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The gut microbiome performs many important functions in mammalian hosts, with 
community composition shaping its functional role. However, the factors that drive 
individual microbiota variation in wild animals and to what extent these are predictable or 
idiosyncratic across populations remains poorly understood. Here, we use a multi-
population dataset from a common rodent species (the wood mouse, Apodemus 
sylvaticus), to test whether a consistent “core” gut microbiota is identifiable in this species, 
and to what extent the predictors of microbiota variation are consistent across populations. 
Between 2014 and 2018 we used capture-mark-recapture and 16S rRNA profiling to 
intensively monitor two wild wood mouse populations and their gut microbiota, as well 
as characterising the microbiota from a laboratory-housed colony of the same species. 
Although the microbiota was broadly similar at high taxonomic levels, the two wild 
populations did not share a single bacterial amplicon sequence variant (ASV), despite 
being only 50km apart. Meanwhile, the laboratory-housed colony shared many ASVs with 
one of the wild populations from which it is thought to have been founded decades ago. 
Despite not sharing any ASVs, the two wild populations shared a phylogenetically more 
similar microbiota than either did with the colony, and the factors predicting compositional 
variation in each wild population were remarkably similar. We  identified a strong and 
consistent pattern of seasonal microbiota restructuring that occurred at both sites, in all 
years, and within individual mice. While the microbiota was highly individualised, some 
seasonal convergence occurred in late winter/early spring. These findings reveal highly 
repeatable seasonal gut microbiota dynamics in multiple populations of this species, 
despite different taxa being involved. This provides a platform for future work to understand 
the drivers and functional implications of such predictable seasonal microbiome 
restructuring, including whether it might provide the host with adaptive seasonal 
phenotypic plasticity.
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INTRODUCTION

The gastrointestinal tracts of vertebrates harbour complex 
microbial communities known as the gut microbiota, that can 
perform a wide range of important functions for the host. 
These include regulating the immune system (Round and 
Mazmanian, 2009), extracting nutrients from otherwise 
indigestible parts of the diet (Flint et  al., 2012), and defence 
against pathogens (Buffie and Pamer, 2013). With such important 
roles, one might expect these symbiotic communities to be under 
strong host influence, such that individuals of a given species 
harbour a characteristic and relatively invariant community. 
Yet the emerging picture from microbiome research firmly 
contradicts this. Vertebrate gut microbiotas are typified by 
immense compositional variation, both among individuals and 
within individuals over time. Each individual’s gut microbiota 
constitutes a diverse community of microbes shaped by 
environmental influences such as diet, habitat and xenobiotics, 
microbial interactions, metacommunity-level processes such as 
transmission among hosts, and mechanisms of host selection, 
arising, for example, through physiological differences among 
host genotypes or age. The relative importance of these different 
ecological processes in shaping wild animal microbiomes remains 
a key open question.

In humans, cross-population microbiome comparisons have 
shown that only a small set of “core” gut bacteria are consistently 
detected across individuals within a population, and fewer are 
shared across populations (Tap et  al., 2009; Qin et  al., 2010; 
Li et  al., 2013; Falony et  al., 2016). Rather, the human gut 
microbiota is highly individualised, with each person harbouring 
a characteristic microbial fingerprint which is distinct from 
that of others over time (Turnbaugh and Gordon, 2009; Faith 
et  al., 2013; Bergström et  al., 2014; De Muinck and Trosvik, 
2018). However, given the unique ecology of industrialised 
humans, whether such patterns apply to non-human wild 
vertebrates remains poorly understood. Cross-population studies 
in the wild examining to what extent taxa are shared by 
conspecifics across geographical space, and at what scale this 
might occur, are rare (Lankau et  al., 2012; Linnenbrink et  al., 
2013; Smith et  al., 2015; Grieneisen et  al., 2019; Funosas et  al., 
2021). Moreover, most wild animal microbiota studies are 
cross-sectional or group-level, with few that have characterised 
the microbiota of repeat-sampled individuals. Such longitudinal 
data are crucial for understanding microbiota stability at both 
the individual and population level, and how this may be shaped 
by fluctuations in the environment.

A growing number of studies have revealed seasonal 
dynamics in the gut microbiota of wild animals (Kobayashi 
et  al., 2006; Williams et  al., 2013; Amato et  al., 2014a; Fogel, 
2015; Maurice et  al., 2015; Sun et  al., 2016; Ren et  al., 2017; 
Springer et  al., 2017; Liu et  al., 2019; Orkin et  al., 2019). 
Pronounced seasonal microbiota dynamics have also been 
observed among humans leading traditional, hunter-gatherer 
lifestyles (Davenport et  al., 2014; Smits et  al., 2017). These 
findings contrast with those from industrialised humans, where 
microbiota composition is considered relatively stable in 
adulthood (Faith et  al., 2013). The causes of such seasonal 

dynamics are not fully understood, but existing studies have 
implicated seasonal shifts in diet (Amato et  al., 2014a; Ren 
et  al., 2017), or hibernation (Carey et  al., 2013; Sommer 
et al., 2016). However, in many studies the fine-scale seasonal 
dynamics are not well-understood as temporal resolution is 
relatively course (e.g., winter vs. summer), and the extent to 
which seasonal dynamics are idiosyncratic or repeatable across 
years or populations of a species remains unknown. 
Understanding the repeatability of such seasonal dynamics 
across time and space is a key step towards understanding 
their potential functional significance. If such temporal dynamics 
are general across populations and years, this would suggest 
a broadly applicable underlying process (for example, a 
predictable environmental or intrinsic host seasonal change), 
and allow for the possibility that such changes could provide 
the host with repeatable adaptive seasonal plasticity (Amato 
et  al., 2014a; Alberdi et  al., 2016).

