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Abstract

Fucoidans are a diverse class of sulfated polysaccharides integral to the cell wall of brown

algae, and due to their various bioactivities, they are potential drugs. Standardized work with

fucoidans is required for structure–function studies, but remains challenging since available

fucoidan preparations are often contaminated with other algal compounds. Additionally, fucoidans

are structurally diverse depending on species and season, urging the need for standardized

purification protocols. Here, we use ion-exchange chromatography to purify different fucoidans

and found a high structural diversity between fucoidans. Ion-exchange chromatography efficiently

removes the polysaccharides alginate and laminarin and other contaminants such as proteins

and phlorotannins across a broad range of fucoidans from major brown algal orders including

Ectocarpales, Laminariales and Fucales. By monomer composition, linkage analysis and NMR char-

acterization, we identified galacturonic acid, glucuronic acid and O-acetylation as new structural

features of certain fucoidans and provided a novel structure of fucoidan from Durvillaea potatorum

with α-1,3-linked fucose backbone and β-1,6 and β-1,3 galactose branches. This study emphasizes

the use of standardized ion-exchange chromatography to obtain defined fucoidans for subsequent

molecular studies.
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Introduction

Fucoidans are the major cell wall polysaccharides of brown algae
accounting for up to 23% of algal dry weight (Deniaud-Bouët
et al. 2014). Within the cell wall, fucoidans tightly interact and are
consequently co-extracted with proteins, phlorotannins and alginates

(Deniaud-Bouët et al. 2014, 2017). Fucoidans are of high pharmaceu-
tical interest as they display anticoagulant, antiviral, antitumor and
immune-inflammatory bioactivities (Synytsya et al. 2010; Ale et al.
2011; Vishchuk et al. 2011; Fitton et al. 2015; Kopplin et al. 2018;
Dörschmann et al. 2019). However, impurities such as co-extracted
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phlorotannins can exhibit bioactivity (Lahrsen et al. 2018), and
hence, fucoidan extracts require further purification for structure–
function studies of this potential marine drug.

Fucoidans are a diverse class of polysaccharides and are broadly
classified into homofucans and heterofucans. Homofucans from the
brown algal order Laminariales and Ectocarpales have a backbone
of α-1,3 l-fucose with sulfate groups mainly at C2 and C4, whereas
homofucans from the order Fucales have an alternating α-1,3/α-
1,4 linked l-fucose sulfated at C2 and C3 (Chevolot et al. 2001;
Deniaud-Bouët et al. 2017; Kopplin et al. 2018). Homofucans have
branches of fucose and/or of galactose, glucuronic acids, xylose,
mannose and acetate (Nishino et al. 1991; Nagaoka et al. 1999;
Sakai et al. 2003; Bilan et al. 2013; Bilan et al. 2014). Heterofucans
have a non-fucose backbone of, e.g., galactose or glucuronic acid
with side branches of sulfated fucose (Bilan et al. 2010; Bilan et al.
2017; Deniaud-Bouët et al. 2017). Owing to their structural diversity
and complexity, most fucoidans are poorly characterized and their
structural analysis requires a combination of analytical methods, such
as chemical desulfation, mass spectrometry of native oligosaccharides
and NMR spectroscopy (Usov et al. 1971; Yuguchi et al. 2016;
Kopplin et al. 2018).

Due to variation in sampling and extraction methods, current
fucoidan preparations are often contaminated and molecularly
poorly defined requiring further purification. Often, brown algal
biomass is harvested without taking into account that its composition
varies between seasons (Rioux et al. 2009; Skriptsova et al.
2010; Mak et al. 2013; Fletcher et al. 2017). Different extraction
methods such as chemical fractionation, enzyme-assisted extractions
or microwave-assisted extractions result in different fucoidan
preparations, even when using the same starting material (Hahn et al.
2012; Deniaud-Bouët et al. 2014). A variety of purification methods
is reported in the literature, for example calcium chloride precipitates
alginates or dye affinity chromatography directly captures fucoidans
(Ale and Meyer 2013; Fitton et al. 2015; Hahn et al. 2016; Zayed
et al. 2016). Ion-exchange chromatography has been repeatedly used
to purify fucoidans and other sulfated polysaccharides (Nardella et al.
1996; Ermakova et al. 2011; Soares et al. 2018), but its applicability
across different fucoidan extracts has not yet been evaluated.

