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Abstract. Clear cell renal cell carcinoma (ccRCC) is the 
most common type of kidney cancer associated with poor 
prognosis, and accounts for the majority of RCC‑related 
deaths. The lack of comprehensive diagnostic and prognostic 
biomarkers has limited further understanding of the patho‑
physiology of ccRCC. Super‑enhancers (SEs) are congregated 
enhancer clusters that have a key role in tumor processes such 
as epithelial‑mesenchymal transition, metabolic reprogram‑
ming, immune escape and resistance to apoptosis. RCC may 
also be immunogenic and sensitive to immunotherapy. In 
the present study, an Arraystar human SE‑long non‑coding 
RNA (lncRNA) microarray was first employed to profile the 
differentially expressed SE‑lncRNAs and mRNAs in 5 paired 
ccRCC and peritumoral tissues and to identify SE‑related 
genes. The overlap of these genes with immune genes was then 
determined to identify SE‑related immune genes. A model for 
predicting clinical prognosis and response to immunotherapy 
was built following the comprehensive analysis of a ccRCC gene 

expression dataset from The Cancer Genome Atlas (TCGA) 
database. The patients from TCGA were divided into high‑ 
and low‑risk groups based on the median score derived from 
the risk model, and the Kaplan‑Meier survival analysis showed 
that the low‑risk group had a higher survival probability. In 
addition, according to the receiver operating characteristic 
curve analysis, the risk model had more advantages than other 
clinical factors in predicting the overall survival (OS) rate of 
patients with ccRCC. Using this model, it was demonstrated 
that the high‑risk group had a more robust immune response. 
Furthermore, 61 potential drugs with half‑maximal inhibitory 
concentration values that differed significantly between the 
two patient groups were screened to investigate potential drug 
treatment of ccRCC. In summary, the present study provided a 
novel index for predicting the survival probability of patients 
with ccRCC and may provide some insights into the mecha‑
nisms through which SE‑related immune genes influence the 
diagnosis, prognosis and potential treatment drugs of ccRCC.

Introduction

Clear cell renal cell carcinoma (ccRCC), the most common 
renal malignancy, originates from renal tubular epithelial 
cells. ccRCC is the most common histological subtype of 
RCC, accounting for 80‑90% of all RCC cases (1). In addition, 
patients with ccRCC have a poor prognosis. Surgical treatment 
is effective for patients with ccRCC at an early stage; however, 
recurrence and metastasis may occur in ≤30% of patients 
following radical surgery, resulting in poor prognosis (2).

Enhancers are DNA fragments that normally range from 
a few hundred to a few thousand base pairs in length and 
are typically occupied by several transcription factors (3,4). 
In addition to enhancers, large stretches of tightly linked 
enhancers, known as super‑enhancers (SEs), exist in the 
genome. SEs serve as a ‘platform’ for controlling the spatiotem‑
poral expression of genes by converging internal and external 
environmental signaling pathways (5). Studies have identified 
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close relationships between SEs and tumor processes such as 
epithelial‑mesenchymal transition (6), metabolic reprogram‑
ming (7), immune escape (8) and resistance to apoptosis (9).

The treatment for RCC has rapidly advanced in recent years. 
Studies have indicated that RCC may be immunogenic (10) and 
sensitive to immunotherapy (11). Immunotherapy and targeted 
therapy have broadened the options for treating ccRCC; 
however, some patients with ccRCC first show symptoms after 
the cancer cells have metastasized, and these patients often 
have a 5‑year survival rate of <20% (12). Studies have found 
that tumor cells upregulate the expression of programmed 
death‑ligand 1 (PD‑L1) during transcription and translation, 
and that there is an important SE, PD‑L1/L2‑SE, between the 
coding regions of PD‑L1 and PD‑L2 (13,14). PD‑L1/L2‑SE 
promotes the expression of PD‑L1 and PD‑L2, achieving 
immune escape by inhibiting CD8+ T cell activation; by contrast, 
its absence can cause tumor cells to lose their immune escape 
ability and become sensitive to T cell killing (15). This mecha‑
nism has been found in numerous tumor types, such as thyroid 
papillary carcinoma and gastric, lung and breast cancer (16). 
In addition, a study has indicated that treatment of colorectal 
cancer cell lines with the SE inhibitors, JQ‑1 and ibet‑151, 
could lead to inhibition of cell proliferation and downregula‑
tion of interleukin‑20 receptor α (IL‑20RA) expression (17). 
Following knockdown of the IL‑20RA gene driven by SEs, 
the ability of colorectal cancer cells to proliferate, migrate and 
invade in vitro was markedly reduced. These findings suggest 
that SE‑related IL‑20RA may inhibit the immune response in 
colorectal cancer, and that a close relationship exists between 
SEs and immune escape. Therefore, exploring the relationship 
between SEs and immune genes may provide novel ideas for 
ccRCC immunotherapy.