Here, we  present a longitudinal analysis of gut microbiota 
dynamics in two wild wood mouse (Apodemus sylvaticus) 
populations, together with a comparison from a wild-derived 
captive colony of the same species. Wood mice are an ideal 
study system for questions about wild gut microbiome dynamics, 
as they are common and amenable to capture-mark-recapture 
protocols with accurate individual identification. Furthermore, 
a previous study on wood mice in the United Kingdom described 
seasonal shifts in gut microbiota composition, occurring between 
summer and autumn (Maurice et  al., 2015). Here, we  provide 
a comprehensive analysis of variation in gut microbial community 
structure and the factors associated with this variation operating 
at three levels of organisation: across host populations, among 
individuals within a population and within individuals over 
time. We predict that (i) gut communities will be more similar 
within a host population than between host populations, but 
that there will be a small set of “core” taxa consistently identified 
across hosts, (ii) environmental drivers of variation will 
be stronger than host-related factors, (iii) seasonal restructuring 
of the gut microbiota will be  consistent across two wild 
United  Kingdom populations living in woodland habitats, and 
(iv) microbiota composition will be repeatable within individuals 
sampled over time, but the relative strength of inter-vs. intra-
individual variation may fluctuate throughout the year.

MATERIALS AND METHODS

Sample Collection
Rodents were live-trapped using a capture-mark-recapture study 
design in two mixed deciduous woodlands approximately 50 km 
apart in the United  Kingdom: Wytham Woods, Oxfordshire 
(“Wytham”, 51°46’N,1°20’W) and Silwood Park, Berkshire 
(“Silwood”, 51°24’N, 0°38’W). Fieldwork methods were consistent 
across sites, with trapping performed for one night every 2–4 weeks 
across all seasons. In Silwood, trapping occurred on a single 
2.47 ha grid over a 1-year period (November 2014 to December 
2015), while in Wytham trapping took place over a 3-year period 
(October 2015–2018), initially on a 1 ha grid that was then 
expanded to 2.4 ha in October 2017. Wood mice (A. sylvaticus) 
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were the most commonly caught rodent at both sites, with 
yellow-necked mice (Apodemus flavicollis) and bank voles (Myodes 
glareolus) also captured. Small Sherman live traps were baited 
with six peanuts and a slice of apple, with sterile non-absorbent 
cotton wool provided for insulation. Traps were set in alternate 
10 m × 10 m grid cells at dusk and collected at dawn. All newly 
captured rodents were injected subcutaneously with a PIT tag 
for identification purposes, with ear notches used as a back-up 
form of identification. The following information was recorded 
for all captures: species, ID, sex, age (juvenile, sub-adult or 
adult, according to size and pelage characteristics), reproductive 
state (active or inactive according to signs of reproduction such 
as testes size in males, perforation, pregnancy or lactation in 
females), body mass (to the nearest 0.1 g), subcutaneous fat score 
(0–4, measured by palpating the lower spine and hips). All 
animals were released within the 10 m × 10 m grid cell of their 
capture. Faecal samples (approximately 40–300 mg) were collected 
from the bedding material with sterilised tweezers, and frozen 
at −80°C within 10 h of trap collection for molecular work. 
Traps that showed any sign of animal contact (both traps that 
held captured animals and those where an animal had interfered 
with but not triggered it) were washed thoroughly with 20% 
bleach solution between trapping sessions to prevent cross-
contamination. Live-trapping work was conducted with 
institutional ethical approval, and at Wytham under Home Office 
licence PPL-I4C48848E.

Faecal samples were also collected from an outbred, captive 
colony of wood mice housed at the University of Edinburgh, 
and included for comparison to wild populations. This colony 
is thought to have been established over 30 years ago at the 
University of Oxford (Department of Zoology) using wild 
caught mice from the local area (presumed to be Wytham 
Woods, where department members were trapping rodents at 
the time, though this has not been confirmed). Since this 
time, the colony has been bred for several decades, has been 
housed at several different locations, and may have been 
expanded with wild-caught mice from other locations in the 
United Kingdom (Hughes et  al., 2010). Captive wood mice 
included in this study were sampled as part of a diet shift 
experiment carried out in 2017 under Home Office Project 
license 70/8543. Further details about the colony and experiment 
are given in the Supporting Information.

