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ABSTRACT

Recently, lineage tracing technology using
CRISPR/Cas9 genome editing has enabled si-
multaneous readouts of gene expressions and
lineage barcodes, which allows for the reconstruc-
tion of the cell division tree and makes it possible to
reconstruct ancestral cell types and trace the origin
of each cell type. Meanwhile, trajectory inference
methods are widely used to infer cell trajectories
and pseudotime in a dynamic process using gene
expression data of present-day cells. Here, we
present TedSim (single-cell temporal dynamics
simulator), which simulates the cell division events
from the root cell to present-day cells, simulta-
neously generating two data modalities for each
single cell: the lineage barcode and gene expression
data. TedSim is a framework that connects the two
problems: lineage tracing and trajectory inference.
Using TedSim, we conducted analysis to show
that (i) TedSim generates realistic gene expression
and barcode data, as well as realistic relationships
between these two data modalities; (ii) trajectory
inference methods can recover the underlying cell
state transition mechanism with balanced cell type
compositions; and (iii) integrating gene expression
and barcode data can provide more insights into the
temporal dynamics in cell differentiation compared
to using only one type of data, but better integration
methods need to be developed.

INTRODUCTION

Understanding how single cells divide and differentiate into
different cell types in developed organs is one of the ma-
jor tasks of developmental biology. The temporal dynamics
of cells are being studied by various approaches from dif-
ferent aspects. First, trajectory inference (TI) methods (1–5)
are developed to infer the trajectories of cells from single-
cell gene expression data, typically obtained from single-

cell RNA sequencing (scRNA-seq) experiments. TI meth-
ods make the assumption that although the cells sequenced
together are collected at the same time, they represent dif-
ferent stages of the temporal dynamics process in the cell
populations. Prevalent TI methods aim to find the trajec-
tory backbone that represents the major cell states and the
dynamic paths between the states, and then ‘sort’ the cells
onto the backbone structure. These methods have assisted
biological discoveries in various biological systems (6–9);
however, it is not clear whether using only the scRNA-seq
data of present-day cells can always reconstruct the cell tra-
jectories, as some information may have been lost during the
developmental processes and not captured in the scRNA-
seq data (10–12).

Second, lineage tracing technologies using
CRISPR/Cas9 genome editing technology blaze a
new trail to study the cell developmental mechanisms.
A barcode is inserted into the genome that accumulates
CRISPR-induced mutations during the process of the
cell divisions, and the mutated barcode can be read out
together with the gene expression profile in a cell through
scRNA-seq (10,13–15). This barcode will be referred to
as lineage barcode in this paper. Thus, the output of these
lineage tracing experiments is composed of two types
of data: the single-cell gene expression and the lineage
barcode of each cell. Computational tools to reconstruct
the cell division history of single cells from the lineage
barcodes are widely explored (16,17). In an ideal scenario,
the reconstructed cell division tree along with the gene
expression profiles of present-day cells can provide insights
into how different cell types originate from progenitor cells,
and allow us to draw the cell fate map at an unprecedented
high resolution. However, the missing data in the lineage
barcodes and the large number of cells pose challenges
for cell lineage tree reconstruction methods, resulting in
low-resolution, inaccurate reconstructed trees.

With simultaneously profiled single-cell gene expression
data and lineage barcodes, methods that integrate the two
modalities started to emerge, aiming to achieve better re-
sults than the unimodal methods in terms of inferring cell
lineage and developmental trajectories. However, only a
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few methods have been developed to date and their perfor-
mances are unclear (17–19).

Previously, computational tools to simulate either single-
cell gene expression data (20–22) or lineage barcode data
(23) were proposed. Due to the lack of ground truth in-
formation in biology, simulation tools have been used to
provide quantitative evaluations of existing computational
methods and set baselines for the development of new meth-
ods. Existing simulators for single-cell gene expression data
mostly sample gene expression levels of single cells from
probability distributions of the data under certain statis-
tical assumptions (20–22). The synthetic expression levels
can maintain transcriptome similarity between cells but do
not maintain the actual lineage relationships between single
cells. On the other hand, Salvador-Martı́nez et al. developed
a simulator to generate the lineage barcode information by
simulating the cell division processes but not the gene ex-
pression data (23).

