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Abstract: The strength of the extracellular matrix (ECM) is that it is hierarchical in terms of matrix
built-up, matrix density and fiber structure, which allows for hormones, cytokines, and other small
biomolecules to be stored within its network. The ECM-like hydrogels that are currently used
do not possess this ability, and long-term storage, along with the need for free diffusion of small
molecules, are generally incompatible requirements. Nanogels are able to fulfill the additional
requirements upon successful integration. Herein, a stable hierarchical nanogel–gelatin methacryloyl
(GelMA) composite hydrogel system is provided by covalently embedding nanogels inside the
micropore network of GelMA hydrogel to allow a controlled local functionality that is not found
in a homogenous GelMA hydrogel. Nanogels have emerged as a powerful tool in nanomedicine
and are highly versatile, due to their simplicity of chemical control and biological compatibility.
In this study, an N-isopropylacrylamide-based nanogel with primary amine groups on the surface
was modified with methacryloyl groups to obtain a photo-cross-linking ability similar to GelMA.
The nanogel-GelMA composite hydrogel was formed by mixing the GelMA and the photo-initiator
within the nanogel solution through UV irradiation. The morphology of the composite hydrogel was
observed by scanning electron microscopy, which clearly showed the nanogel wrapped within the
GelMA network and covering the surface of the pore wall. A release experiment was conducted to
prove covalent bonding and the stability of the nanogel inside the GelMA hydrogel. In addition,
3D printability studies showed that the nanogel-GelMA composite ink is printable. Therefore, the
suggested stable hierarchical nanogel-GelMA composite hydrogel system has great potential to
achieve the in situ delivery and controllable release of bioactive molecules in 3D cell culture systems.

Keywords: nanogels; GelMA hydrogels; 3D printing; hierarchical network; ECM

1. Introduction

Three-dimensional (3D) cell culture has shown great potential in the fields of tissue
engineering, wound healing, and drug screening because its structure is more compatible
with human physiology, and because of its ability to be designed to mimic the characteristics
of the native extracellular matrix (ECM) [1,2]. Besides serving as a scaffold, the ECM also
acts as a biological and mechanical support that regulates the ability of the cells to survive,
migrate, differentiate, and form a desired 3D tissue architecture [2,3]. The 3D concept has
been adopted in bioprinting approaches, where the cell culture scaffold is created in a
layer-by-layer fashion with pre-seeded cells within the matrix. Bioprinting has been widely
accepted, due to the accurate fabrication of complex constructs of cells and hydrogels
to achieve spatially controlled 3D constructs that mimic the function of certain tissues,
leading to the direct manufacturing of mature artificial tissue in vitro that is suitable for
transplantation [4–7].
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One of the most appealing biomaterials that is currently being applied in 3D cell
culture is gelatin methacryloyl-based hydrogel, which is usually abbreviated as GelMA
hydrogel [8–10]. One can easily prepare GelMA by modifying the lysine residues in gelatin
with methacrylic anhydride (MA) to confer on the gelatin the property of photo-cross-
linking, by the introduction of methacryloyl substituent groups. The functional amino acid
motifs of gelatin, such as the arginine–glycine–aspartic acid (RGD) sequences that pro-
mote cell attachment, will not be influenced in this process [11,12]. Conveniently, GelMA
hydrogel can be obtained by photo-polymerization of the methacryloyl substituents, ir-
radiating by blue or UV light with the assistance of a proper photo-initiator [7,13,14]. In
addition, GelMA hydrogel exhibits excellent biocompatibility, degradability, and processi-
bility, which makes it an excellent candidate in tissue engineering [15,16]. For example, Lin
et al. successfully injected a liquid solution of GelMA containing human blood-derived en-
dothelial colony-forming cells and bone marrow-derived mesenchymal stem cells into the
subcutaneous space of an immuno-deficient mouse, then rapidly cross-linked by transder-
mal exposure to UV light, forming a 3D cell-laden polymerized construct. The implanted
human cells subsequently generated an extensive vasculature and were uniformly dis-
tributed throughout the construct [17]. However, it is not only the encapsulation of stem
cells in a 3D culture system that is essential for therapeutic applications like bone tissue
engineering; the in situ delivery of localized, sustained bioactive molecules, such as nu-
trients, drugs, and growth factors, also plays an important role [18,19]. However, the
highly hydrated, porous structure of GelMA hydrogels with micrometer range aqueous
pore size results in the rapid diffusive loss of entrapped biomolecules under physiological
conditions, which limits their uses in long-term biomedical applications [20,21].

Hierarchical structures are considered to be a good solution to solve the problem,
namely, to introduce nano-sized carriers into the micro-sized porous structure of GelMA
hydrogel. For example, Elkhoury et al. recently reported a method of embedding bioac-
tive naringin-loaded salmon-derived lecithin nanosized liposomal building blocks inside
GelMA hydrogels [22]. The controlled release was successfully realized, which has proven
the efficiency of a hierarchical structure. However, the micro–nano interactions in most
cases are non-covalent, which means that the nanocarriers are not stable and may escape
from the hydrogel matrix. To avoid this downside, a GelMA-compatible one-step ap-
proach for introducing a covalently bound hydrogel–nanocarrier system would offer a
potential solution.