16S rRNA Gene Sequencing
Genomic DNA was extracted from faecal samples using Zymo 
Quick-DNA faecal/soil Microbe 96 (96-well plate format) extraction 
kits, according to manufacturer instructions. A 254 bp region 
of  the bacterial 16S rRNA gene (V4 region) was amplified 
using  primers 515F/806R (Caporaso et  al., 2011; 
Supplementary Table S1). Library preparations followed a two-step 
(tailed-tag) approach with dual-indexing (D’Amore et  al., 2016) 
and sequencing was performed on an Illumina® MiSeq with 
250 bp paired-end reads, at the Centre for Genomic Research 
in Liverpool. Samples were extracted in 17 batches and sequenced 
in five lanes, with some Wytham and colony samples extracted 
and sequenced together, while samples from Silwood were extracted 
and sequenced separately with minor adjustments to the protocol 

(Supporting Information). To avoid further batch effects influencing 
results, wild samples from each trapping session and colony 
samples from each timepoint and animal were evenly distributed 
across extraction plates. Full details of 16S rRNA sequencing 
methods are provided in Supporting Information.

Bioinformatics
Raw sequence data were processed through the DADA2 pipeline 
(v1.6) in R to infer amplicon sequence variants (ASVs; Callahan 
et  al., 2016, 2017). This was done separately for each Miseq 
run, but using identical parameters. In brief, reads were trimmed 
and filtered for quality, ASVs inferred and putative chimeras 
removed before taxonom assignment using the v128 SILVA 
reference database. Full details of the bioinformatics pipeline 
are in Supporting Information. A single phyloseq object 
(McMurdie and Holmes, 2013) containing data from all three 
populations was created for further processing and analyses. 
ASVs taxonomically assigned as chloroplast or mitochondria 
were removed, after which the dataset contained 11,404 ASVs. 
The R package “iNEXT” (Chao et  al., 2014; Hsieh et  al., 2016) 
was used to examine sample completeness and rarefaction 
curves, which showed that sample completeness plateaued at 
approximately 8,000 reads (Supplementary Figure S1). 
Thirty-one samples with read counts below this threshold were 
removed, leaving data from 1,052 samples and 281 mice overall 
(Wytham: n = 448 samples from 178 individuals; Silwood: n = 253 
from 75 individuals; captive colony: n = 351 from 28 individuals), 
with a mean read count of 40,478 (range 8,841–150,932). For 
beta diversity analyses, further taxon filtering was performed 
by retaining only those ASVs with more than one copy in at 
least 1% of samples, to guard against the influence of potential 
PCR or sequencing artefacts, or contaminants. After this 
additional ASV filtering step, the dataset contained 2,662 ASVs.

Statistical Analyses
All R code for the analyses presented here can be found in 
the online Supplementary Material (Supplementary File 2; 
R Core Team, 2021).

Defining Core Taxa
To delimit core taxa, we estimated each ASV’s population-wide 
prevalence as the proportion of samples in which it was detected, 
in a dataset containing one randomly selected sample per 
individual, averaged over 100 iterations. We  also estimated 
each ASV’s within-individual persistence, as the mean proportion 
of samples per repeat-sampled individual it was detected in, 
using data from mice sampled at least three times (n = 57 
mice in Wytham, mean N captures 4.86 ± 1.94 s.d., n = 39 mice in 
Silwood, mean N captures = 5.95 ± 1.95 s.d.).

Alpha-Diversity Analyses
ASV richness was estimated using the R package “breakaway” 
(Willis and Bunge, 2015), using a dataset for which taxon 
filtering was limited to the removal of ASVs assigned as 
chloroplast or mitochondria.
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Beta-Diversity Analyses
ASV read counts were normalised to relative abundance per 
sample before calculating pairwise dissimilarity indices among 
samples (Bray–Curtis dissimilarity; McKnight et  al., 2019), 
which were subsequently used in population-specific principal 
coordinates analysis (PCoA) and permutational analyses of 
variance (PERMANOVA). Weighted and unweighted UniFrac 
distances were used to assess the phylogenetic relatedness 
of the gut microbiota among host populations. To assess the 
decay of within-individual community similarity over time 
(time-decay), we modelled the log-linear change in community 
structure (pairwise Bray–Curtis dissimilarity) as a function 
of the number of days between samples. For this, community 
dissimilarities were converted to similarities (1-dissimilarity) 
and log-transformed. The rate of change at different time 
lags was calculated by dividing the Bray–Curtis dissimilarity 
by the time between sampling points to obtain an average 
rate of change for each time lag (Faith et  al., 2013; Shade 
et al., 2013). To compare inter- and intra-individual variation 
in gut microbiota composition, pairwise dissimilarity values 
were compared across different types of sample pair, using 
Wilcoxon tests with 1,000 permutations: those collected from 
the same individual at different timepoints (“Same mouse”) 
and those collected from different individuals within the same 
trapping session (“Same date”).

To analyse temporal change in microbiota composition, 
generalised additive mixed models (GAMM) were run in package 
“mgcv”, using sample scores along the first axis of a Bray-Curtis 
PCoA (PC1) as the response variable. A cyclic cubic spline was 
fitted for day of the year, fitting an interaction with sampling 
year (October 2015–2016, 2016–2017, and 2017–2018) to model 
within-year seasonal patterns. A number of sample-level host 
and methodological terms were included as covariates (age, sex, 
reproductive status, body mass, body condition, and read count). 
MiSeq run was also fitted as a covariate in analyses for Wytham. 
Animal ID was included as a random factor to control for 
repeated measures. The same model structure was used to assess 
seasonal patterns in microbial richness.