The joint profiling of single-cell gene expression and the
lineage tracing barcode data allows for the analysis of the
origin of various cell types. Previously, the lineage barcodes
and the gene expression data, respectively, were utilized to
reconstruct the lineage tree and identify the cell types sepa-
rately (10,13–15,24). Recently, hybrid methods that attempt
to use both types of information are being designed to either
use the gene expression information to obtain better lineage
trees (17), to reconstruct transcriptome and cell states of an-
cestral cells (19), or use the lineage information to improve
the ancestor–descendant relationship inferred from gene ex-
pression data (18). To study the relationship between gene
expression and lineage origins and to evaluate the hybrid
methods, we need to generate both single-cell gene expres-
sion and lineage barcode information simultaneously along
the cell division processes with ground truth information on
the cell division history and cell state transition.

In this paper, we present TedSim (single-cell temporal
dynamics simulator), the first simulator that outputs com-
bined readouts of single-cell gene expression and lineage
barcode data. Unlike existing simulators for scRNA-seq
data (20,22,25), TedSim simulates the actual cell division
events and obtains cells of different cell types at different
stages of the developmental trajectories, alongside with lin-
eage barcodes through genetic scarring during cell divisions.

One key feature of TedSim that distinguishes it from ex-
isting scRNA-seq simulators is that it generates observed
scRNA-seq data through cell division events, which is closer
to what happens in biology. How to obtain various cell types
through cell divisions is a challenge for TedSim. We present
a simple model that utilizes asymmetric cell divisions (26–
28) to assign cell types on the cell division tree. We consider
an underlying cell state tree, which represents the develop-
mental paths of cell states, as the input to TedSim. The cell
state tree helps to determine the states of the cells on the
cell division tree (Figure 1). The state shifts of cells during
cell divisions are achieved by asymmetric cell divisions, and
at the same time genetic scarring events can happen in the
lineage barcodes and be inherited by the daughter cells.

We show that TedSim can generate both discrete and con-
tinuous cell populations, lineage barcode data with similar
mutation distribution as observed in real data, and, in par-
ticular, realistic ‘relationship’ between the lineage barcode

and gene expression data (Figure 1). By ‘relationship’ we
particularly look into the following question: do cells from
the same cell types (defined by their gene expression pro-
files) necessarily originate from the same clone? We show
that similar to that in real data, in our simulated data, each
clone can have multiple cell types and one cell type can
spread over multiple clones.

We demonstrate the application of TedSim in evaluat-
ing the following computational methods (Figure 1): (i)
with synthetic lineage barcodes of single cells, we can eval-
uate lineage tree reconstruction methods; (ii) with simu-
lated scRNA-seq data, we can apply the TI methods and
test whether using only the present-day cells can recover
the underlying cell state tree; and (iii) with both lineage
barcode and scRNA-seq data, we can benchmark meth-
ods that combine gene expression and lineage barcodes. In
particular, we discuss the limitations of current methods
that integrate the two types of data. TedSim is available
at https://github.com/Galaxeee/TedSim.

MATERIALS AND METHODS

Generating single-cell gene expression data with TedSim

Cell divisions are the events through which cells form pop-
ulations and various cell types. By simulating cell divisions,
TedSim directly models the temporal dynamics of single
cells and thus can be used to analyse the underlying rela-
tionships of lineage and gene expressions. TedSim can nat-
urally generate discrete or continuous populations in the
present-day cells, with the same underlying cell state transi-
tion mechanisms.

In order to obtain cells with diverse cell types through cell
divisions, we adopt the fundamental concept of asymmetric
divisions. In biology, stem cells are characterized by their
ability to self-renew and produce differentiated phylogeny,
which is achieved through controlled asymmetric divisions
(26–28). Asymmetric division is a key process for a cell to di-
vide into two cells with different cellular fates, where one cell
remains at the same state as the parent and the other shifts
to the future state that will eventually develop into fully dif-
ferentiated cells. TedSim utilizes a cell state tree that mod-
els the cell differentiation process to determine the future
state when a cell divides asymmetrically. Starting from the
root of the cell lineage tree, a cell can divide either symmetri-
cally into two cells of the same state as their parent or asym-
metrically as described earlier. By incorporating the parent
cell’s identity when generating the identity of the daughter
cells, we are able to combine heterogeneities from both its
cell state and lineage path. Transcriptomic data simulated
by TedSim can reflect the true trajectory as demonstrated in
the cell state tree while being compounded by lineage rela-
tionships between cells, which reflects the scenario in reality
(29).