Here, we use ion-exchange chromatography (IEX) to purify
highly sulfated fucoidans by a stepwise protocol. We obtained eight
highly sulfated fucoidans from major brown algal orders including
Ectocarpales, Laminariales and Fucales. By characterizing their
structure, we confirmed their purity, assessed their diversity and
showed that IEX is broadly applicable to purify substantial amounts
of fucoidans providing a basis for further molecular studies.

Results and discussion

IEX purification of highly sulfated fucoidans

We exploited the high negative charge of sulfate groups to develop
a stepwise IEX purification protocol. To test if IEX can be used to
separate fucoidans by their sulfate content, we separated fucoidan
from Fucus vesiculosus and its desulfated derivative using an anion
exchange column at a pH of 7.5 and a salt gradient from 0
to 5 M NaCl (Supplementary Figure S1A). The native fucoidan
eluted between 2 and 5 M NaCl, whereas the desulfated fucoidan
eluted between 0.5 M and 2 M NaCl. Interestingly, fractions with
different sulfate-to-fucose ratio that increases with retention could be
separated, suggesting that sulfate groups are key for column binding
(Supplementary Results, Supplementary Figure S1B). Notably, we
observed the elution of proteins in the UV detector below, a salt
concentration of 0.5 M NaCl, suggesting a wash step with 0.5 M

NaCl sufficiently removes contaminating proteins. Additionally,
brown phenolic compounds such as phlorotannins (Koivikko et al.
2005) were strongly retained by the column and could only be eluted
with an NaOH wash step, ion-exchange purification of fucoidans,
leading to the characteristic change from brown- to white-colored
fucoidan before and after purification (Figure 1A). The 0.5 M NaCl
wash step removes less charged contaminations, and pure fucoidans
can be eluted with 5 M NaCl.

Next, we demonstrated that IEX is sufficient to remove impurities
from eight commercial fucoidan extracts (Supplementary Table SI).
Over the course of the purification, we quantified the yield of carbo-
hydrates and their monosaccharide composition (Figure 1B). Overall,
the relative fucose content increased and glucose, mannose and
mannuronic acid decreased. As monosaccharides generally do not
bind to the column, glucose, mannose and mannuronic acid indicate
multiple polysaccharides present in the extracts such as laminarin,
alginates and/or mannans as these are the major polysaccharides
of brown algae (Kloareg and Quatrano 1988; Duarte et al. 2001;
Kadam et al. 2015). In fact, the preparation of F. serratus contained
more than 95% glucose illustrating the high degree of contaminations
in commercial fucoidan preparations. Alternatively, fucoidans could
be extracted from ground seaweeds by 2 M NaCl (Deniaud-Bouët
et al. 2014) followed by dilution with ddH2O below 100 mM NaCl
and IEX to remove contaminations.

Compositional analysis of purified fucoidans

The purified fucoidans are excessively sulfated, are diverse in
monosaccharide composition and have a high molecular mass.
Fucose and sulfate account between 10% and 45% (w/w), and other
monosaccharides, which can be as abundant as fucose, are detected
in varying amounts across fucoidans (Figure 1C, Supplementary
Table SII). For example, fucoidan from Undaria pinnatifida has
almost equal ratios of fucose, galactose and sulfate agreeing well
with its putative structure as galactofucan with branches of sulfated
galactose (Hemmingson et al. 2006; Synytsya et al. 2010). Fucoidans
from Cladosiphon okamuranus, Ecklonia maxima and F. serratus
are rich in uronic acids. We newly identified galacturonic acid
in C. okamuranus fucoidan (Sakai et al. 2003), and we further
specified the previously reported uronic acids of F. serratus fucoidan
to be glucuronic acid (Cumashi et al. 2007). The molar ratio of
fucose:sulfate is an average of 1.8 sulfate groups per fucose, similar
to fucoidan from Laminaria hyperborea with 1.7 sulfate groups per
fucose (Kopplin et al. 2018). The sulfate content significantly (two-
sided paired t-test, P-value<0.01) increased over the course of the
purification ranging from 10% to 45% of the dry weight (Figure 1D).
The molecular mass of 95 up to 418 kDa (Figure 2A) is higher than
fucoidan purified by, e.g., dye-affinity chromatography (Hahn et al.
2016; Zayed et al. 2016), indicating binding of large polysaccharides
due to higher total charge. Overall, those molecular characteristics
of IEX-purified fucoidans are similar to previously reported data
suggesting IEX is a reliable method to purify fucoidans from crude
extracts.