To test the relative effects of host, environmental and 
methodological factors on variation in gut community structure, 
a marginal PERMANOVA was performed using the adonis2 
function in package “vegan” (Oksanen et  al., 2019) with 999 
permutations, on a subset of data including one randomly 
chosen sample per individual, to avoid pseudoreplication. 
Subsequent tests for homogeneity of variance between factor 
levels of significant terms were performed using the betadisper 
function. Since subsetting to one sample per individual decreases 
sample size and power, we also performed a partial redundancy 
analysis (pRDA) on Hellinger-transformed community data, 
using the same explanatory terms as used in the PERMANOVA, 
but with individual ID used as a condition. The marginal 
significance of the explanatory terms were then calculated from 
the reduced model.

To identify bacterial taxa (ASVs) involved in detected trends, 
we used Random Forest models with default parameters (package 
“randomForest”). “IncNodePurity” was used as a measure of 
ASV importance.

RESULTS

Assessing Core Microbes Across 
Populations
Across all three (wild and captive) populations, the gut microbiota 
of wood mice was broadly comparable in terms of proportional 
abundances of high-level taxa, being dominated by the orders 
Lactobacillales, Clostridiales and Bacteroidales (Figure 1A). However, 
a large amount of compositional variation was evident within 
populations (Supplementary Figure S2). At the order level, Wytham 
mice had a slightly higher relative abundance of Bacteroidales, 
while Silwood mice had a slightly higher relative abundance of 
Lactobacillales. There was a large degree of overlap in taxa shared 
between populations at the Phylum level, but as taxonomic  
resolution increased the overlap in shared taxa decreased 
(Supplementary Figure S3). Nine phyla were detected in total, 
eight of which in all populations, while Spirochaetes were only 
found in Wytham and the colony, and Elusimicrobia only in 
Silwood. The majority (74%) of identified bacterial orders were 
common to all populations and similarly 62% of identified genera 
were shared by all three populations, wild and lab 
(Supplementary Figure S3). Interestingly, Wytham and the colony 
shared a large number of ASVs (52.1% of Wytham- and 95% of 
Colony-detected ASVs), while the two wild populations shared no 
exact ASVs (Figure  1B; Supplementary Figure S3). This finding 
was unaltered when taxon filtering was minimal and limited to 
the removal of reads assigned as chloroplast/mitochondria. Differences 
in the proportion of taxa shared by populations were unaltered 
when these comparisons were made using samples sequenced in 
the same vs. different runs (Supplementary Figure S4), indicating 
they are very unlikely to be an artefact of the fact Silwood samples 
were sequenced separately. In addition, the proportion of shared 
ASVs across populations were robust to differences in sample sizes, 
as bootstrapped subsampling produced similar estimates 
(Supplementary Table S2). On average, a pair of mice from Wytham 
and the colony shared 8.4% ASVs (mean Jaccard Index), while 
the mean proportion of shared ASVs within each population was 
slightly higher (Wytham = 11.5%, Colony = 23.2%, Silwood = 18.0%). 
The ASVs common to Wytham and colony mice came from a 
broad range of bacterial families, representative of those observed 
in each population (Supplementary Figure S5). Interestingly, the 
use of phylogenetically-informed community dissimilarity metrics 
altered patterns of population-level differences. Although Wytham 
and Silwood shared no exact ASVs, these two wild populations 
were more similar in composition when using Unweighted UniFrac, 
while colony mice had a more phylogenetically distinct microbiota 
(Figure 1C). The phylogenetically distinct ASVs that are differentially 
present in colony vs wild populations are likely to be rare community 
members, since incorporating relative abundance information (using 
Weighted UniFrac) reduced the extent to which colony mice clustered 
separately from wild mice (Figure  1D).

Assessing Core Microbes Within 
Populations
There were no ASVs shared by all samples within each 
population, i.e., no population-specific “core microbiota”. To 
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explore how we  might define a set of “core” microbiota 
members using a less strict criterion than universal 
colonisation, we  first examined the relationship between 
ASV prevalence across hosts and persistence within them. 
In both wild populations, there was a strong positive 
correlation between the prevalence and persistence of ASVs 
(Spearman’s rank correlation; Wytham: rho = 0.932, p < 0.001, 
Silwood; rho = 0.946, p < 0.001, Supplementary Figure S6). 
ASVs that were both prevalent and persistent (>50% for 
each) formed a taxonomically biased subset, being enriched 
for the order Bacteroidales (and slightly for Lactobacillales) 
compared to the total set of ASVs in each wild population 
(Supplementary Figure S6).

Defining core taxa using both prevalence and abundance 
thresholds (present in at least 60% samples at 0.1% relative 
abundance or more) identified a similar set of ASVs in each 
population. In Wytham, this gave a set of 23 core ASVs, 

belonging to Muribaculaceae (n = 16, 69%), Peptococcaceae 
(n = 1), Ruminococcaeae (n = 3) and Lactobacillaceae (n = 3). 
Only two of these “core” ASVs could be  identified to genus 
level and belonged to Lactobacillus and Ruminiclostridium 9, 
respectively. Using the same core definition, the Silwood 
population contained 21 core ASVs, belonging largely to the 
Muribaculaceae (n = 11) as well as Ruminococcaceae (n = 4), 
Lactobacillaceae (n = 4), Helicobacteraceae (n = 1) and 
Coriobacteraceae (n = 1).