The process of how TedSim simulates scRNA-seq data is
shown in Figure 2A. The cell state tree and cell lineage tree
(Figure 2B) provide two different sources of heterogeneities
in the gene expression profiles of cells, where the former rep-
resents the underlying programmed cell fate decision mech-
anism and the latter represents effects from clonal origins
of cells. At each branching point of the cell state tree, by
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Figure 1. TedSim workflow. The cell state tree models the true trajectories of cell differentiation and the cell division tree represents the true lineage. When
traversing the cell division tree from root to leaves, the cell states are determined based on the state tree and the asymmetric division events (denoted
by red edges in the cell division tree). TedSim simultaneously simulates gene expressions and lineage barcodes of all the cells, while the state and lineage
relationships of the cells are maintained. The simulated data can be used to test not only TI or tree reconstruction methods, but also hybrid methods that
use both gene expression and lineage barcode data.

default each branch is taken with equal probability, but un-
equal branch probabilities can be used to represent differ-
ent probabilities of cells going to different cell fates. Users
can define the desired structure of the cell state tree using
Newick format in a text file.

We assume that cell states change gradually along the
given cell state tree, and each state is represented by a SIV
that can be considered as the latent representation of the
state. Suppose a SIV is of length l. Considering that the
differences between cell states originate from only a sub-
set of factors in the SIV, we assign l1 factors as differen-

tial factors that change along the cell state tree, and the rest
of the l2 factors are sampled from the same Gaussian dis-
tribution N(1, σ 2). We generate the differential SIVs along
the cell state tree from the root using the Brownian mo-
tion model that was used to model the evolution of ge-
netic traits (30). The changes of trait values of the Brow-
nian motion are drawn from a normal distribution. That is,
for each differential factor in SIVs, one starts with a given
value at the root (default is 1), and for each cell state t,
its SIV value for this differential factor y(t) is calculated
as y(t) = y(t − �t) + N(0, �t), where N(·) represents
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Figure 2. Simulation of scRNA-seq data and lineage barcode in TedSim. (A) Flowchart of generating observed gene expression counts. Parallelogram
represents input/output and rectangle represents process. ‘B’, ‘C’, ‘D’ and ‘E’ in the flowchart represent key intermediate data that are visualized in panels
(B)–(E) with an example. (B) Cell state tree and cell lineage tree where each cell is coloured with its state. At an asymmetric division, a state shift happens to
one of the daughter cells (the edge between this daughter cell and its parent is coloured red). (C) 2D PCA visualization of simulated state identity vectors
(SIVs) along the cell state tree. The length of the SIVs is 30 (20 diff-SIVs and 10 non-diff-SIVs). (D) 2D UMAP visualization of cell identity vectors (CIVs)
of 2048 cells. A CIV has the same length as a SIV. (E) 2D UMAP visualization of true counts of 2048 cells and 500 genes. (F) Reconstructing cell lineage
using simulated lineage barcodes. During the cell division process, mutation events can randomly happen (different non-black colours represent different
mutations and the black colour means no mutation event) and cause insertion/deletion on the lineage barcode (middle); a coloured box represents an
insertion/deletion and is termed a mutated state (non-zero characters in the character vectors). Given the mutated barcodes of the present-day cells (leaf
nodes of the lineage tree), tree reconstruction algorithms can be applied to infer the lineage tree (right). (G) Simulating dropouts of lineage barcodes. When
two or more mutations happen at one division, the excision dropout will randomly drop characters between two mutated sites; after library preparation
steps, the capture dropout will completely drop the barcode if the associated gene is not captured. (H) Distribution of mutated states (only the top 15 most
frequent mutations are shown) observed in lineage barcodes of the embryo2 from Chan et al. (14). The frequencies are used to generate synthetic mutations
in TedSim in the ‘biased’ mode.
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a Gaussian function and �t is the distance between state
t and state (t − 1) on the tree, which can also be considered
as the step size of a random walk. In this manner, the co-
variance matrix of the generated trait values corresponds to
the given tree structure (Supplementary Section S1).

Figure 2C shows the 2D PCA visualization of the SIVs
generated along the cell state tree in Figure 2B. To obtain
a desired number of cell types in simulated data, we sample
states from the cell state tree by taking the SIVs at both ends
of each edge and some intermediate positions of each edge
where each sampled state corresponds to a cell type. For ex-
ample, in the cell state tree shown in Figure 1, we take states
S0, S1, . . . , S12 as the sampled states to guide the state transi-
tions in the cell division tree. These states are sampled from
all states such that the distance between two adjacent sam-
pled states on the cell state tree is the same. This distance,
denoted as step size, is a user-defined parameter used in the
simulation and we will investigate the resulting cell popula-
tions with various step size values.