Herein, we propose a 3D-printable hierarchical system, with nanogels covalently
embedding inside the GelMA network without affecting the overall printing process, that
allows for the introduction of a hierarchical build-up of sophisticated functions, such as
storage, imaging, and delivery. A nanogel is a cross-linked polymer network, with the
size being tunable between tens of nanometers to several hundred nanometers, and can be
swollen by solvent, structuring a dense core but a fuzzy surface [23]. Notably, they may be
designed to be responsive to several stimuli, such as temperature, pH, ionic strength, redox
chemistry, and UV light [24–27], which makes them a perfect toolbox for small bioactive
molecule encapsulation and controlled release and interface alterations [23,28–31]. The
N-isopropylacrylamide (NIPAM)-based nanogel was used in this work. Primary amine
groups were introduced by the copolymerization of N-(3-aminopropyl)methacrylamide
hydrochloride (APMA) comonomers on the surface of the nanogels, which were further
modified with methacryloyl groups to confer the photo-cross-linking property to the
nanogel that is compatible with GelMA cross-linking. By simply mixing GelMA, the
nanogel and the photo-initiator at a certain ratio, the solution was ready to form the
composite hydrogel by irradiating with UV light. A series of measurements were per-
formed to study the behavior of the system, and the results support the covalent bonding
strategy and the stability of the nanogels within the GelMA hydrogel. This strategy will
open up future research on building stable, hierarchically structured hydrogel systems
for biomedical applications such as therapeutic tissue engineering, where the nanogel
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toolbox can be deployed to enhance the function of GelMA-based bioprinting and tissue
engineering approaches.

2. Materials and Methods
2.1. Materials

Gelatin (porcine type A with 250 bloom) was purchased from Gelita, Eberbach, Germany.
Methacrylic anhydride (MA, 94%), 2,2′-Azobis(2-methylpropionamidine) dihydrochloride
(AMPA V50, 97%), N,N′-methylene-bis(acrylamide) (BIS, 99%), hexadecyltrimethylammonium
bromide (CTAB, 99%), and deuterium oxide (D2O, 99.9%) were purchased from Sigma-Aldrich,
Zwijndrecht, The Netherlands. N-isopropylacrylamide (NIPAM, 98%) was purchased from
TCI, Zwijndrecht, Belgium. N-(3-aminopropyl)methacrylamide hydrochloride (APMA, 98%),
and methacryloxyethyl thiocarbamoyl rhodamine B (MRB, 95%) were purchased from
Polysciences, Bergstrasse, Germany. Lithium phenyl-2,4,6-trimethylbenzoylphosphinate
(LAP, 95%) was purchased from Allevi, Inc., PA, USA. Hydrogen chloride (HCl), sodium
bicarbonate (NaHCO3), and sodium hydroxide (NaOH) were purchased from Merck,
Darmstadt, Germany. All chemicals were used as received, without any further purifica-
tion. Ultrapure water (18.2 MΩ, Arium 611 DI water purification system; Sartorius AG,
Göttingen, Germany) was used in all experiments.

2.2. Synthesis of Gelatin Methacryloyl (GelMA)

GelMA was synthesized as described previously [32], as shown in Figure 1a. Briefly,
10 g gelatin was dissolved in 100 mL phosphate-buffered saline (PBS, pH = 7.4) at 10%
(w/v) and heated to 50 ◦C, and 6 g MA was added slowly dropwise and reacted for 6 h
under constant stirring. The reaction was stopped by adding 200 mL PBS. The mixture
was then transferred to dialysis tubing (MWCO = 3500 Da, Sigma-Aldrich, Zwijndrecht,
The Netherlands) and dialyzed against ultrapure water at 35 ◦C for 7 days, the dialysis
water was changed twice daily. The purified GelMA solution was freeze-dried and stored
at −80 ◦C for further use.

2.3. 1H-NMR of Gelatin and GelMA

To determine the degree of functionalization of GelMA, the 1H-NMR spectra of gelatin
and GelMA were collected with a Varian Mercury-400 NMR spectrometer (400 MHz). All
spectra were measured at room temperature. D2O was used as a solvent, and the concen-
trations of both gelatin and GelMA were 10 mg/mL. The chemical shifts are presented in
parts per million, downfield from the TMS standard. The proton signal of residual D2O
was used as a reference.

2.4. Synthesis of Core-shell Nanogel (Amine-NG)

The core-shell nanogel (Amine-NG), with a pNIPAM core and a p(NIPAM-co-APMA)
shell, was synthesized according to a previously reported approach with some modifi-
cations [33]. Briefly, Amine-NG was synthesized through a two-step precipitation poly-
merization. The reaction was conducted in 150 mL water and at a total monomer and
cross-linker concentration of 140 mM; the molar composition is shown in Table 1. In a
250-mL three-necked round-bottom flask equipped with a magnetic stirrer, a reflux con-
denser, and a nitrogen in- and outlet, the monomer NIPAM, cross-linker BIS, surfactant
CTAB, and fluorescent dye MRB were dissolved in 95 mL water. After degassing the
mixture for 1 h with N2, the solution was heated up to 70 ◦C while stirring. The radical
polymerization was initiated by injecting 5 mL of a degassed solution of the initiator
AMPA V50 into the reaction mixture. The initiation of polymerization was indicated by the
occurrence of turbidity. The reaction solution was stirred under a nitrogen atmosphere for
30 min at 70 ◦C. Meanwhile, a mixture of NIPAM, BIS, CTAB, MRB, and the comonomer
APMA was dissolved in 50 mL water and degassed with N2 for 1 h. Subsequently, the
comonomer mixture was slowly added to the reaction with a syringe (0.2 mL/min) to
induce shell synthesis. The reaction proceeded for 6 h at 70 ◦C under a nitrogen atmosphere
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and stirring (300 rpm), and then was cooled down to room temperature under continuous
stirring. The obtained nanogel was purified by dialysis (MWCO = 3500 Da) against water
for one week; the water was changed twice per day. The purified nanogel was freeze-dried
for further use.

Figure 1. (a) Synthesis route of GelMA; (b) 1H-NMR spectra of GelMA and gelatin.

Table 1. Molar composition of the core-shell nanogel (Amine-NG) reaction mixture, and the amounts of the chemicals used
in the synthesis.