Predictors of Gut Microbiota Composition
In both wild populations, month was the strongest predictor 
of gut microbiota composition, explaining approximately twice 
as much variation as all host factors combined in marginal 
PERMANOVAs (Table  1). Although population age structure 
varies seasonally (Supplementary Figure S7), the seasonal effect 
detected here is independent of this, as host age was controlled 

A B

C D

FIGURE 1 | Gut microbiota composition across populations of wood mice. (A) Comparison of microbiota composition at the Order level in faecal samples from a 
captive colony (n = 351) and two wild populations, Wytham (n = 448) and Silwood (n = 253). Read abundances were summed across samples per population and 
their relative proportions are coloured by bacterial Order. Samples from all populations were used in principal coordinates analysis based on (B) Jaccard, 
(C) Uniweighted UniFrac, and (D) Weighted UniFrac distances.
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for in the model (Table 1). Microbiota composition also differed 
between years in Wytham. Weaker effects of host factors (body 
mass and reproductive status) were detected, but each in only 
one of the two populations (Table 1). Dispersion tests indicated 
that the effect of year may have been influenced by dispersion 
differences in Wytham while the effect of month may also 
contain some influence of dispersion in Silwood (Table  1). 
Results from the pRDA on Bray–Curtis dissimilarity agreed 
with those from PERMANOVAs, in that month and year 
strongly predicted gut microbiota variation in both wild 
populations, while measured host factors did not 
(Supplementary Table S3). However, the pRDA also revealed 
that individual ID (as a condition) explained around half the 
total variation in each dataset (55.2% in Wytham and 48.1% 
in Silwood).

Repeatable Seasonal Restructuring of the 
Microbiota
The major axis of microbiota compositional variation (PC1 
from a Bray-Curtis PCoA) fluctuated strongly between July, 
October and February, and this seasonal pattern was 
remarkably consistent across populations, explaining 48-55% 
variance in PC1 (Figures  2A,C; Supplementary Table S4). 
PC1 was not significantly predicted by any other host or 
methodological fixed effects apart from MiSeq run 
(Supplementary Table S4). In both populations, seasonal 
changes in PC1 within repeat-sampled individuals typically 
tracked population-level seasonal shifts, with few exceptions 
(Figures  2B,D; paired t-tests for Wytham June-August vs. 
September-November; t = −5.152, p < 0.001, n = 14, September-
November vs. January-March; t = 2.676, p = 0.015, n = 20, for 
Silwood June-August vs. September-November; t = −3.23, 
p = 0.006, n = 16, September-November vs. January-March; 
t = 0.250, p = 0.805, n = 26). Of the few individuals that were 
not consistent with the population-level patterns, there were 
no unique or unusual observations in the measured host 

traits, though repeat captures were too few between these 
months to formally test factors associated with individual 
differences in the direction or magnitude of seasonal change 
in PC1. The pattern of seasonal change in microbiota 
composition was similar when using PC1 from a PCoA 
based on Jaccard distance (a presence/absence based distance 
metric) as the response, although in Silwood the Jaccard-
based PC1 explained a lower proportion of gut community 
variation than Bray-Curtis PC1 (Supplementary Figure S8). 
This suggests that in Silwood, gut microbiota seasonality 
consists more of changes in relative abundance than turnover, 
as can be  seen in Sankey plots showing the flux of ASVs 
between seasons (Supplementary Figure S9).

Despite these prominent seasonal shifts in microbiota 
composition, the relative abundances of bacterial families did  not 
change dramatically across the year (Supplementary Figure S10). 
Exploratory analyses also showed that while in Silwood the second 
and third PCoA axes showed some temporal fluctuations during 
the same periods that PC1 shifted (oscillation between July and 
December), in Wytham other PCoA axes besides PC1 did not 
show strong seasonal variation (Supplementary Figure S11).

Seasonal changes in mean gut microbiota richness were 
weaker compared to seasonal changes in composition. In 
models where richness was the response, day of the year 
was non-significant for Wytham mice, and in Silwood was 
significant though explained a relatively small amount of 
variation (14%) compared to similar analyses of composition 
(Supplementary Figure S12, Wytham: approximate 
significance of smoothed date term F = 0.00, edf < 0.001, 
p = 0.516, adjusted R2 = 0.09, n = 328; Silwood: approximate 
significance of smoothed date term; F = 1.767, edf = 4.722, 
p < 0.001, adjusted R2 = 0.14, n = 185).

We used random forest regressions to explore which 
bacterial taxa might drive the consistent seasonal changes 
in PC1 seen in each wild population. For both populations, 
the top six ASVs predicting PC1 values belonged to three 
bacterial families: Lactobacillaceae, Muribaculaceae and 

TABLE 1 | Predictors of microbiota composition in two populations of wild mice.