Based on the cell state tree and the sampled states, we can
simulate the cell divisions and the two types of information
of each cell: the lineage barcode and the gene expression
data. Each cell’s gene expression data are associated with
a cell state sampled from the state tree and its lineage. The
procedure of generating the gene expression data of a cell is
illustrated in Figure 2A. Starting from the root of the cell
division tree, the root cell’s state is the root state on the cell
state tree. Recursively, we determine the states of the chil-
dren based on the state of their parent cell, with either sym-
metric division or asymmetric division. At each cell division
event, we first probabilistically decide whether this is a sym-
metric division or asymmetric division according to param-
eter pa, which is the asymmetric division rate. pa influences
how fast the cells can get to the terminal cell states (Sup-
plementary Section S2). Denote the cell state of the parent
cell by sp and the states of the two daughter cells by sc1 and
sc2. Now we consider two cases: (i) In the case of symmetric
division, the two daughter cells inherit the same cell state as
their parent, that is sc1 = sc2 = sp. (ii) In the case of asym-
metric division, one daughter cell inherits the cell state of
the parent cell, whereas the other daughter cell shifts to a
future state on the cell state tree. To account for varying dif-
ferentiation speeds, when a cell is moving to a future state,
we allow the daughter cell’s new state to be nstep×step size
after that of the parent cell, and nstep is sampled from a dis-
crete distribution Pjump with nstep values ranging from 1 to
max step, where a larger probability is assigned to the case
nstep = 1. A larger nstep value indicates that the cell dif-
ferentiates faster and arrives at a state that is further away
from the parent’s state on the cell state tree. When there is a
split of branches on the state tree, the state shift will select
an edge to follow according to the branch probabilities.

For each new cell, we generate its CIV based on the CIV
of its parent and the SIV of its cell state. A CIV’s length is
the same as that of the SIVs. For the daughter cells with the
state as the parent cell, each value in the CIV of a daugh-
ter cell is produced by adding the CIV of its parent with a
random walk distance sampled from a Gaussian distribu-
tion, that is yc1 = yp + λN(0, lb), where c1 is the daugh-
ter cell, yc1 and yp, respectively, are the CIVs of the daugh-
ter and the parent cell, and lb is the branch length in the

cell division tree. If the state of the daughter cell is different
from that of the parent cell (suppose this daughter cell is
c2), then yc2 = yp − SIV(sp) + SIV(sc2) + λN(0, lb) (lb = 1
in our tests since we consider the branch lengths on the cell
division to be 1), where λ is the weight for the additional
random walk distance on the cell lineage tree and it tends
to be a very small value (λ = 1/9 in the results shown in the
paper) in order to ensure that the cells do not deviate too
much from their state means (Supplementary Section S3).
We also provide the option for users to provide a range of
the start and end values for λ, and the λ value will change
for different generations of cell divisions.

The CIV of each cell models the combined hetero-
geneities of lineage and cell type of the cell and it can be con-
sidered as the cell’s latent space representation (Figure 2D).
It is then used to generate the gene expression data of the cell
(Figure 2E). In Figure 2E, UMAP (31) was used to create
the visualization of the gene expression data. In Supplemen-
tary Figure S1A–C, we show that t-SNE (32) and diffusion
map (33) give similar visualization; thus, using UMAP for
visualization of single-cell gene expression data is sufficient.

The advantages of introducing low-dimensional vectors
to represent cell identities over manipulating gene expres-
sion counts directly are as follows: (i) the CIVs, as the way
they are calculated, are able to characterize the biological
dependences of single cells during cell divisions, which are
consistent with the true trajectories provided by the cell
state tree and the cell lineage tree; and (ii) performing low-
dimensional random walks is informative enough to cap-
ture the variances in the transcriptomic data while at the
same time making the simulation computationally efficient.
The pseudocode for generating CIVs is provided in Supple-
mentary Section S4. The values of parameters l, l1, l2 and pa
used in this paper are listed in Supplementary Section S5.

Apart from each cell’s CIV, we also generate a gene iden-
tity vector (GIV) for each gene following the procedure used
in SymSim (22) (where the GIVs are termed as gene effect
vectors). The GIV of a gene represents how much the gene
is affected by each factor in the CIV. The GIVs can then be
considered as the weights on the CIVs, which together de-
cide the expression pattern of a given gene in a given cell.
The details of generating GIVs are provided in Supplemen-
tary Section S6. The SIVs, CIVs and GIVs all have the same
length l.

Now with the CIV of a cell and the GIV of a gene, we
can generate the true mRNA counts of this gene in this cell
through a two-state kinetic model (22,34), where the param-
eters of the kinetic model are calculated from the CIV and
GIV. This step follows a similar process in SymSim (22) and
is described in Supplementary Section S6. After generating
the true mRNA counts of genes in cells, we follow the steps
used in SymSim (22) to add technical noise to the data by
simulating the major steps in scRNA-seq experiments to get
realistic observed gene expression counts (Supplementary
Section S6).