Component Chemical Abbreviation Mass
(mg)

Molar Amount
(mmol)

Molar Content
(%)

Core

Monomer NIPAM 1505 13.3 95
Cross-linker BIS 108 0.7 5
Surfactant CTAB 4 0.011 -

Dye MRB 10 0.015 -
Initiator AMPA V50 54 0.2 -

Shell

Monomer NIPAM 673 5.95 85
Comonomer APMA 125 0.7 10
Cross-linker BIS 54 0.35 5
Surfactant CTAB 2 0.005 -

Dye MRB 5 0.008 -

2.5. Synthesis of Methacryloyl-Functionalized Nanogel (MA-NG)

To obtain the desired photo cross-linking capability, Amine-NG was functionalized
with methacryloyl groups by modifying the primary amine groups with MA. As is similar
to the synthesis method of GelMA, 0.2 g Amine-NG was dissolved in 10 mL water, and
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0.4 g MA was slowly added. The pH was kept at 7 by adding a NaOH solution (0.5 M)
during the reaction, which reacted for 6 h under constant stirring at room temperature.
Afterward, the reaction mixture was diluted four times and then transferred to dialysis
tubing of 3500 Da MWCO and dialyzed against ultrapure water for 7 days, to remove the
excess methacrylic anhydride and methacrylic acid. The dialysis water was changed twice
daily, followed by freeze-drying to obtain the purified functionalized nanogel (MA-NG).

2.6. Transmission Electron Microscopy (TEM) of Nanogels

The morphologies of the nanogels were observed under a Philips CM120 Microscope
coupled to a 4k CCD camera using an acceleration voltage of 120 kV. All the samples were
negatively stained with uranyl acetate and drop-casted on a carbon film-coated Cu grid.

2.7. Dynamic Light Scattering and Zeta Potential Measurements of Nanogels

The hydrodynamic diameters (Dh) and polydispersities of the nanogels were de-
termined by dynamic light scattering (DLS). The measurements were performed with a
Malvern ZetaSizer Nano ZS ZEN3600 equipped with a temperature controller. The scat-
tering detector was positioned at a fixed scattering angle of 173◦. The concentrations of
nanogel dispersions were around 0.1 mg/mL in water. Hydrodynamic diameters were
calculated from the diffusion coefficients, using the Stokes−Einstein equation. The polydis-
persity index is established by the accumulated analysis method. Temperature-dependent
measurements were performed at a range of 20–44 ◦C, with 2 ◦C intervals. Before the
data collection of each temperature, the sample was allowed to equilibrate for 3 min at the
proper temperature. Each data point is an average of three successive size measurements,
which themselves consisted of 11–15 measurements.

Zeta potential measurements were performed with the same instrument at 20 ◦C. The
concentrations of nanogel dispersions were around 0.01 mg/mL. The final Zeta potentials
were a result of the average of three successive measurements.

2.8. Potentiometric Titration of Nanogels

To determine the amount of incorporated amine comonomer within the Amine-NG,
and the degree of functionalization of MA-NG, a potentiometric titration method was used
to determine the number of primary amine groups [33]. The potentiometric titrations were
conducted on a Metrohm 702 SM Titrino titrator at room temperature. A representative
procedure can be described as follows: approximately 20 mg of Amine-NG or MA-NG
was dispersed in 50 mL of water and transferred into the titration cell. The pH was
adjusted to approximately 10 with 0.1 M NaOH. After an equilibration time of 15 min, the
titration was performed by the addition of 0.1 M HCl in increments of 2 µL, and the pH
was simultaneously measured with a Metrohm combined glass electrode. The amount
of incorporated amine was calculated from the dependence of the pH on the volume
of the added titrant. At least three independent experiments were performed for each
sample tested.

2.9. Preparation of MA-NG-GelMA Composite Hydrogels and Scanning Electron Microscopy
(SEM) Analyses

The LAP was used as a water-soluble UV photo-initiator to form the MA-NG-GelMA
hydrogels by photopolymerization. In brief, 0.5% (w/v) of MA-NG was fully dispersed
in water, and then 10% (w/v) of GelMA and 0.5% (w/v) of LAP were added at 30 ◦C until
fully dissolved. The mixed solution was added into a cylindrical PDMS mold and covered
with a glass slide, and was subsequently irradiated by UV light for 5 min at a wavelength
of 365 nm using a Spectrolinker XL 1500 UV source (Spectronics Corp.) The UV lamp
provided an intensity between 2300 µW/cm2 and 1100 µW/cm2. Pure GelMA hydrogels
were prepared by the same procedure, mixing only 10% (w/v) of GelMA and 0.5% (w/v) of
LAP in water as a control group.

To investigate the surface topography of MA-NG-GelMA hydrogels and GelMA
hydrogels, the obtained hydrogels were lyophilized and broken manually to expose their
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cross-sections. Then, the broken samples were sputter-coated with ~20 nm gold, in order
to improve conductivity. The microstructure was observed with a Helios G4 CX DualBeam
in secondary electron (SE) mode, with a voltage of 5 kV and a current of 0.34 nA.

2.10. Printability in 3D of MA-NG-GelMA and Confocal Laser Scanning Microscopy

To test the 3D printing capability, two inks (MA-NG-GelMA ink and pure GelMA
ink) were prepared as described in Section 2.9. Both inks were then loaded into syringes
topped with 1-inch Allevi’s 25G to 30G nozzles. The 3D printing was performed on a glass
slide that had been pretreated with 3-(trimethoxysilyl)propyl methacrylate to promote
bonding of GelMA, using a BioBots 1 3D bioprinter. Figure building is performed in 3D
Builder, and 3D image slicing is achieved using the program Repetier Host. The exerted
pressure was varied, depending on the observed material viscosity and temperature, to
optimize the extrusion rate. Printed constructs were cross-linked by irradiating them with
a UV lamp (405 nm wavelength, 7 mW/cm2) both during the printing and afterward for
an additional 5 min.