In the present study, an Arraystar human SE‑long 
non‑coding RNA (lncRNA) microarray was first performed 
using paired ccRCC and peritumoral tissues to identify 
SE‑related genes. The overlap of these genes with immune 
genes was determined to identify SE‑related immune genes. A 
model for predicting clinical prognosis and response to immu‑
notherapy was built following the comprehensive analysis of 
a ccRCC gene expression dataset from The Cancer Genome 
Atlas (TCGA) database to identify SE‑related immune genes. 
In addition, based on the constructed risk model, tumor 
immune response, mutation load and drug sensitivity in 
ccRCC were explored. These findings may provide a potential 
strategy for the prognostic evaluation and treatment of patients 
with ccRCC.

Materials and methods

Patients and tissue samples. The present study was approved by 
The Ethics Committee of the First Affiliated Hospital of Harbin 
Medical University (Harbin, China; approval no. 201734). The 
research was conducted in accordance with the Declaration 
of Helsinki. This study included a total of 5 patients with 
ccRCC (2 female patients and 3 male patients, aged between 
45 and 60 years old). All 5 patients were first diagnosed by 
postoperative pathology. Written informed consent was 
obtained from all patients. A total of 5 pairs of ccRCC tissues 
and adjacent cancerous tissues were obtained. All of the tumor 
and adjacent normal tissues were collected from surgically 

removed specimens at The First Affiliated Hospital of Harbin 
Medical University in April and May 2017. The samples were 
snap frozen in liquid nitrogen and then stored at ‑80˚C until 
analysis.

Microarray analysis and the collection of public data. The 
microarray and bioinformatic analyses of the 5 patients with 
ccRCC were conducted by Arraystar, Inc. Sample labeling and 
array hybridization were performed according to the Agilent 
One‑Color Microarray‑Based Gene Expression Analysis 
protocol (Agilent Technologies, Inc) with minor modifica‑
tions. Briefly, mRNA was purified from total RNA following 
the removal of rRNA using an mRNA‑ONLY™ Eukaryotic 
mRNA Isolation Kit (RNeasy Mini Kit; cat. no. 74104; 
Qiagen, Inc.). Next, each sample was amplified and tran‑
scribed into fluorescent cRNA along the entire length of the 
transcripts without a 3' bias using a random priming method 
at 4˚C and the Arraystar Flash RNA Labeling Kit (Arraystar 
Inc.). The labeled cRNAs were purified using an RNeasy Mini 
Kit (Qiagen, Inc.). The concentration and specific activity 
of the labeled cRNAs (pmol Cy3/µg cRNA) were measured 
using a NanoDrop ND‑1000. A total of 50 µl hybridization 
solution was dispensed into the gasket slide and assembled 
to the lncRNA expression microarray slide (Agilent Gene 
Expression Hybridization Kit (cat. no. 5188‑5242; Agilent 
Technologies, Inc.). The slides were incubated for 17 h at 
65˚C in an Agilent Hybridization Oven. The hybridized 
arrays were washed with Milli‑Q water and scanned using the 
Agilent G2505C DNA Microarray Scanner. Agilent Feature 
Extraction software (version 11.0.1.1; Agilent Technologies, 
Inc.) was used to analyze the acquired array images. Quantile 
normalization and subsequent data processing were performed 
using the GeneSpring GX v12.1 software package (Agilent 
Technologies, Inc.). Results with |Log2 fold change|≥2.0 
and P≤0.05 were considered as differentially expressed 
SE‑lncRNAs and mRNAs. The resulting SE‑lncRNA micro‑
array data were deposited in the Gene Expression Omnibus 
database (accession no. GSE249053).