Generating heritable lineage barcode data with TedSim

TedSim simulates the cell lineage tree, which is a binary
tree that models the cell division events (Figure 2F). Start-
ing from the root cell, we simulate the accumulation of
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CRISPR/Cas9-induced scars along the paths from the root
to all the leaf cells. In practice, the barcodes with accu-
mulated scars in present-day cells can be measured using
scRNA-seq and used to reconstruct the cell lineage tree
(Figure 2F).

The lineage barcodes of a cell can be represented by a
character vector. Each character represents a target site
where a CRISPR-induced mutation can possibly happen
(14,23) (Figure 2G). The root cell in the cell division tree
has its default barcode with all states unmutated (an un-
mutated state is denoted as ‘0’). When it divides, mutations
happen at a mutation rate μ that randomly select certain
target sites and change them to mutated states (denoted as
non-‘0’ integers) in the daughter cells, and the mutations
will be carried on to further descendants (Figure 2G). We
keep the mutation rate μ constant across all target sites and
all cell divisions, and then after a number of generations,
the probability of a particular target site being mutated fol-
lows a geometric distribution. We assume that the mutation
is irreversible so that a mutated state will not go back to the
unmutated state. And once a target site is mutated, it stays
at that state and does not change into other mutated states.

When an unmutated state decides to mutate (according
to the mutation rate μ), it needs to choose a mutated state
(a non-‘0’ integer in Figure 2G) from a set of predefined mu-
tated states. We consider two modes regarding the transition
probabilities from the unmutated state to mutated states.
One is the ‘equal chance’ mode, and the other is the ‘bi-
ased’ mode. With the equal chance mode, the probability
of an unmutated state changing into any possible mutated
state is equal. However, it is observed in real data that dif-
ferent mutated states do not occur with equal frequencies,
but rather show significant biases towards certain mutated
states and the frequencies of the mutated states follow an ex-
ponential curve (14,23) (Figure 2H). In TedSim, we simulate
this bias by sampling the mutation events from such a distri-
bution obtained from an experimental dataset in (14). That
is, given the character matrix (where each row corresponds
to a cell and each column corresponds to a target site in the
barcodes) of a real dataset, we first calculate the frequencies
of each occurred mutation, and then take the top Nms most
frequent mutation states (Nms is a user-defined parameter
and is set to 100 in our results). The resulting frequencies
are normalized into probabilities and used in TedSim ‘bi-
ased’ mode (Figure 2H). In TedSim, we have implemented
both modes. Later in this paper, we will show that the dif-
ferences between the two modes of transition probabilities
between mutation states can influence the performances of
tree reconstruction algorithms.

The problem of dropouts in the lineage barcodes is one of
the main challenges towards reconstructing the cell division
tree using computational algorithms. Following Salvador-
Martı́nez et al. (23), TedSim models two types of dropouts
widely occurring in wet-lab experiments (Figure 2G): ‘cap-
ture dropout’ that refers to experimental dropouts due to
low capture efficiency, and ‘collapse dropout’ or ‘excision
dropout’ means inter-target deletions when two or more
sites are cut at the same time (35). Both dropouts are de-
noted as ‘-’ in the character vectors. According to experi-
mental protocols where the barcode is inserted to a specific
endogenous site (a real or an artificial gene) in the genome

(36), we associate the capture dropout of the lineage bar-
code in each cell with the expression level of the gene in
the cell. If the gene is not captured in the simulated ob-
served counts, the capture dropout to the lineage barcode is
applied. Simulating gene expression profiles together with
lineage barcodes allows TedSim to generate more realistic
dropout events compared to randomly removing barcodes.
Due to dropouts, a number of mutation events cannot be
observed, which limits the accuracy of cell division tree re-
construction. In TedSim, users can choose whether or not
to generate dropouts in the simulation using a Boolean pa-
rameter pd. The pseudocode for generating lineage barcodes
simultaneously with CIVs can be found in Supplementary
Section S4.

Fitting simulated gene expression data to real datasets

By tuning the parameters in TedSim, we are able to gen-
erate gene expression datasets of different levels of conti-
nuity and balance the number of cells for each cell state
(Figure 3A–D). Moreover, we demonstrate that TedSim can
generate realistic gene expression data that share cell-type-
specific properties with real datasets where there are mul-
tiple cell types. We use a zebrafish larvae dataset at 5 days
post-fertilization (dpf) as the reference dataset (24) (Figure
3E). We removed undifferentiated cell types and selected 10
cell types with 9393 cells as terminal cell states (Supplemen-
tary Section S5.1). We then generate simulated data with
TedSim that resemble the properties of the real data in terms
of variation between cell types and gene expression distribu-
tion within each cell type, using the following procedure.