To investigate the nanogel’s incorporation within the GelMA network, alternating
vertical lines of MA-NG-GelMA and pure GelMA were printed. Since the nanogel was
labeled with the fluorescent dye MRB, the confocal microscopy images of printed structures
were obtained with a Leica TCS SP2 confocal laser scanning microscope.

2.11. Fluorescence Spectroscopy of MA-NG-GelMA and Amine-NG-GelMA Composite Hydrogels

To prove the covalent bonding of MA-NG within the GelMA network, Amine-NG
was incorporated into the GelMA hydrogel as a comparison, by the same method as the
MA-NG-GelMA hydrogel preparation described in Section 2.9. As shown in Scheme 1, after
UV cross-linking, both the Amine-NG-GelMA hydrogel and MA-NG-GelMA hydrogel
were crushed and vortexed vigorously in water, followed by centrifugation to spin down
the hydrogel fragments. Afterward, the fluorescence intensity of the supernatant was
measured at 25 ◦C using a Synergy H1 Multi-Mode Reader at an excitation wavelength
of 548 nm and an emission wavelength of 580 nm. Ultrapure water was measured as
a reference.

Scheme 1. Schematic representation of the procedure used for the determination of covalent bonding
of MA-NG inside the GelMA network. GelMA is dissolved in MA-NG or Amine-NG solution
and is mixed with LAP, before casting it into a PDMS mold. The casting mold is then covered
with glass slides and transferred into a UV cross-linker, to enable the formation of the hydrogels
by photo-polymerization. The obtained hydrogels are crushed and vortexed vigorously in water,
followed by centrifugation to spin down the hydrogel fragments. After taking out the supernatant,
the fluorescence intensity of the supernatant is measured with a plate reader.
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3. Results and Discussion
3.1. Synthesis and Characterization of GelMA

GelMA was synthesized by binding the methacryloyl groups on the gelatin surface
through a covalent coupling with the reactive primary amine groups of the lysine residues,
as shown in Figure 1a. To obtain a high methacrylation degree, 0.6 g of methacrylic
anhydride was added per gram of gelatin [34]. The degree of functionalization (DoF)
of gelatin was determined using 1H-NMR spectrometry [35]. As shown in Figure 1b,
compared with the spectrum of unmodified gelatin, the GelMA sample showed new
signals corresponding with the methacryloyl groups. The signals at around 5.4 and 5.6 ppm
chemical shifts were assigned to the acrylic protons (2H) of the grafted methacryloyl group
(indicated by a black arrow), and the signal at 1.9 ppm was attributed to the methyl group
(3H) of the grafted methacryloyl group (indicated by a red arrow). There was a decrease of
intensity in the signal around 3.0 ppm, which was assigned to the lysine methylene (2H)
of gelatin (indicated by blue arrows). The decrease of the integrated signal was used to
calculate the DoF as the primary amine of lysine is the target site for the reaction, although
minor reactions occurred with other reactive groups than amine groups in gelatin. The
spectra were normalized by the aromatic moieties (5H) of phenylalanine signals, around
7.3 ppm, as an internal reference since they were not modified by MA during the reaction.
The estimated DoF is 75%, which is consistent with the previously reported number [34].

3.2. Synthesis and Characterization of Nanogels

To be able to covalently incorporate the nanogel inside the GelMA hydrogel matrix,
a methacryloyl-functionalized nanogel (MA-NG) was prepared by coupling MA with
primary amine moieties on the surface of the nanogel, to obtain the cross-linking capabilities.
Therefore, a primary amine-functionalized core-shell nanogel (Amine-NG) containing
a pNIPAM core and a p(NIPAM-co-APMA) shell was firstly synthesized via two-step
precipitation polymerization, using the cationic initiator AMPA V50 and the cationic
surfactant CTAB to stabilize the particles, as shown in Figure 2. The fluorescent dye MRB
was introduced, to label the nanogel for further characterization.

Figure 2. Synthesis route of Amine-NG and MA-NG.

The absolute amount of incorporated amine groups of Amine-NG and MA-NG was
determined by potentiometric titration. The representative titration curves are shown
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in Figure 3a; the potentiometric titration of both Amine-NG (blue line) and MA-NG
(green line) exhibit two regions. The first region, down to VHCl = 0.531 mL of Amine-
NG and VHCl = 0.399 mL of MA-NG, corresponds to the titration of any excess NaOH
that is present, whereas the second region, until VHCl = 0.706 mL of Amine-NG and
VHCl = 0.481 mL of MA-NG, can be assigned to the protonation of the amine groups. The
number of primary amine groups can be recalculated from the added volume of the titrant
HCl between these two equivalence points (EP). The amount of amine was determined to
be 0.81 ± 0.12 mmol/g for Amine-NG, and 0.42 ± 0.03 mmol/g for MA-NG, as shown in
Figure 3b. Accordingly, the degree of MA functionalization is around 48.1%, calculated from
the amount of amine in Amine-NG and MA-NG. To further prove the functionalization
with MA, the Zeta potentials of both Amine-NG and MA-NG were measured; the results
are shown in Figure 3c. The Zeta potential of Amine-NG is around +25 mV, due to the
used cationic initiator and the incorporation of primary amine groups on the surface
of the nanogel. After MA functionalization, the Zeta potential of MA-NG decreased to
+14 mV, which indicated a lower amount of primary amine groups present, and successful
modification with methacryloyl groups.

Figure 3. (a) Potentiometric titration of Amine-NG and MA-NG at 25 ◦C; (b) the number of primary
amine groups in nanogels determined by potentiometric titration; (c) the Zeta potential of Amine-NG
and MA-NG in water at 25 ◦C.