Data on immune genes including gene names, chromo‑
somal location and classification, were retrieved from the 
IMMPORT database (https://www.immport.org/home). 
The transcriptome RNA‑sequencing, clinical and mutation 
data of patients with ccRCC were downloaded from TCGA 
(https://portal.gdc.cancer.gov), and the public data were 
obtained on November 23, 2022. R software (version 4.2.2; 
https://www.r‑project.org/) and Bioconductor packages 
(http://www. bioconductor.org/) were used for data analysis. 
The workflow of the present study is shown in Fig. 1.

Identification of immune genes associated with SEs. A total of 
1,501 differentially expressed SE‑related RNAs were screened 
using microarray analysis. In addition, 2,483 immune‑related 
genes were obtained from the IMMPORT database. By 
intersecting these two datasets, 112 overlapping genes 
were identified as SE‑related immune genes. Subsequently, 
univariate Cox regression analysis of overall survival (OS) 
was performed to screen for SE‑related immune genes with 
prognostic value using TCGA data. Finally, 43 SE‑related 
immune genes were identified which were significantly asso‑
ciated with the prognosis of patients with ccRCC.
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Construction of a risk model using SE‑related immune 
genes. The sorted data from TCGA were randomly divided 
into training and testing sets. Multivariate Cox regression 
analysis was performed using the training set, which led to 
the identification of 6 SE‑related immune genes. The risk 
model was constructed according to the degree of expression 
and coefficient of these 6 genes, and was termed ‘SIRM’. The 
risk score was calculated using the following formula: Risk 
score = expr (RNA1) x coef (RNA1) + expr (RNA2) x coef 
(RNA2) +……+ expr (RNAn) x coef (RNAn), where expr 
indicates gene expression and coef indicated coefficient. The 
model was applied to every sample in the training and testing 
datasets, and the median risk score value was set as the cut 
off; thus, samples in both datasets were divided into low‑ and 
high‑risk subgroups.

Principal component analysis (PCA). PCA can effectively 
reduce the dimensions of high‑dimensional data and visualize 
grouping (18). PCA was conducted based on the 6 genes used 
to build the risk model. PCA was performed on whole gene 
expression profiles, SE‑related immune genes and risk models.

Kaplan‑Meier survival analysis and independence of the 
SIRM model. The prognosis of patients was scored using 
the risk model. Based on the median risk score, patients 

with ccRCC were divided into high‑ and low‑risk groups. 
Kaplan‑Meier survival analysis was performed to evaluate 
differences in OS between the high‑ and low‑risk groups using 
the R packages, ‘survMiner’ (version 0.4.9) and ‘Survival’ 
(version 3.4.0). Both groups were analyzed using univariate 
and multivariate Cox regression to determine whether the 
prognostic pattern was an independent variable based on age, 
sex, stage and grade (19).

Preliminary research on tumor mutation burden (TMB) and 
immunotherapy. The mutation data obtained from TCGA 
were processed and calculated using the R package, ‘maftools’ 
(version 2.14.0). To evaluate the gene mutation level in ccRCC, 
TMB was determined according to somatic mutation data 
from TCGA database. The Tumor Immune Dysfunction and 
Exclusion (TIDE) algorithm was employed to predict the 
possibility of an immunotherapy response (20).

Predicting OS by building a nomogram. To predict 1‑, 3‑ and 
5‑year OS, a nomogram with predictive ability was estab‑
lished using the R packages, ‘Regplot’ (version 1.1), ‘Survival’ 
(version 3.4.0) and ‘Rms’ (version 6.3.0). Subsequently, to 
show consistency between the results of practical application 
and risk model prediction, correction curves based on the 
Hosmer‑Lemeshow test were chosen.