First, we applied Ward’s agglomerative clustering method
(implemented in ‘The R Stats Package’) on the real dataset
to obtain the cell state tree (Figure 3F). The edge lengths of
the state tree are rounded up to the nearest integer. With the
inferred state tree, in order to maintain the relative size of
each cell type (i.e. the proportion of cells in each cell type),
at each branching node in the cell state tree, we calculate
branch probabilities according to the total number of cells
in the respective subtree (see pseudocode in Supplemen-
tary Section S4). We ran the TedSim simulation 20 times,
each with a single root and 1024 leaf cells, using the same
cell state tree and branch probabilities. We then combine
the cells from the 20 runs and obtain the final dataset. The
asymmetric division rate pa and step size used in the simula-
tions are set to maximize the numbers of cells in the terminal
cell types (pa = 1, step size = 1) (Figure 3G–I). Other pa-
rameters in TedSim that are fitted to simulate a dataset that
resembles the real data are (i) scale s: a parameter in the
kinetic model adjusting for the difference in cell size of dif-
ferent cell types; and (ii) alpha mean: the capture efficiency
during library preparation in scRNA-seq experiments. The
detailed information about the parameters used for the sim-
ulations can be found in Supplementary Section S5.1. Fig-
ure 3J–L and Supplementary Figure S2A and B show statis-
tical comparisons between the simulated data and real data.

Evaluation of TI methods

The cell state tree used in TedSim is the ground truth cell
trajectory for TI methods (Figure 4A). To evaluate TI meth-
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Figure 3. TedSim simulates both continuous and discrete populations and can generate datasets with multiple cell types that resemble real datasets. (A) Cell
state trees sampled with two different step size = 0.25 and 0.5; colours represent cell states in panels (C) and (D). (B) The frequency of cells belonging to
each cell state in the simulated dataset, stratified by the depth of the corresponding state in the cell state tree. (C) 2D UMAP visualization of a continuous
population of cells where pa and step size are small, and the trajectory of the states can be observed. (D) 2D UMAP visualization of a discrete population
of cells where pa and step size are large, and the cells are separated into discrete clusters. (E) UMAP visualization of 5-dpf zebrafish larvae cells from (24).
Nine thousand three hundred ninety-three cells of 10 cell types are sampled from the original dataset. (F) Cell state tree estimated from the real dataset.
Hierarchical clustering is applied to the pairwise distances of the average expressions of the 10 cell types. (G–I) UMAP visualization of simulated zebrafish
larvae cells. Twenty simulations each with 1024 cells are generated with selected parameters to fit the dataset to the referred real dataset. (G) True counts
without technical noise. (H and I) Observed counts with different capture efficiency values. (J) Comparison of cell type compositions between simulated
data and real data. (K and L) Statistical comparison between cell types of simulated data and the real data. Both metrics are calculated based on observed
counts with capture efficiency alpha mean = 0.1. Each box corresponds to a cell type. Red boxes represent real data and green boxes represent TedSim
simulated data. (K) Average expression per cell. (L) Average zero percentages per cell.
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Figure 4. Running TI methods on TedSim datasets. (A) The structure of the cell state tree used for the simulation in this figure. Number of intermediate
states on each edge varies with step size. (B) UMAP visualization of inferred trajectories by PAGA-Tree, on a dataset with 1024 cells and 500 genes.
pa = 0.85 and step size = 0.25; these parameters are set to obtain continuous populations of cells. (C) UMAP visualization of inferred trajectories by
PAGA-Tree with varying pa and step size. The black network corresponds to ‘milestone network’, which is obtained by post-processing the output of the
methods into a common probabilistic trajectory model to make different methods comparable, as implemented in the ‘dynwrap’ package.

ods, we generate datasets where cell populations have differ-
ent differentiation speeds by tuning the parameters pa and
step size (see Figure 4B and C for PAGA-Tree and Supple-
mentary Figure S3 for Slingshot). For each parameter con-
figuration, we simulate 8192 cells with the same bifurcating
lineage (Figure 4A) and run the simulation 10 times to cal-
culate the average performance. Values of other parameters
used to generate the datasets can be found in Supplemen-
tary Section S5.2.