The size and morphology, hydrodynamic properties, and behavior in aqueous media
of the nanogels were investigated by TEM and DLS analysis. The representative TEM
images, hydrodynamic size distribution, and the temperature-dependent hydrodynamic
diameter curves of Amine-NG and MA-NG, are shown in Figure 4. Both Amine-NG and
MA-NG were spherical in shape with fuzzy edges, monodispersed. The diameter in the
dry state was similar for both nanogels: 354 ± 20 nm for the Amine-NG, and 415 ± 14 nm
for MA-NG, as shown in Figure 4a. The slight difference between the sizes may come from
the artifacts during the negative staining or drying process. The hydrodynamic diameters
of both nanogels in water displayed a narrow size distribution, as shown in Figure 4b; the
average hydrodynamic diameter is 519 ± 5 nm for the Amine-NG and 561 ± 7 nm of MA-
NG. Figure 4c shows the variation of the nanogels in hydrodynamic diameter according
to temperature since the pNIPAM segment is temperature-responsive. The volume-phase
transition temperature (VPTT) is around 34 ◦C for Amine-NG and 33 ◦C for MA-NG. The
slightly higher VPTT of both nanogels compared to pure pNIPAM nanogel (around 32 ◦C)
is due to the presence of the amine functional groups, which are more hydrophilic and
display charge repulsion in the protonated form, thus increasing the VPTT. However, after
MA functionalization, the VPTT slightly decreases to 33 ◦C, due to the consumption of
amine groups and the introduction of more hydrophobic methacryloyl groups (compared
to amine groups). It is notable that the hydrodynamic diameter of nanogels is slightly
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increased after MA functionalization over the whole temperature range, which might be
attributed to the contribution of steric hindrance from the methacryloyl groups.

Figure 4. (a) TEM images of Amine-NG and MA-NG; (b) size distribution by the intensity of
Amine-NG and MA-NG in aqueous media, determined by DLS analysis in water at 20 ◦C; (c) hy-
drodynamic diameter as a function of the temperatures of Amine-NG and MA-NG, obtained from
DLS measurements.

3.3. Preparation and Morphology of MA-NG-GelMA Composite Hydrogel

The MA-NG-GelMA composite hydrogel (0.5% MA-NG + 10% GelMA) and pure
GelMA hydrogel (10% GelMA) were prepared in a cylindrical PDMS mold, LAP (0.5%); a
recently developed alternative water-soluble photo-initiator [36] was used to initiate the
photopolymerizations under UV light. As shown in the inserted photograph in Figure 5a,
after UV cross-linking, the color of the GelMA hydrogel is transparent, whereas the MA-
NG-GelMA composite hydrogel is pink, which comes from the introduced fluorescent dye
MRB in the nanogel.

To investigate the morphology of the porous structure within the hydrogel, the pre-
pared MA-NG-GelMA composite hydrogel and pure GelMA hydrogel were lyophilized,
and the images of the cross-sectional microstructures were observed using SEM. As shown
in Figure 5a, both the GelMA hydrogel and MA-NG-GelMA composite hydrogel presented
a highly porous structure, with irregular pore shape and different pore sizes, due to the
syneresis phenomenon during the lyophilization process. The average pore size of both hy-
drogels was counted using the ImageJ software, the results of which are shown in Figure 5b.
The average pore sizes were inversely related to the degree of methacryloyl substitution
and the concentration of the GelMA solution [7]. In this study, the DoF of the used GelMA
was 75%, and the concentration of GelMA solution was 10%. The pore diameters were
20.3 ± 3.4 µm of the MA-NG-GelMA composite hydrogel, and 18.9 ± 3.6 µm of the pure
GelMA hydrogel, which is comparable with the previously reported value with a similar
DoF (23.6 ± 5.85 µm with 73.2% DoF of pure GelMA hydrogel) [37].

To evaluate the introduction and distribution of MA-NG nanogels inside the GelMA
network, high-magnification SEM images were acquired, as shown in Figure 5a (second
row). It is worth noting that in the contrary of the smooth surface of the pore wall of the
pure GelMA hydrogel, the MA-NG-GelMA composite hydrogel showed a rough surface of
the pore wall due to the nanogel incorporation. It can be observed clearly, from the higher
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magnification insets, that a large amount of MA-NG was wrapped within the GelMA
network, covering the surface of the pore wall of the composite hydrogel. However, not
all the nanogels were evenly distributed over the whole surface, but were instead in a
sporadically clustered form, which is possibly because of insufficient mixing of the nanogel
solution and GelMA.

Figure 5. (a) SEM images of MA-NG-GelMA hydrogel and pure GelMA hydrogel. Photographs of
MA-NG-GelMA hydrogel (pink) and pure GelMA hydrogel (transparent) were inset. (b) Pore sizes
of the MA-NG-GelMA hydrogel and pure GelMA hydrogel.

3.4. Covalent Bonding of MA-NG within MA-NG-GelMA Hydrogels

An important key point of nanoparticle-composite GelMA hydrogels for drug deliv-
ery and other biomedical applications is the need for stability of the hierarchical system.
Therefore, in this study, the nanogels were covalently bound to the GelMA network by
photopolymerization. To prove the covalent bonding, a release experiment of nanogel
from the GelMA hydrogel was conducted, as shown in Scheme 1. The Amine-NG was
incorporated in the GelMA hydrogel (Amine-NG-GelMA hydrogel) in the same way as the
MA-NG-GelMA hydrogel, as a control group. For normalization of the fluorescence inten-
sity of both nanogels, the fluorescence spectra of Amine-NG and MA-NG were obtained
using a plate reader (Figure S1 in the Supplementary Material). The fluorescence intensity
of the released nanogels in the supernatant was measured by plate reader; the normalized
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results are shown in Figure 6. It can be seen that the Amine-NG was dramatically released
from the hydrogel, compared to the MA-NG (around 10 times), after the crushing and
vigorous vortex treatment. This difference indicates that the MA-NG was covalently bound
to the GelMA network, due to the photopolymerization capability induced by methacryloyl
functional groups, whereas the Amine-NG was only blended into the GelMA network
under the same conditions.