Figure 1. The workflow of the present study. SEs, super‑enhancers; OS, overall survival; TCGA, The Cancer Genome Atlas; PFS, progression‑free survival; 
GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Gene ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analysis of SE‑related 
immune genes. To explore the biological properties of 
SE‑related immune genes, GO and KEGG enrichment 
analysis were conducted using the R package, ‘clusterprofiler’ 
(version 4.6.0).

Investigation of SIRM‑targeting molecules for clinical appli‑
cation. To explore potential therapeutic drugs for the treatment 
of patients with ccRCC, the half‑maximal inhibitory concen‑
tration (IC50) of drugs from the Genomics of Drug Sensitivity 
in Cancer (GDSC) website (https://www.cancerrxgene.
org/) and ccRCC data were calculated using the R package, 
‘pRRophetic’.

Statistical analysis. Data processing and bioinformatics analysis 
were conducted using R (version 4.2.2; https://www.r‑project.
org/) and Perl Data Language (https://www.perl.org/). The 

Wilcoxon signed‑rank test was performed to compare the 
indicators of ccRCC in tissue and control samples. |Pearson 
R|>0.4. P<0.05 was considered to indicate a statistically 
significant difference.

Results

A constructed risk model based on SE‑related immune genes 
can predict the prognosis of patients with ccRCC. In the 
present study, a total of 112 differentially expressed genes 
were identified as SE‑related immune genes and subsequently 
included in a univariate Cox regression analysis. The results 
indicated that 43 differentially expressed SE‑related immune 
genes were significantly associated with OS (Fig. 2A). Then 
Lasso‑penalized Cox regression was performed using the 
43 genes to construct the risk model. Finally, 6 SE‑related 
immune genes were found to be significantly associated 
with OS (Table I) and were used to construct the risk model 

Figure 2. Risk model. (A) A total of 43 SE‑related immune genes were identified by univariate regression analysis. (B) SE‑related immune genes with LASSO 
coefficients associated with overall survival. (C) SE‑related immune genes were combined with LASSO regression and cross‑validation was performed. SE, 
super‑enhancer.
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(Fig. 2B and C), with risk score=0.394961526106691 x expr[e
rythropoietin receptor (EPOR)] +0.766612172033089 x expr[
BH3 interacting domain death agonist (BID)] +0.5086702853
09477 x expr[γ‑interferon‑inducible lysosomal thiol reductase 
(IFI30)] +0.180571536803486 x expr(ISG15) ‑0.28342437903
2887 x expr[platelet derived growth factor D (PDGFD)] ‑0.546
04544798391 x expr[XC motif chemokine receptor 1 (XCR1)].

Kaplan‑Meier survival analysis was conducted using the 
whole, training and testing sets. The results demonstrated 
that the low‑risk subgroup had a longer survival time than 
the high‑risk subgroup, and the mortality was higher in the 
high‑risk subgroup compared with the low‑risk subgroup 
(Fig. 3). Regarding the OS of the whole set, the low‑risk 
subgroup had a significantly longer OS than the high‑risk 
subgroup (P<0.001; Fig. 3A‑1). As the risk score increases, 
the mortality rate of patients with ccRCC also increases 
(P<0.001; Fig. 3A‑2 and A‑3). Consistently, in the training 
and testing sets, the OS in the high‑risk subgroup was shorter 
than the low‑risk subgroup (P<0.001; Fig. 3B‑1 and C‑1). 
And the mortality rate also increases with the risk score 
increases in the training and testing sets. The distribution of 
the vital status and survival time of the patients with ccRCC 
according to the risk score in the training set are displayed in 
Fig. 3B‑2 and B‑3; meanwhile, the vital status and survival 
time of the testing set are shown in Fig. 3C‑2 and C‑3. In 
addition, a similar pattern was observed in the heatmaps of 
the 6 SE‑related immune genes in the whole, training and 
testing sets. Four genes with positive coefficients are highly 
expressed in the high‑risk group, while two genes with nega‑
tive coefficients are highly expressed in the low‑risk group 
(Fig. 3A‑4, B‑4 and C‑4).