With a simulated dataset, we first apply PCA and se-
lect the first 50 PCs as input to UMAP for visualization
in 2D (min dist = 0.3 for UMAP). We use the R packages
dynwrap and dynmethods to run the two best TI meth-
ods, found by the built-in TI method browser dynguidelines:
PAGA-Tree (version 2.0.0) and Slingshot (version 2.0.1).
All methods were run with default parameters and both
methods take prior information of ground truth cluster (cell
type) information and root cell information. The dynwrap,
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dynmethods and dynguidelines are part of the collection
of R package dynverse used in the paper by Saelens et al.
(1). Websites of the packages used are included in the ‘Data
Availability’ section. We evaluate the performances of the
TI methods using two metrics, Kendall’s τ and Hamming–
Ipsen–Mikhailov (HIM) score (41) (Figure 5A and B, and
Supplementary Figure S4).

We designed a measure, relative entropy, to calculate how
good the dataset is in terms of balancing the number of cells
across all the cell states so that the underlined state tree is
better preserved (Figure 5B). Given a distribution of the
states X = {p1, p2, p3, . . . , pN}, the relative entropy is cal-
culated as follows:

Hr (X) = −
N∑

i = 1

pi log pi − log N.

Here, N = L/step si ze, where L denotes the height of the
cell state tree, and pi represents the frequency of the states
at depth i on the state tree. The relative entropy subtracts
the entropy of the uniform distribution of the same length
(the length is N) so that the bias introduced by different
step size is removed. In other words, the relative entropy of
a distribution is equal to the relative entropy of a piecewise
constant interpolation of the distribution (Supplementary
Section S7).

When relative entropy is high, it means different cell types
in the dataset have similar number of cells, which is an easy
case for TI methods; when relative entropy is low, it means
some cell types have very small number of cells, which poses
challenges for TI methods. Different combinations of pa-
rameters pa and step size can give rise to different levels of
relative entropy. In Supplementary Figure S5, we use a sim-
ple trajectory as an example to show how relative entropy
changes with pa and step size. This figure can also serve as a
guide for users to choose pa and step size parameters given
how balanced they want the cell types to be. We recommend
pa > 0.5 as small pa requires a large number of generations
to obtain cells at the terminal state.

Evaluation of lineage tree reconstruction methods

TedSim is able to generate lineage barcode data and gene
expression data for present-day cells (leaf cells in the cell
division tree). Using these datasets, we compare the perfor-
mances of lineage reconstruction methods: Cassiopeia and
DCLEAR, which use only the lineage barcodes, and Lin-
TIMaT, which also incorporates the gene expressions to re-
fine cell lineage trees. We ran and compared two modes of
Cassiopeia (Cassiopeia-greedy and Cassiopeia-hybrid), two
modes of DCLEAR (DCLEAR-NJ and DCLEAR-FM)
and LinTIMaT. The detailed parameter settings to run the
algorithms are provided in Supplementary Section S5.3.

The datasets used to evaluate the lineage reconstruction
methods have different numbers of cells (512 and 8192 cells)
and vary in their mutation rate μ = (0.05, 0.1, 0.15, 0.2, 0.25,
0.3, 0.35, 0.4). The default mutation rate is 0.15, and users
can also use the method provided in Supplementary Section
S8 to estimate the mutation rate from a real dataset. We also
compare their performances with and without lineage bar-
code dropouts and under two different modes of mutation

state distribution: the ‘equal chance’ mode and the ‘biased’
mode where a distribution obtained from real datasets is
used. Here, we used the embryo2 from (14) to obtain the
mutation state distribution.

The reconstructed trees are compared to the same ground
truth using two metrics: (i) the Robinson–Foulds (RF) dis-
tance (37) that quantifies the symmetric difference in splits
between the reconstructed tree and the ground truth, which
reflects the accuracy of the overall topology of the tree (Fig-
ure 6A and B); and (ii) triplets’ correct rate that calculates
the percentage of correctly located triplets of cells on the
cell lineage, which reflects the accuracy of inferring local
lineages of single cells (Supplementary Figure S6A and B).
For the RF distance, we use the API from the ete3 toolkit
(38). For the triplet score, we randomly select 10 000 triplets
and calculate the percentage of triplets that have the same
structure in the reconstructed tree and the ground truth. To
account for randomness in our simulation, we run the sim-
ulation 10 times with each combination of parameters and
calculate the mean and standard deviation of the metrics.

Evaluation of ancestral gene expression inference methods

Using the simulated gene expression and lineage barcode
data from the root to the leaf cells, we evaluate the accu-
racy of ancestral gene expression inference, performed by
TreeVAE (19). TreeVAE takes as input a cell lineage tree
and the gene expression data of leaf cells. We compare Tree-
VAE with a naive VAE-based baseline method. To take into
account the accuracy of the input cell lineage tree, we test
TreeVAE with two tree inputs: (i) the tree reconstructed by
Cassiopeia (16) with the lineage barcodes of the leaf cells
and (ii) the true cell lineage tree.