3.5. Printability in 3D of MA-NG-GelMA

The main focus of this research was to develop a 3D-printable nanogel-GelMA compos-
ite hydrogel to achieve a hierarchical platform for the potential applications of regenerative
medicine and tissue engineering. The 3D printing procedure was performed at room
temperature, and the printed hydrogel was cross-linked by irradiating it with UV light
(405 nm wavelength, 7 mW/cm2) during the printing, and afterward for an additional
5 min. Before printing with predesigned patterns, alternating vertical lines of pure GelMA
and MA-NG-GelMA were printed for the 3D printing tests by loading two inks into two
syringes separately and manually controlling the extrusion process. In order to observe
the morphology of the printed constructs, the printed adjacent lines were imaged using a
confocal microscope, as shown in Figure 7a. The printed MA-NG-GelMA hydrogel line
(left) showed a pronounced fluorescent signal contributed from the MRB-modified nanogel,
while the printed GelMA hydrogel line (right) had no fluorescent signal at all. However,
the fluorescent signal distribution of the MA-NG-GelMA hydrogel line was not uniform,
showing certain agglomeration patterns, which is consistent with the sporadically clustered
form of the nanogel inside the GelMA network observed by the SEM analysis.

To further test the printability of the MA-NG-GelMA ink, a 3D pattern with a hexagram
shape was designed with 3D Builder and printed with MA-NG-GelMA ink; the printing
process and printed construct are shown in Figure 7b. The printed hydrogel presented
homogeneity and stability after UV cross-linking, and maintained the hexagram shape after
dehydration for a few minutes in air. These results further confirmed that the prepared
MA-NG-GelMA ink is 3D-printable, and that these kinds of hybrid approaches of ink
formation are an upcoming new trend to create more functional hydrogel systems [38].

Figure 6. Fluorescence intensity of qualitative release of nanogels from MA-NG-GelMA hydrogel
and Amine-NG-GelMA hydrogel in the supernatant of centrifuged hydrogel fragment, after crushing
and vortexing vigorously in water.
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Figure 7. (a) 3D-printed alternating vertical lines and the representative confocal images of MA-NG-
GelMA and pure GelMA; (b) 3D printing process of MA-NG-GelMA in a hexagram shape.

4. Conclusions

In this study, we introduced a simple, versatile method to manufacture hierarchical
nanogel–GelMA composite hydrogels. To achieve the covalent bonding of the nanogel
within the GelMA network, the nanogel was modified with methacryloyl groups on the
surface to obtain the necessary photo-cross-linking ability by coupling MA with the primary
amine groups on the shell of the nanogel. The nanogel–GelMA composite hydrogel was
formed by mixing GelMA and LAP with the nanogel solution, followed by UV irradiation.
The SEM images clearly showed that the nanogel was successfully embedded inside the
GelMA network. To investigate the covalent bonding and the stability of MA-NG inside
the GelMA hydrogel, a release experiment was conducted to compare it with noncovalent
introduced Amine-NG in GelMA hydrogel. The results showed a significant release of
noncovalent Amine-NG from the GelMA hydrogel, whereas the covalently bound MA-NG
showed only a slight release. Finally, the 3D-printability was tested with a BioBot 1 3D
printer, and the printed structure was visualized under confocal microscopy, which showed
inhomogeneous distribution with certain aggregation patterns, due to the insufficient
mixing of the nanogel and GelMA polymer. Overall, we have provided a new concept
in the 3D printing of a stable hierarchical hydrogel system, by introducing nanocarrier
nanogel in the micropore GelMA hydrogel network. The developed system has great
potential to achieve the in situ delivery and controllable release of bioactive molecules to
encapsulated cells, which could lead to the direct engineering of a mature controllable 3D
cell culture system in vitro that is close to the native tissue analog and is thus more suitable
for transplantation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13152508/s1, Figure S1: Fluorescence spectra of Amine-NG and MA-NG.

Author Contributions: Conceptualization, P.v.R.; methodology, G.Z., M.M. and O.M.; investigation,
G.Z., M.M. and H.Z.; writing—original draft preparation, G.Z.; writing—review and editing, P.v.R.;
supervision, P.v.R. All authors have read and agreed to the published version of the manuscript.

Funding: G.Z. was funded by the China Scholarship Council (CSC), grant number 201706890012.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

https://www.mdpi.com/article/10.3390/polym13152508/s1
https://www.mdpi.com/article/10.3390/polym13152508/s1


Polymers 2021, 13, 2508 13 of 14

Conflicts of Interest: P.v.R. also is co-founder, scientific advisor, and shareholder in BiomACS BV, a
biomedical-oriented screening company. The authors declare no other conflict of interest.

References
1. Haycock, J.W. 3D cell culture: A review of current approaches and techniques. Methods Mol. Biol. 2011, 695, 1–15.
2. Fontoura, J.C.; Viezzer, C.; dos Santos, F.G.; Ligabue, R.A.; Weinlich, R.; Puga, R.D.; Antonow, D.; Severino, P.; Bonorino, C.

Comparison of 2D and 3D cell culture models for cell growth, gene expression and drug resistance. Mater. Sci. Eng. C 2020,
107, 110264. [CrossRef]

3. Ravi, M.; Paramesh, V.; Kaviya, S.R.; Anuradha, E.; Solomon, F.D.P. 3D cell culture systems: Advantages and applications. J. Cell.
Physiol. 2015, 230, 16–26. [CrossRef]

4. Klotz, B.J.; Gawlitta, D.; Rosenberg, A.J.W.P.; Malda, J.; Melchels, F.P.W. Gelatin-methacryloyl hydrogels: Towards biofabrication-
based tissue repair. Trends Biotechnol. 2016, 34, 394–407. [CrossRef]

5. Murphy, S.V.; Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014, 32, 773–785. [CrossRef]
6. Jang, J.; Park, J.Y.; Gao, G.; Cho, D.W. Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics.