Variable
Wytham Silwood

df F p Partial R2 df F p Partial R2

Read count 1 1.338 0.104 0.009 1 0.629 0.895 0.007
MiSeq run 3 1.460 0.006 0.030
Month 11 1.758 0.001 0.133 10 1.584 0.001‡ 0.187
Year 3 2.591 0.001† 0.053
Sex: reproductive status 1 0.840 0.699 0.006 1 0.835 0.628 0.009
Sex 1 0.908 0.598 0.006 1 0.786 0.684 0.009
Reproductive status 1 1.320 0.126 0.009 1 1.731 0.066 0.020
Age 2 1.001 0.428 0.014 2 0.930 0.563 0.022
Body mass 1 1.382 0.065 0.010 1 1.018 0.382 0.012
Body condition 4 0.944 0.642 0.026 4 0.928 0.615 0.044

Results are shown from marginal PERMANOVAs on Bray–Curtis dissimilarity values. One randomly selected sample per individual was included in each model (Wytham; n = 128 and 
Silwood; n = 75). Values of p < 0.05 are in bold. For significant terms (factors only), tests for multivariate homogeneity of group dispersions were carried out; † and ‡ indicate terms for 
which dispersion tests indicated significant differences in dispersion among groups, with p = 0.003. and p = 0.01. respectively. The interaction between sex and reproductive status 
was fitted in a separate model including this interaction term, results for all other terms are from a model without this interaction term.
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Ruminococcaceae, with the exact order of importance for 
these families differing slightly between populations 
(Figure  3). In Wytham, the  model  explained 92.11% of 
variation in PC1 values, and the most important ASVs 
predicting PC1 belonged to Ruminococcaceae, followed by 
Muribaculaceae, Lactobacillaceae, and Bifidobacteriaceae 
(Figure  3A). In Silwood, the model explained 93.31% 
in  PC1  and all top four ASVs predicting PC1 belonged 
to  Lactobacillaceae, followed by ASVs belonging to 
Muribaculaceae and Ruminococcaceae (Figure 3B). Although 
the exact order of importance differed slightly between host 
populations, the bacterial families of these top six ASVs 
showed consistent seasonal patterns across the two host 
populations. Ruminococcaceae ASVs increased in September-
November compared to other times of the year, while 
Muribaculaceae decreased and Lactobacillaceae ASVs showed 
variable patterns in both populations (Figures  3C,D). The 
bacterial ASVs most strongly associated with variation along 

Silwood PC2 and PC3 belonged to Lactobacillaceae, 
Ruminococcaceae, Lachnospiraceae and Muribaculaceae 
(Supplementary Figure S13).

Individuality and Seasonal Convergence in 
the Gut Microbiota
Despite strong and repeatable seasonal shifts in average gut 
microbiota composition (Figure  2), we  also identified a large 
degree of individuality in the microbiota of wild mice. In 
each wild population, individuals were, on average, more 
similar in gut microbiota composition (Bray–Curtis 
dissimilarity) to themselves at other time-points than to other 
mice sampled on the same day (Figure 4A; permutation tests; 
Wytham observed U-statistic = 4,222,156, p < 0.001; Silwood 
observed U-statistic = 1,802,548, p < 0.001). This signal of 
individuality decayed with increasing sampling interval 
(Figure  4B; log-linear model for Wytham; F = 107.6(1268), 

A B

C D

FIGURE 2 | Seasonal restructuring of the wood mouse gut microbiota in two wild populations. (A,C) Seasonal dynamics in population-level PC1 value (the position 
of samples along the first axis of a principal coordinates analysis on Bray–Curtis dissimilarity) in (A) Wytham and (C) Silwood show compositional change over time. 
Data from Wytham mice come from a 3-year period (October 2015–2018), while Silwood mice were sampled for 1 year (November 2014–2015). Predicted values 
and 95% CIs for the smoothed day of the year from generalised additive mixed models (GAMMs) are plotted along with raw PC1 values. (B,D) Changes in PC1 
within repeat-sampled individual mice typically track the population-level seasonal shifts in both populations (coloured lines), with some exceptions (grey lines).
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p < 0.001, adjusted R2 = 0.078, Silwood; F = 17.51(1,918), p < 0.001, 
adjusted R2 = 0.018), with the rate of decay highest at short 
time intervals and less strong as the sampling interval increased 
(Supplementary Table S5).

Although there was a strong signal of individuality overall 
(intra-individual variation is on average lower than inter-
individual variation), this does not account for temporal 
dynamics in community composition. We  therefore also 
assessed seasonal changes in inter-individual variation (Bray–
Curtis dissimilarity) to determine whether the signal of 
individuality remains strong throughout the year. In general, 
there tended to be more convergent gut microbiotas between 
individuals in winter but more inter-individual variation in 
the summer months (Figure  4C). Inter-individual variation 
remained higher than the average within-individual variation 
for most of the year (Figure  4C), showing that the signal 

of individuality remains consistently strong. However, in 
Wytham, the seasonal convergence of gut microbiota 
composition seen in late winter/early spring was sufficiently 
strong to briefly override the signal of individuality 
(Figure  4C); mice sampled in February were more similar 
to each other than they were to themselves at other times 
of the year (permutation test; observed U-statistic = 223,084, 
p < 0.001). A weaker convergence was observed in the Silwood 
population at this same time of year (February), which 
nullified the signal of individuality, i.e., mice caught at this 
time were no more similar to themselves across the year 
than they were to others sampled simultaneously (permutation 
test; observed U-statistic = 33,916, p = 0.712). This reduction 
in inter-individual variation was observed again in October 
in Silwood (permutation test; observed U-statistic = 30,240, 
p = 0.046) but not in Wytham (Figure  4C).