High‑risk group has a worse prognosis and pathological 
characteristics than the low‑risk group. The high‑risk group 
had a lower progression‑free survival rate than the low‑risk 
group (Fig. 4A). The survival probability based on tumor stage 
was analyzed to verify the validity of the model in the context 
of other variables. The results revealed that the high‑risk group 
had a decreased OS rate compared with the low‑risk group 
(Fig. 4B and C). These outcomes confirmed that the model 
could be applied to various clinical factors.

PCA indicates that the high‑ and low‑risk groups can be 
distinguished by the 6 SE‑related immune genes of SIRM. 
To verify the grouping ability of SIRM, PCA was conducted 
according to the expression of the whole genes, SE‑related 
immune genes and the 6 SE‑related immune genes of the 
risk model (Fig. 5A‑C, respectively). The distributions of the 
high‑ and low‑risk groups were distinguishable and relatively 
convergent (Fig. 5A and B). However, the results obtained 
using SIRM revealed that patients in the high‑ and low‑risk 
groups were significantly distinguished (Fig. 5C), indicating 
that the 6 SE‑related immune genes used to construct the risk 
model were able to distinguished high‑ and low‑risk patients.

High‑risk group has a higher TMB and a more sensitive 
immunotherapy response. Mutation information was stratified 
using the R software tool, ‘maftools’. The top 15 genes with 
the highest mutation frequencies in the high‑ and low‑risk 
groups are shown as waterfall plots in Fig. 6A and B. TMB 
values were calculated using data from TGCA somatic muta‑
tions. The high‑risk group had a higher number of cancer 
mutations than the low‑risk group (Fig. 6C). Kaplan‑Meier 
survival analysis was performed using the TMB data (Fig. 6D 
and E), and it was shown that the low‑mutation group had a 
significantly higher survival probability than the high‑muta‑
tion group (Fig. 6D). Patients with high mutation rates in the 
high‑risk group had the lowest survival probability, whereas 
those with low mutation rates in the low‑risk group had the 
highest survival probability (Fig. 6E). Subsequently, the rela‑
tionship between SIRM and response to immunotherapy was 
explored. The results indicated that the high‑risk group had 
a higher response to immunotherapy, indicating that SIRM 
could serve as a model to predict TIDE (Fig. 6F).

GO and KEGG enrichment analysis of SE‑related immune 
genes. GO and KEGG enrichment analyses were performed 
on the SE‑related immune genes using the R package, ‘cluster‑
profiler’ (Fig. 7) (21). Under biological processes, SE‑related 
immune genes significantly contributed to the ‘defense 
response to bacterium’, ‘negative regulation of hydrolase 
activity’ and ‘humoral immune response’. Regarding cellular 
components, ‘collagen‑containing extracellular matrix’, ‘blood 
microparticle’ and ‘specific granule lumen’ were significantly 
abundant. SE‑related immune genes were enriched for 
molecular functions associated with ‘signaling receptor acti‑
vator activity’, ‘receptor ligand activity’ and ‘enzyme inhibitor 
activity’ (Fig. 7B). These findings suggested that the SE‑related 
immune genes have major roles in the evolution of immune 
responses. Moreover, KEGG analysis revealed that SE‑related 
immune genes were enriched in the ‘cytokine‑cytokine 
receptor interaction’, ‘protein digestion and absorption’ and 
‘viral protein interaction with cytokine and cytokine receptor’ 
(Fig. 7C and D).

SIRM can independently predict the prognosis of patients with 
ccRCC. Univariate and multivariate Cox regression analyses 
were performed to assess the independence of the risk model. 
The results of the univariate regression analysis showed that 
the hazard ratio (HR) was 1.083 and the 95% confidence 
interval (CI) was 1.063‑1.103 (P<0.001; Fig. 8A). The results 
of the multivariate regression analysis showed that the HR 

Table I. Genes names used to build the risk model and their 
coefficients.