Biomaterials 2018, 156, 88–106. [CrossRef]
7. Yue, K.; Trujillo-de Santiago, G.; Alvarez, M.M.; Tamayol, A.; Annabi, N.; Khademhosseini, A. Synthesis, properties, and

biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 2015, 73, 254–271. [CrossRef]
8. Yin, J.; Yan, M.; Wang, Y.; Fu, J.; Suo, H. 3D bioprinting of low-concentration cell-laden gelatin methacrylate (GelMA) bioinks

with a two-step cross-linking strategy. ACS Appl. Mater. Interfaces 2018, 10, 6849–6857. [CrossRef]
9. Pepelanova, I.; Kruppa, K.; Scheper, T.; Lavrentieva, A. Gelatin-methacryloyl (GelMA) hydrogels with defined degree of

functionalization as a versatile toolkit for 3D cell culture and extrusion bioprinting. Bioengineering 2018, 5, 55. [CrossRef]
10. Gao, Q.; Niu, X.; Shao, L.; Zhou, L.; Lin, Z.; Sun, A.; Fu, J.; Chen, Z.; Hu, J.; Liu, Y.; et al. 3D printing of complex GelMA-based

scaffolds with nanoclay. Biofabrication 2019, 11, 035006. [CrossRef]
11. Liu, Y.; Chan-Park, M.B. A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle

cell culture. Biomaterials 2010, 31, 1158–1170. [CrossRef]
12. Nichol, J.W.; Koshy, S.T.; Bae, H.; Hwang, C.M.; Yamanlar, S.; Khademhosseini, A. Cell-laden microengineered gelatin methacry-

late hydrogels. Biomaterials 2010, 31, 5536–5544. [CrossRef]
13. Choi, J.R.; Yong, K.W.; Choi, J.Y.; Cowie, A.C. Recent advances in photo-crosslinkable hydrogels for biomedical applications.

Biotechniques 2019, 66, 40–53. [CrossRef]
14. Lin, C.-H.; Su, J.J.-M.; Lee, S.-Y.; Lin, Y.-M. Stiffness modification of photopolymerizable gelatin-methacrylate hydrogels influences

endothelial differentiation of human mesenchymal stem cells. J. Tissue Eng. Regen. Med. 2018, 12, 2099–2111. [CrossRef]
15. Ratcliffe, J.H.; Hunneyball, I.M.; Smith, A.; Wilson, C.G.; Davis, S.S. Preparation and evaluation of biodegradable polymeric

systems for the intra-articular delivery of drugs. J. Pharm. Pharmacol. 1984, 36, 431–436. [CrossRef]
16. Dubruel, P.; Unger, R.; Van Vlierberghe, S.; Cnudde, V.; Jacobs, P.J.S.; Schacht, E.; Kirkpatrick, C.J. Porous gelatin hydrogels: 2.

In vitro cell interaction study. Biomacromolecules 2007, 8, 338–344. [CrossRef]
17. Lin, R.Z.; Chen, Y.C.; Moreno-Luna, R.; Khademhosseini, A.; Melero-Martin, J.M. Transdermal regulation of vascular network

bioengineering using aphotopolymerizable methacrylated gelatin hydrogel. Biomaterials 2013, 34, 6785–6796. [CrossRef]
18. Jeon, O.; Wolfson, D.W.; Alsberg, E. In-situ formation of growth-factor-loaded coacervate microparticle-embedded hydrogels for

directing encapsulated stem cell fate. Adv. Mater. 2015, 27, 2216–2223. [CrossRef]
19. Grogan, S.P.; Chung, P.H.; Soman, P.; Chen, P.; Lotz, M.K.; Chen, S.; D’Lima, D.D. Digital micromirror device projection printing

system for meniscus tissue engineering. Acta Biomater. 2013, 9, 7218–7226. [CrossRef]
20. Mahadik, B.P.; Pedron Haba, S.; Skertich, L.J.; Harley, B.A.C. The use of covalently immobilized stem cell factor to selectively

affect hematopoietic stem cell activity within a gelatin hydrogel. Biomaterials 2015, 67, 297–307. [CrossRef]
21. Sivakumaran, D.; Maitland, D.; Hoare, T. Injectable microgel-hydrogel composites for prolonged small-molecule drug delivery.

Biomacromolecules 2011, 12, 4112–4120. [CrossRef]
22. Elkhoury, K.; Sanchez-Gonzalez, L.; Lavrador, P.; Almeida, R.; Gaspar, V.; Kahn, C.; Cleymand, F.; Arab-Tehrany, E.; Mano, J.F.

Gelatin methacryloyl (GelMA) nanocomposite hydrogels embedding bioactive naringin liposomes. Polymers 2020, 12, 2944.
[CrossRef]

23. Keskin, D.; Zu, G.; Forson, A.M.; Tromp, L.; Sjollema, J.; van Rijn, P. Nanogels: A novel approach in antimicrobial delivery
systems and antimicrobial coatings. Bioact. Mater. 2021, 6, 3634–3657. [CrossRef]

24. Yu, K.; Yang, X.; He, L.; Zheng, R.; Min, J.; Su, H.; Shan, S.; Jia, Q. Facile preparation of pH/reduction dual-stimuli responsive
dextran nanogel as environment-sensitive carrier of doxorubicin. Polymer 2020, 200, 122585. [CrossRef]