A B

C D

FIGURE 3 | The importance of bacterial taxa in driving consistent seasonal patterns in PC1 (first axis of a Bray-Curtis PCoA) in two wild wood mouse populations. 
Random forest regressions (RFR) were used to identify bacterial amplicon sequence variants (ASVs) important for predicting PC1, which has a strong seasonal 
signal, in each population. IncNodePurity” was used as a measure of feature importance in models, and the top 30 ASVs those with the (highest IncNodePurity) are 
shown for each population (A) Wytham and (B) Silwood, coloured by the bacterial family they belong to. The relative abundance (mean ± SE) of the top six ASVs in 
each population, (C) Wytham and (D) Silwood, are shown in September-November (S-N) compared to all other months (O).

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Marsh et al. Wood Mouse Gut Microbiota Seasonality

Frontiers in Microbiology | www.frontiersin.org 9 April 2022 | Volume 13 | Article 809735

A

B

C

FIGURE 4 | Intra- and inter-individual variation in gut community structure varies with time in two wild populations. (A) Pairwise Bray–Curtis dissimilarity 
between samples from the same host at different times (same mouse) and those taken from different hosts on the same day (same date) were used to compare 
intra- and inter-individual variation in Wytham (blue) and Silwood (green) wild populations. Significant differences between groups were tested with permutational 
Wilcoxon tests and are denoted by asterisks (***; p < 0.001). (B) Intra-individual variation decays with sampling interval. Community similarity (1-Bray–Curtis 
dissimilarity) between pairs of samples collected from the same individual host (in mice that were captured three or more times, Wytham; n = 277 samples from 
57 hosts and Silwood; n = 197 samples from 39 hosts) are plotted against the sampling interval. Community similarity is log-transformed and the relationship 
fitted using a log-linear model. (C) Inter-individual variation across the year was visualised by plotting the Bray–Curtis dissimilarity between individuals sampled in 
the same trapping session, with a loess smoothing line for each population. The mean (±SE) intra-individual Bray–Curtis dissimilarity per population is shown as 
a dashed reference line in red.
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DISCUSSION

Here we  provide an in-depth examination of natural variation 
in the gut microbiota of a wild mammalian host, the wood 
mouse, using detailed longitudinal analyses from multiple 
populations and years. We  found no universal core microbial 
community (shared by all members of the species) when 
considering bacterial ASVs, genera or families across all 
populations. The proportion of bacterial taxa shared between 
host populations decreased with increasing taxonomic. At the 
finest resolution of ASVs there was a high degree of population-
specificity in the taxa identified, suggesting high turnover in 
the species/strains present even between populations ~50 km 
apart. Geographic variation in gut microbial communities has 
been observed in a number of host species, with processes 
such as differences in diet and/or host genetics (Smith et  al., 
2015; Goertz et  al., 2019; Suzuki et  al., 2019), environmental 
differences such as soil properties (Grieneisen et  al., 2019) or 
ecological drift (Lankau et  al., 2012; Linnenbrink et  al., 2013; 
Stothart et  al., 2020) cited as drivers of this variation. In 
contrast, the captive colony of wood mice retained approximately 
half of the diversity of the wild population from which it 
likely originated, indicating a slow rate of taxon loss over time 
in captivity with minimal input of new microbes, as has been 
observed in other mouse systems (Kohl and Dearing, 2014; 
Sonnenburg et  al., 2016). The degree of ASV sharing between 
the wild and captive populations studied here could be  driven 
either by the degree of host or microbial genetic divergence 
between populations (highest between the two wild populations, 
but lower between the colony and Wytham), or by variation 
in of environmental microbial input, which is high in wild 
populations but limited in captivity.

Associations between microbiota structure and host body 
mass (Turnbaugh et  al., 2006; Sommer et  al., 2016), age 
(Degnan et  al., 2012; Bennett et  al., 2016) and reproductive 
status (Amato et  al., 2014b) have been detected previously. 
However, here we  show that sampling month remains a 
strong predictor of microbiota variation after accounting 
for these intrinsic host factors, and seasonality is therefore 
likely driven by external factors in this system. These seasonal 
microbiota changes were much stronger than any host-
associated effects examined, with sampling month explaining 
more than twice the variation in community structure than 
any other variable tested, and more than all host-related 
variables combined. This suggests that associations with host 
factors are relatively weak compared to external drivers of 
gut microbiota variation, in line with studies on other wild 
animal populations (Ren et  al., 2017; Goertz et  al., 2019) 
and humans (Rothschild et  al., 2018).