Glycosidic linkages of purified fucoidans

For structural analysis, we focused on IEX-purified fucoidans from
C. okamuranus, F. serratus, E. maxima and D. potatorum, and
compared these with fucoidan from F. vesiculosus as a reference. With
methylation analysis, we identified 19 different linkages (Figure 2B).
The structurally simplest fucoidan is C. okamuranus, since it is
mainly composed of 3-linked (57%), 2,3-linked fucose (25%) and
minor amounts of terminal fucose (5.1%). All other fucoidans have
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Fig. 1. Ion-exchange purification of fucoidans from different species of brown algae. (A) A scheme of the custom medium-scale setup for the purification of

fucoidans used in this study. The peristaltic pump was manually controlled to load, wash or elute fucoidans onto the column packed with ANX-FF resin. The

duration of one run, including column wash, was approximately 45 min and yielded up to 350 mg of purified fucoidans per 500 mg starting material. Over the

course of the purification, the characteristic brown color of the crude extract changes to a white product due to the removal of proteins and phlorotannins as

exemplary shown on the right for fucoidan from C. okamuranus. (B) Quantitative glycan profiling during purification of fucoidans from four different brown

algae. Changes in absolute amount and relative composition (y-axis) of fucoidans per 1 mg of starting material are shown over the course of the purification

(x-axis). Total carbohydrate content and monosaccharide composition was determined in three independent chromatographic runs (n = 3) and their average is

shown. (C) Monosaccharide and sulfate content of purified fucoidan from different species of brown algae. The sulfate content and monosaccharide composition

was determined in two analytic replicates of the same acid hydrolysis. (D) Comparison of the sulfate content of fucoidans before and after IEX purification. Data

points represent the sulfate content before and after purification, and their distribution is summarized in boxplots where the middle line indicates the median,

the box designates the interquartile range (IQR) and the whiskers denote 1.5 times the IQR, and ∗∗∗ denote P < 0.01 of a paired t-test.

a surprisingly high amount of terminal fucose (27–33%), indicating
many short fucose branches (Kopplin et al. 2018). D. potatorum, F.
vesiculosus and F. serratus are also rich in 3-linked fucose (36, 19
and 15%), whereas fucoidans from F. vesiculosus and E. maxima
are rich in 4-linked fucose (17 and 10%). We found high amount
of 3,4 linked fucose in F. vesiculosus (17%) and in D. potatorum
(10%). Additionally, we identified terminal xylose in F. vesiculosus
and F. serratus and a non-negligible amount of 4-linked xylose in E.
maxima (5%). We identified various galactose linkages in fucoidans
from F. serratus, E. maxima and D. potatorum. Overall, the relative
abundances of each linkage agree with the monosaccharide compo-
sition for those sugars. The linkage analysis suggests all fucoidans
are homofucans and possibly have side branches of fucose and other
monosaccharides.

Structural characterization of fucoidans with NMR

spectroscopy

To verify these structures, fucoidans were analyzed by 1H NMR
(Figure 2C–F) and 1H-13C HSQC spectroscopy (Supplementary
Figures S2–6). Details are described in the Supplement Information;

in short, we found a variety of α-anomeric signals (δH ∼ 5.0–5.5 and
δC ∼ 90–105) that are mainly α-l-fucose and to a lesser extent, α-
hexoses (δC > 100) (Chizhov et al. 1999; Grachev et al. 2006; Bilan
et al. 2013, 2017). Anomeric signals (δH ∼ 4.25–5.0 and δC ∼ 100–
110) consistent with β-O-linked hexoses i.e. galactose (Bilan et al.
2013, 2017; Usoltseva et al. 2017; Usoltseva et al. 2018) are present
in multiple fucoidans and could be specifically linked to the 4,6- and
6-galactose linkages in case of F. serratus fucoidan (δH 3.83, 4.09/δC
69.1) (Ruthes et al. 2013; Usoltseva et al. 2017). Fucoidan from F.
vesiculosus has another pair of CH2 signals (δH 3.24, 3.90/δC 65.2)
attributed to β-linked xylose (Bilan et al. 2002). Signals for O-2,
O-3 and/or O-4 sulfation were detected in all fucoidans (δH ∼ 4.5–
5.0/δC ∼ 75–85). Additionally, fucoidans from E. maxima, F. serratus
and C. okamuranus are O-acetylated (�δH + 1.0–1.5/�δC + 1–4).
We identified five positions of O-acetylation in F. serratus fucoidan
(δH/δC: 4.88/70.7, 4.97/71.0, 4.98/70.0, 5.09/70.2 and 5.12/71.1)
together with two positions in C. okamuranus fucoidan (δH/δC:
5.25/67.4 and 5.50/69.1) (Chizhov et al. 1999; Bilan et al. 2002;
Perepelov et al. 2008). Finally, we compared fucoidan from C. oka-
muranus with a characterized oligomer (Supplementary Figure S7)
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Fig. 2. Structural characterization of IEX-purified fucoidans and fucoidan from F. vesiculosus as control. (A) Macromolecular properties of fucoidans. The