25. Molina, M.; Asadian-Birjand, M.; Balach, J.; Bergueiro, J.; Miceli, E.; Calderón, M. Stimuli-responsive nanogel composites and
their application in nanomedicine. Chem. Soc. Rev. 2015, 44, 6161–6186. [CrossRef]

26. Jiang, Z.; Chen, J.; Cui, L.; Zhuang, X.; Ding, J.; Chen, X. Advances in stimuli-responsive polypeptide nanogels. Small Methods
2018, 2, 1700307. [CrossRef]

27. Mergel, O.; Schneider, S.; Tiwari, R.; Kühn, P.T.; Keskin, D.; Stuart, M.C.A.; Schöttner, S.; De Kanter, M.; Noyong, M.;
Caumanns, T.; et al. Cargo shuttling by electrochemical switching of core-shell microgels obtained by a facile one-shot polymer-
ization. Chem. Sci. 2019, 10, 1844–1856. [CrossRef]

http://doi.org/10.1016/j.msec.2019.110264
http://doi.org/10.1002/jcp.24683
http://doi.org/10.1016/j.tibtech.2016.01.002
http://doi.org/10.1038/nbt.2958
http://doi.org/10.1016/j.biomaterials.2017.11.030
http://doi.org/10.1016/j.biomaterials.2015.08.045
http://doi.org/10.1021/acsami.7b16059
http://doi.org/10.3390/bioengineering5030055
http://doi.org/10.1088/1758-5090/ab0cf6
http://doi.org/10.1016/j.biomaterials.2009.10.040
http://doi.org/10.1016/j.biomaterials.2010.03.064
http://doi.org/10.2144/btn-2018-0083
http://doi.org/10.1002/term.2745
http://doi.org/10.1111/j.2042-7158.1984.tb04419.x
http://doi.org/10.1021/bm0606869
http://doi.org/10.1016/j.biomaterials.2013.05.060
http://doi.org/10.1002/adma.201405337
http://doi.org/10.1016/j.actbio.2013.03.020
http://doi.org/10.1016/j.biomaterials.2015.07.042
http://doi.org/10.1021/bm201170h
http://doi.org/10.3390/polym12122944
http://doi.org/10.1016/j.bioactmat.2021.03.004
http://doi.org/10.1016/j.polymer.2020.122585
http://doi.org/10.1039/C5CS00199D
http://doi.org/10.1002/smtd.201700307
http://doi.org/10.1039/C8SC04369H


Polymers 2021, 13, 2508 14 of 14

28. Zu, G.; Steinmüller, M.; Keskin, D.; Van Der Mei, H.C.; Mergel, O.; Van Rijn, P. Antimicrobial nanogels with nanoinjection
capabilities for delivery of the hydrophobic antibacterial agent triclosan. ACS Appl. Polym. Mater. 2020, 2, 5779–5789. [CrossRef]

29. Zu, G.; Mergel, O.; Ribovski, L.; Bron, R.; Zuhorn, I.S.; van Rijn, P. Nanogels with selective intracellular reactivity for intracellular
tracking and delivery. Chem. A Eur. J. 2020, 26, 15084–15088.

30. Keskin, D.; Tromp, L.; Mergel, O.; Zu, G.; Warszawik, E.; Van Der Mei, H.C.; Van Rijn, P. Highly efficient antimicrobial and
antifouling surface coatings with triclosan-loaded nanogels. ACS Appl. Mater. Interfaces 2020, 12, 57721–57731. [CrossRef]

31. Brosel-Oliu, S.; Mergel, O.; Uria, N.; Abramova, N.; Van Rijn, P.; Bratov, A. 3D impedimetric sensors as a tool for monitoring
bacterial response to antibiotics. Lab Chip 2019, 19, 1436–1447. [CrossRef]

32. Loessner, D.; Meinert, C.; Kaemmerer, E.; Martine, L.C.; Yue, K.; Levett, P.A.; Klein, T.J.; Melchels, F.P.W.; Khademhosseini, A.;
Hutmacher, D.W. Functionalization, preparation and use of cell-laden gelatin methacryloyl-based hydrogels as modular tissue
culture platforms. Nat. Protoc. 2016, 11, 727–746. [CrossRef]

33. Gelissen, A.P.H.; Schmid, A.J.; Plamper, F.A.; Pergushov, D.V.; Richtering, W. Quaternized microgels as soft templates for
polyelectrolyte layer-by-layer assemblies. Polymer 2014, 55, 1991–1999. [CrossRef]

34. Schuurman, W.; Levett, P.A.; Pot, M.W.; van Weeren, P.R.; Dhert, W.J.A.; Hutmacher, D.W.; Melchels, F.P.W.; Klein, T.J.; Malda, J.
Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromol.
Biosci. 2013, 13, 551–561. [CrossRef]

35. Shin, H.; Olsen, B.D.; Khademhosseini, A. The mechanical properties and cytotoxicity of cell-laden double-network hydrogels
based on photocrosslinkable gelatin and gellan gum biomacromolecules. Biomaterials 2012, 33, 3143–3152. [CrossRef]

36. Fairbanks, B.D.; Schwartz, M.P.; Bowman, C.N.; Anseth, K.S. Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-
2,4,6-trimethylbenzoylphosphinate: Polymerization rate and cytocompatibility. Biomaterials 2009, 30, 6702–6707. [CrossRef]

37. Chen, Y.-C.; Lin, R.-Z.; Qi, H.; Yang, Y.; Bae, H.; Melero-Martin, J.M.; Khademhosseini, A. Functional human vascular network
generated in photocrosslinkable gelatin methacrylate hydrogels. Adv. Funct. Mater. 2012, 22, 2027–2039. [CrossRef]

38. Rinoldi, C.; Lanzi, M.; Fiorelli, R.; Nakielski, P.; Zembrzycki, K.; Kowalewski, T.; Urbanek, O.; Grippo, V.; Jezierska-Woźniak, K.;
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