Gene name Coefficient

EPOR 0.394961526106691
BID 0.766612172033089
IFI30 0.508670285309477
ISG15 0.180571536803486
PDGFD ‑0.283424379032887
XCR1 ‑0.54604544798391

BID, BH3 interacting domain death agonist; EPOR, erythropoietin 
receptor; IFI30, γ‑interferon‑inducible lysosomal thiol reductase; 
PDGFD, platelet derived growth factor D; XCR1, XC motif chemo‑
kine receptor 1.
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was 1.059 and the 95% CI was 1.037‑1.081 (P<0.001; Fig. 8B). 
To further evaluate the independence and sensitivity of the 
risk model in predicting prognoses, the concordance index 

(C‑index) and area under the receiver operating characteristic 
(ROC) curve (AUC) for the risk model were calculated. The 
results indicated that the C‑index of the risk score remained 

Figure 3. Prognostic value of SIRM. (A‑1) Kaplan‑Meier overall survival profiles of patients in the high‑ and low‑risk groups using the whole set. 
(A‑2) Distribution of patients with rising risk scores using the whole set. (A‑3) Scatter plots of survival time and risk scores. Patients with higher risk scores 
have shorter survival time and higher mortality rates, when using the whole set. (A‑4) Heatmap of the 6 super‑enhancer‑related immune genes, using the whole 
set. Genes with positive coefficients are highly expressed in the high‑risk group, while genes with negative coefficients are highly expressed in the low‑risk 
group. (B‑1 to B‑4) Corresponding results of the training set. (C‑1 to C‑4) Corresponding results of the testing set. BID, BH3 interacting domain death agonist; 
EPOR, erythropoietin receptor; IFI30, γ‑interferon‑inducible lysosomal thiol reductase; PDGFD, platelet derived growth factor D; XCR1, XC motif chemokine 
receptor 1.

Figure 4. Kaplan‑Meier survival curves of low‑ and high‑risk groups for PFS and different tumor stages. (A) Kaplan‑Meier survival curves of PFS. The low‑risk 
group has a longer PSF. Kaplan‑Meier survival curves of different tumor stages: (B) stages I‑II and (C) stages III‑IV. PFS, progression‑free survival.



ONCOLOGY LETTERS  27:  190,  2024 7

high, which was consistent with the general trend (Fig. 8C). 
In addition, the AUCs for 1 year, 3 years and 5 years of the 
risk model were >0.7, and the AUC of the risk model was 
notably higher than that of the other prognostic factors 
(Fig. 8D and E). This result provided further evidence that 
SIRM can accurately predict prognosis even in the absence of 
other clinical indicators.

Establishment of a nomogram to predict the survival of 
patients with ccRCC. To predict OS at 1, 3 and 5 years, a 
nomogram was constructed that incorporated risk scores 
and clinical features such as sex, age, stage and grade. The 
nomogram was used to predict patient survival based on these 
clinical features and the risk scores (Fig. 9A). The calibration 
charts for 1 year, 3 years and 5 years showed good consistency 
between the predicted survival probability of the nomogram 
and the actual survival results (Fig. 9B).

Screening of potential treatment drugs for ccRCC. Potential 
treatment drugs were also explored using SIRM for treating 

patients with ccRCC using the R package ‘pRRophetic’ 
(version 0.5). Finally, 61 potential drugs were screened, and 
the IC50 values of these drugs were significantly different 
between the two risk groups. The four potentially sensitive 
drugs displaying the lowest IC50 values are shown in Fig. 10. 
Docetaxel, SN‑38 and vinblastine may be the most suitable 
for patients in the high‑risk group, whereas pazopanib may be 
beneficial for patients in the low‑risk group.

Discussion

RCC is one of the most prevalent cancer types of the urinary 
system, and its prevalence has been on the increase (22). RCC is 
insensitive to radiotherapy and chemotherapy, and drug resis‑
tance may occur in patients treated with targeted therapy. This 
leads to a poor prognosis for patients with RCC (23,24). SEs 
have a key role in carcinogenesis, and numerous studies have 
revealed that SEs play essential roles in immune evasion in 
breast cancer (15), stomach adenocarcinoma (25) and colorectal 
cancer (17). In addition, studies revealed that conventional 

Figure 5. PCA of the whole group. PCA (A) of the whole genes, (B) 43 SE‑related immune genes and (C) the 6 SE‑related immune genes used to build the 
model. PCA, principal component analysis; SE, super‑enhancer.
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immunotherapies, such as IFN‑α and IL‑2, prolonged OS. 
However, the duration of their responses was restricted, and 
only a few patients had complete response (26,27). Therefore, 
it is important to explore the roles of SE‑related immune genes 
in tumorigenesis and disease progression and prognosis in 
order to explore potential drugs regulating this process.