molecular mass and derived polymeric index are represented as mean of replicates from two SEC-MALS measurements with a constant Dn/dc of 0.1 mL/g

for all fucoidans. (B) Linkage analysis of five different fucoidans. The heatmap show the molecular percentage of different glycosidic linkages derived from

their relative peak areas. Rows and columns are ordered by a hierarchical clustering based on the Euclidean distance metric. (C–F) Overlaid 1H NMR spectra

comparing fucoidans from five algal species. (C) Overlay of whole spectrum annotated with regions relating to structural moieties. The key for annotated regions

is as follows: H-1[α] = α-anomeric protons, H-1[β] = β-anomeric protons, H-(2/3/4)[O-Ac] = protons associated with O-acetylation at positions C2, C3 and/or C4,

H-(2/3/4)[O-sulfate] = protons associated with O-sulfation at positions C2, C3 and/or C4, H-6[CH2] = protons of hexose -CH2OH, O-Ac[CH3] = acetyl CH3 protons,

H-6[CH3] = fucose CH3 protons. Contamination peaks are highlighted with asterisks (∗) and likely originate from Tris buffer and/or (poly)ethylene glycol = δ ∼ 3.7,

acetyl CH3 signals = δ ∼ 1.8, 1.9. (D) Expanded region showing anomeric signals and some residual water signal (δ ∼4.7). (E) Expanded region showing acetyl

CH3 signals. (F) Expanded region showing C6 CH3 signals associated with fucose residues.

and found support for α-1,3-linked fucose backbone with 4-O-
sulfation and α-1,2-linked glucuronic acid branches (Sakai et al.
2003). Potentially, the structure of fucoidans could be further
resolved by NMR of its desulfated derivative or by MS/MS analysis
of native oligosaccharides (Yuguchi et al. 2016; Kopplin et al. 2018).

This study shows that IEX efficiently removes contaminations
such as proteins and alginates from different fucoidan preparations
resulting in pure and structurally defined fucoidans.

Materials and methods

The content, composition, linkage and structure of carbohydrates
were analyzed with common laboratory protocols including phenol–
sulfuric acid assay, HPAEC-PAD, GC–MS and NMR, which are
described in detail in the Supplement Information.

Purification of fucoidans

Fucoidan extracts were purified using a custom medium-scale IEX
with a detailed stepwise online protocol (https://www.protocols.io/
researchers/andreas-sichert). A MasterFlex L/S peristaltic pump was
used to operate an XK50/20 column (GE Healthcare) packed with
200 mL of ANX FF resin (GE Healthcare) at a flow of 50 mL/min.
Fucoidans (Supplementary Table SI) were solubilized in 50 mM of
Tris pH 7.5 and centrifuged for 30 min at 4000 g. For binding,
the supernatant was circulated three times over the column. Next,
the column was washed with three column volumes of 50 mM of
Tris pH 7.5 and three column volumes of 50 mM Tris pH 7.5 with
500 mM of NaCl. Fucoidans were eluted with 100 mL of 50 mM Tris
pH 7.5 with 5 M NaCl. After each run, the column was washed with
50 mM of Tris pH 7.5 with 5 M NaCl, deionized water, 250 mM
NaOH pH 13.4 and deionized water. Fucoidans were then dialyzed

https://www.protocols.io/researchers/andreas-sichert
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(Spectra/Por 6 Dialysis Tubing, 1 kDa MWCO) against ddH2O and
lyophilized. Unless otherwise stated, reagents and equipment were
purchased at Thermo fisher scientific (Waltham, MA, USA) Sigma-
aldrich (st. Luis, Missouri, USA) Carbosynth.

Supplementary data

Supplementary data for this article are available online at http://
glycob.oxfordjournals.org/.
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