment of antibodies/nanobodies. The query sequence
is IMGT-numbered and subsequently aligned to the pre-
numbered nanobody sequences in INDI based on IMGT-
positions. The results are sorted by the highest sequence
identity over the entire variable region. The results are given
in an interactive sortable table that leads to more detailed re-
sults on each hit. Users can sort the results by the entire vari-
able region sequence identity as well as the IMGT-identity
to individual CDRs.

Of the three-heavy chain CDRs, CDRH3 carries the
largest number of antigenic contacts (15) and is often
used as a proxy for antigenic specificity by itself. There-
fore, we equipped INDI with a search facility retrieving
CDRH3, disregarding the rest of the variable region. In-
put to CDRH3 search is the IMGT-defined sequence of
the CDRH3. The sequence is then divided into k-mers with
k = 4. The query k-mers are matched against these precom-
puted for each sequence in INDI. The hits are sorted by
the number of k-mers in common with the query. Results
are subsequently aligned using global pairwise alignment
algorithm as implemented in Biopython. This allows for
length-independent retrieval of sequence similar CDRH3s
matches. The CDRH3 results are presented in an interac-
tive sortable table that allows the user to browse through
the results and follow links to variable sequences and their
associated metadata.

Text search

Nanobody sequences in INDI are associated with rich tex-
tual annotations revealing among others biological targets,
origins and purpose of the study of the molecules. Meta-
data fields are heterogenous across the sources and within
them. For instance, metadata associated with structures will
contain specific crystallographic parameters not present in
other databases. In GenBank, information about the target
of a nanobody can be contained within the description of
the accession or the individual translations as there is no
standardized way to report such information. Earlier en-
deavors at capturing antibody/nanobody target informa-
tion relied on large-scale manual curation (18,19,35). Given
that INDI encompasses three automatic components, regu-
lar manual annotation of all the entries is challenging. The

http://naturalantibody.com/nanobodies
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great diversity in text representations poses a challenge in
document retrieval.

To address the problem of information retrieval across
the five diverse sources, we implemented a text index cre-
ated on all the metadata fields in all the databases. User is
asked to provide the keywords of interest and INDI will re-
trieve the accessions best matching the results. Users can
specify possible targets of nanobodies that are reported as
part of the depositions (e.g. protein name VEGF) as well as
individual accession numbers (e.g. PDB accession 7JOO).

Results are displayed as an interactive table listing the
accessions, source databases and text fields. Users can sort
through the results and display the details of matching text
entries. The details of text entries are displayed together
with nanobody sequences linked to the accession.

Bulk download

To supplement our web-based retrieval we make the data
available for offline use as well. The data are available as an
extract of the two pillars of our data model – sequences and
metadata separately. The sequence-extract contains the V-
region sequences of nanobodies we identify. Each sequence
entry is linked to the metadata fields contained within the
meta-extract. Metadata fields are sorted by one of the five
databases. All data is available through the main INDI web-
site available at http://naturalantibody.com/nanobodies.
Additionally, the August 2021 snapshot of INDI
was deposited on FigShare to assure persistence
of the data (https://figshare.com/projects/INDI -
Integrated Nanobody Database for Immunoinformatics/

122022) together with inclusion of a supplementary Excel
spreadsheet associated containing all the data but NGS
(due to size).

DISCUSSION

Delivering an antibody drug to clinical use requires a big
investment of time and resources with a high likelihood of
failure at the clinical trials stage. Novel formats such as
nanobodies with favorable biophysical properties, offer op-
portunities to mitigate certain drug discovery risks (5,36).
Innovative approaches for targeted delivery of nanobody-
based therapeutics are being pursued currently (37). Be-
sides the molecular therapies (37), nanobodies are being
used in the development of several cellular therapies (37–
41). Developing nanobody therapies using traditional lab-
based approaches still carries an overhead of many years
of experimentation before they reach the clinic. Computa-
tional approaches could accelerate this process, delivering
life-saving therapeutics much faster.

Though still in its infancy, bioinformatic methods ad-
dressing issues of therapeutic nanobody design are being de-
veloped. Computational nanobody approaches can provide
insight in developing reliable structural modeling methods
(42), design of phage display libraries (43) or computational
design of novel nanobodies (16). Parallels between antibod-
ies and nanobodies allow certain protocols to transfer in-
formation between the two types of molecules. For instance,
though nanobody-specific structural modeling pipelines ex-
ist (42), it is possible to obtain reliable models of nanobody
structures employing antibody protocols (44).

Despite certain parallels between nanobodies and anti-
bodies, contrast between the binding sites of the two reveals
certain differences (15). Though there is an overlap between
nanobody and antibody epitopes, either is capable of bind-
ing molecular surfaces that the other might find challenging
(45). Deconvoluting such nuanced distinctions is required
to understand the binding mode of nanobodies ultimately
leading to reliable computational nanobody design proto-
cols (16). Any computational efforts however require sound
access to nanobody sequence data.

To address this need, here we developed INDI, a database
integrating nanobody sequences, structures and their asso-
ciated metadata in the public domain. Automatic updates
from the heterogeneous sources make it possible to keep up
with the accelerating pace of deposition in the public do-
main. Heterogeneity of data in INDI allows nanobody re-
searchers to obtain an accurate picture of the current state
of knowledge of nanobody sequence, structure and func-
tion. Such knowledge can then accelerate the development
of analytical frameworks (14,15), structural modeling (42),
de novo nanobody design protocols (16) and as a basis for
deep-learning models addressing nanobody design (17). Al-
together we hope that INDI will form a solid data founda-
tion to develop nanobody-specific computational methods
that will accelerate development of novel therapeutics in this
format.
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