In the present study, the expression of SE‑RNAs in 
paired malignant and adjacent normal kidney tissues from 
5 patients with ccRCC was investigated using microarray 
analysis. A total of 1,501 ccRCC‑associated differentially 
expressed SE‑RNAs were identified. These SE‑RNAs were 
intersected with 2,483 previously identified immune genes, 

and 112 SE‑related immune genes were obtained. Finally, a 
risk model based on 6 of these SE‑related immune genes that 
independently predicted prognosis was constructed.

The 6 SE‑related immune genes used to build the risk 
model included EPOR, BID, IFI30, ISG15, PDGFD and XCR1. 
EPOR has been shown to be abnormally expressed in various 
cancer types, such as breast cancer (28), acute lymphoblastic 
leukemia (29) and RCC (30). Particularly in RCC, the induc‑
tion of erythropoietin may accelerate the proliferation of RCC 
cell lines in either a hypoxia‑inducible factor‑1α‑dependent or 
‑independent manner (30). The abnormal expression of BID in 
various digestive tumors has been confirmed (31,32). A recent 

Figure 6. TMB and TIDE algorithm analysis of the SE‑related immune genes. Genes with the highest mutation frequency in the (A) high‑risk and (B) low‑risk 
groups. (C) Difference in the TMB between the high‑ and low‑risk groups. (D) Kaplan‑Meier survival curves of low‑ and high‑TMB groups. (E) The 
Kaplan‑Meier survival curves according to TMB and risk level. (F) Difference in the TIDE between the high‑ and low‑risk groups. TIDE, Tumor Immune 
Dysfunction and Exclusion; TMB, tumor mutation burden.
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Figure 7. GO and KEGG analysis. (A and B) GO analysis revealed the diversity of molecular BP, CC and MF. (C and D) Significantly enriched pathways 
were identified by KEGG pathway analysis. BP, biological process; CC, cellular component; MF, molecular function; GO, Gene Ontology; KEGG, Kyoto 
Encyclopedia of Genes and Genomes.
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study demonstrated that IFI30 was highly expressed in breast 
cancer tissues and was associated with a poor outcome in 
patients. In this study, the knockdown of IFI30 inhibited 
the proliferation, migration and invasion of breast cancer 
cells (33). The ISG15 protein, encoded by the ISG15 gene, is 
a member of the ubiquitin‑like protein family and is involved 
in multiple key cellular processes, including autophagy, 
exosome secretion, DNA repair, immune regulation, and 
cancer occurrence and progression (34). Through in vivo and 

in vitro experiments, a study demonstrated that ISG15 induces 
CD4 T cell proliferation and invalidity and immune responses 
against tumors (35). In the present study, Kaplan‑Meier 
analysis was conducted to explore the relationship between 
the aforementioned genes and ccRCC. As expected, EPOR, 
BID, IFI30 and ISG15 were expressed at high levels in the 
high‑risk group. A study demonstrated that breast cancer 
cells (MDA‑MB‑231 cells) with PDGF‑D silencing had a 
significantly diminished aggressive migration and invasion 

Figure 8. Assessment of the independence of the risk model. (A) Univariate and (B) multivariate regression analysis of SIRM and other clinical factors. 
(C) Concordance indexes of the risk model and other factors. (D) ROC curves in the training set for 1‑, 3‑ and 5‑year overall survival prediction. (E) ROC 
curves in risk model and other factors. AUC, area under the receiver operating characteristic curve; ROC, receiver operating characteristic.