By sampling with high temporal resolution throughout 
multiple years, we  detected a strong seasonal oscillation in 
microbiota structure that consistently occurred between July 
and February. This seasonal shift occurred independently of 
host age, sex or reproductive status, and was also observed 
within individuals. The timing and form of this seasonal 
microbiota restructuring was remarkably consistent across 
both populations and all years examined, and strongly resembled 

patterns detected in a 2-year study of a separate 
United  Kingdom wood mouse population (Maurice et  al., 
2015). Other studies in wild animals have similarly reported 
a dominant role of season in restructuring the gut microbiota 
compared to host factors (Kobayashi et  al., 2006; Williams 
et  al., 2013; Amato et  al., 2014a; Fogel, 2015; Maurice et  al., 
2015; Sun et  al., 2016; Ren et  al., 2017; Springer et  al., 2017; 
Liu et al., 2019). However, this is the first time such seasonality 
has been shown to have such a consistent pattern across 
multiple populations and years. The striking repeatability of 
this seasonal pattern across populations suggests common 
drivers are at play. These could include predictable seasonal 
shifts in diet, parasitic infection, host physiology or social 
behaviour (David et al., 2014; Kreisinger et al., 2015; Perofsky 
et  al., 2017). Hibernation has been linked to restructuring 
of the gut microbiota in ground squirrels and brown bears 
(Carey et  al., 2013; Sommer et  al., 2016). Although wood 
mice do not hibernate, they can enter short periods of torpor 
during colder months, with decreased body temperature and 
metabolic activity. However, this explanation of seasonal 
restructuring in the wood mouse gut microbiota is unlikely, 
as the major seasonal restructuring begins in summer. Therefore, 
seasonal shifts in diet are a strong candidate mechanism. 
Wood mice are omnivorous species that in woodland habitats 
rely on nuts that mature in summer and are cached for 
consumption until the following spring, such that their diet 
shows a strong increase in this material during the autumn/
winter (Watts, 1968). This predictable influx of nuts to the 
diet could be  what drives consistent seasonal restructuring 
across populations and years in woodland habitats, a hypothesis 
that could be tested in this system through direct measurement 
of seasonal diet-microbiota links.

Despite strong seasonal changes in the gut microbiota 
that were observed consistently across individuals and 
populations, a high degree of individuality in the gut 
microbiota was still detectable. On average, individuals were 
more similar to themselves over time than to other individuals 
sampled simultaneously. This is in contrast to recent findings 
from group-living primates, which showed spatiotemporal 
dynamics at the group rather than individual level (Perofsky 
et al., 2021). Such individuality could be explained by genetic 
differences (Benson et al., 2010), or persistent environmental 
or behavioural differences, for example, in habitat, dietary 
preferences or parasite burden. This individuality signal 
weakened as sampling interval increased, suggesting that 
temporal changes (e.g., environmental or aging-related) can 
affect the strength of this individual gut microbial signature 
(Faith et  al., 2013). We  also found seasonal variation in 
the degree of microbiota similarity between hosts, with the 
gut microbiota being more similar among mice caught in 
winter and early spring. This convergence of gut microbiotas 
in February-March was sufficiently strong to reduce the 
signal of individuality and even temporarily override it within 
the Wytham population. This could be  due to a more 
homogenous diet at this time of year, when wood mice are 
thought to eat mainly cached seeds and nuts, compared to 
later spring/summer, when a more diverse array of both 
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plant and animal items is available (Watts, 1968). Alternatively, 
seasonal convergence could be  driven by seasonal change 
in population density and/or social interactions, which could 
influence rates or patterns of microbial transmission among 
hosts (Wolton, 1985; Raulo et al., 2021). Seasonal convergence 
between individual hosts in relation to the signal of 
individuality in the gut microbiota has not been previously 
examined. However, this could have consequences for the 
host population in terms of how well the gut microbiota 
can provide resilience to perturbations such as altered food 
availability or pathogen invasion at different times of the year.

The repeatability of seasonal microbiota dynamics across 
populations observed here is particularly striking given these 
two host populations shared no bacterial ASVs in common, 
although the ASVs they possessed were phylogenetically 
similar. Some, but not all, of the higher order taxa associated 
with seasonal changes were also consistent across populations. 
For instance, Lactobacillaceae ASVs were implicated in both 
Wytham and Silwood, consistent with previous work on 
wood mice (Maurice et  al., 2015), while members of 
Ruminococcaceae, Muribaculaceae, Bifidobacteriaceae and 
Lachnospiraceae were important in Wytham only. Thus across 
populations, different bacterial taxa appear to respond 
synchronously to the same seasonal change. This suggests 
a level of functional redundancy in the gut microbial taxa 
of wood mice that respond seasonally to the same stimuli, 
at broad geographical scales. Convergence of gut microbiota 
composition or functional capability linked to environmental 
conditions has been shown in primates and humans (Gomez 
et al., 2019; Sharma et al., 2020), myrmecophagous mammals 
(Delsuc et  al., 2014) and in yaks and Tibetan sheep (Zhang 
et  al., 2016; Guo et  al., 2021). Further functional studies, 
for example, using metagenomic or metatranscriptomic 
approaches, would be  valuable to illuminate what seasonal 
functions these microbes might perform for the wood mouse 
host, and the potential significance of such microbiome 
shifts in providing hosts living in variable environments 
with adaptive seasonal plasticity.
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