Figure 9. Development and testing of the nomogram. (A) The nomogram predicts the 1‑, 3‑ and 5‑year OS. (B) The calibration plot of the nomogram. *P<0.05 
and ***P<0.001 vs. survival state. futime, follow‑up time; M, metastasis; N, node; OS, overall survival; Pr, probability; T, tumor.
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potential compared with other cells (SK‑BR‑3 and MCF7 cell 
lines) (36). In addition, in vivo experiments also demonstrated 
that PDGF‑D silencing inhibited tumor growth and improved 
the survival rate of tumor‑bearing mice. Another study found 
that silencing XCR1 promoted hepatocellular carcinoma cell 
migration and invasion in vitro and overexpressing XCR1 had 
an inhibitory effect (37). In the present study, it was shown that 
these two genes, PDGFD and XCR1, were expressed at low 
levels in the high‑risk. Therefore, the biological behavior of the 
aforementioned 6 genes in tumors is consistent with the results 
of the present study on ccRCC.

In the present study, patients were divided into high‑ and 
low‑risk groups based on the median score derived from the 
risk model. The Kaplan‑Meier survival analysis revealed that 
the low‑risk group had a better survival probability than the 
high‑risk group. According to the multivariate Cox regression 
analysis, the risk model could be used as an independent risk 
factor for ccRCC. In addition, the ROC curve analysis results 
indicated that the risk model had more advantages than other 
clinical factors in predicting the OS of patients with ccRCC. 
To predict the 1‑, 3‑ and 5‑year OS rates of patients, a nomo‑
gram that could comparatively predict patient survival was 
constructed. This was beneficial for improving the validity of 
the risk model.

Additionally, to provide a novel avenue for immunotherapy, 
the TIDE algorithm was adopted to explore sensitivity to 
immunotherapy. According to these findings, the high‑risk 
group demonstrated a more robust immune response than the 
low‑risk group. This result suggested that patients with ccRCC 
in the high‑risk group may have a better outcome when treated 
with immunotherapy. Based on this, four potential drugs with 
IC50 values that differed significantly between the high‑ and 
low‑risk groups were screened out. Related studies have 
demonstrated the positive effects of docetaxel, SN‑38 and 
pazopanib in the treatment of ccRCC (38‑40). The effective‑
ness of vinblastine has also been validated in animal and 

cell experiments (41). These findings therefore provide a new 
avenue for chemotherapy drug selection.

A number of factors such as tumor stage and grade, age 
and metastasis, affect the prognosis of patients with cancer. 
However, none of these prognostic factors can accurately 
predict patient survival. Thus, it is crucial to investigate 
predictors that are more comprehensive, specific and accurate. 
SE‑related immune gene models complement the inadequacy 
of clinical indicators. They also provide a new direction for 
exploring the carcinogenic mechanism of ccRCC. Perhaps 
the potential mechanism between the abnormal expression of 
immune genes regulated by SEs and the occurrence of ccRCC 
can be explored. The present study validated and determined 
multiple aspects of a SE‑related immune gene risk model. 
Therefore, this model may be flexibly applied to predict 
survival probability in patients with ccRCC.

However, the present study did also have some limitations. 
First, although the data on SE‑related genes were obtained 
through microarray analysis, the data used for model construc‑
tion and validation were sourced from a public database. 
Furthermore, most of the results originated from bioinfor‑
matics engineering. Therefore, a number of experiments are 
required to verify the results of the present study and the 
underlying mechanism of abnormal expression of SE‑related 
immune genes leading to a poor prognosis in ccRCC still needs 
further experimental exploration. Second, the selected drugs 
identified in the present study are only potential therapeutic 
drugs, and their therapeutic effects as well as their underlying 
mechanism still need to be verified. The aim is to conducted 
this investigation in future studies.

In summary, the present study provided a potential index for 
predicting the survival probability of patients with ccRCC and 
presented a research direction into the mechanisms by which 
SE‑related immune genes influence the prognosis of patients 
with ccRCC. Several potential drugs were screened and poten‑
tial leads for immunotherapy of ccRCC were provided. These 

Figure 10. Exploration of potential drugs for the treatment of clear cell renal cell carcinoma. The IC50 differences between the high‑ and low‑risk groups for 
several potential drugs, including (A1,A2) docetaxel, (B1,B2) SN‑38, (C1,C2) vinblastine and (D1,D2) pazopanib. IC50, half‑maximal inhibitory concentration.
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findings may provide a potential strategy for the prognostic 
evaluation and treatment of patients with ccRCC in the future.
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