We used TedSim to generate 10 datasets with 128 leaf
cells and 126 internal cells. The gene expressions of the leaf
cells are used as input data for the algorithm and the gene
expressions of the internal cells serve as the ground truth.
We quantify the performances of TreeVAE and the baseline
method using the following comparisons between the in-
ferred ancestral gene expression and the ground truth (Fig-
ure 6C and Supplementary Figure S6C and D): (i) cell to
cell correlation (Spearman’s and Pearson’s correlations) and
MSE (mean squared error), using the true lineage; and (ii)
correlation and MSE of the average expression over all an-
cestral cells, using the reconstructed lineage and the true lin-
eage.

Evaluation of hybrid lineage inference methods on time-
course data

We can obtain time-course scRNA-seq and lineage barcode
data from TedSim by selecting cells at different depths of the
lineage tree. Methods including LineageOT (18) and En-
tropicOT (8) were developed to infer the cell lineage rela-
tionships using time-course single-cell gene expression data.
LineageOT also uses the cell lineage tree reconstructed from
lineage tracing barcodes to improve their inference; thus, it
is one of the ‘hybrid’ methods we evaluate in this paper. We
perform LineageOT in two different modes: either using the
reconstructed cell lineage tree or using the true tree. The al-
gorithms are tested on both continuous and discrete pop-
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Figure 5. Statistical results of TI methods. (A and B) Evaluating PAGA-Tree results with varying parameters pa and step size. Ten datasets are simulated
for each parameter configuration to generate the violin plot. (A) Pseudotime inference performances with the same step size and varying pa. The ground
truth for pseudotime rank is obtained from the depth of the cells’ states on the state tree, and the HIM score is calculated between the state tree topology
and the milestone network (1) inferred by the TI method. (B) Pseudotime inference performances of PAGA-Tree and relative entropy of the dataset with
varying step size parameters. The black curve represents the average score of 10 runs and the upper and lower bounds of the ribbon represent maximum
and minimum scores.

ulations obtained by varying the values of step size and pa
(Figure 6D).

We generated the dataset with a binary cell division tree
of 512 leaves, and selected two generations of cells to ob-
tain time-course data: the 512 descendant cells and 64 an-
cestor cells at the same depth. The ground truth of ancestor–
descendant relationships is directly obtained from the cell
division tree. We vary pa and step size to get both discrete
and continuous trajectories: pa = 0.4 and step size = 0.25
for the continuous dataset; and pa = 0.8 and step size = 0.75
for the discrete dataset. We evaluate the accuracy of the lin-

eage inference using ‘ancestor prediction error’ from the pa-
per (18), which calculates the mean squared optimal trans-
port distance between the inferred coupling matrix and the
ground truth (Figure 6D).

RESULTS

TedSim generates realistic single-cell gene expression and
barcode data

TedSim generates both continuous and discrete populations
through cell divisions. In some real scRNA-seq datasets,
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Figure 6. Statistical results of lineage reconstruction methods and other hybrid methods. (A and B) Testing five tree reconstruction methods on synthetic
lineage barcodes using the RF distance. Lower RF distance indicates higher reconstruction accuracy. The mutation states are sampled from a fitted
distribution of real mutations of embryo2 from (14) (A) or a uniform distribution of synthetic mutations (B). Parameters used to simulate the datasets can
be found in Supplementary Section S5.3. For each configuration (mutation rate and dropout), 10 simulations are run and used to test the methods. Each
simulated dataset has 512 cells. (C) Testing ancestral gene expression inference accuracy of TreeVAE. The correlation and distance metrics are calculated
between the inferred gene expression of ancestor cells and the true counts of the same cells given by TedSim. (D) Testing ancestor–descendant inference
accuracy of LineageOT. The normalized ancestor error is calculated as the marginal of the mean squared optimal transport distance between inferred
ancestors and ground truth (18).

cells form discrete clusters and in some other datasets cells
form continuous trajectories. Biological factors that cause
these different patterns can include the following: (i) cell
differentiation speed: cells with high differentiation speed
can reach terminal cell states fast and we tend to observe
terminal cell types that are often discrete; and (ii) whether
there exist intermediate cell types when cells transit from
one cell type to another. TedSim models the first factor
through the parameter pa (asymmetric division rate) and

the distribution Pjump (probability of jumping beyond the
immediate next cell state at one cell division), and mod-
els the second factor through step size (determines how
dense cell states are sampled from the original cell state
tree).

We show that by varying pa and step size TedSim can gen-
erate scRNA-seq data with different compositions and pat-
terns of cell types. Given the same number of cell divisions,
larger pa and larger step size values result in more cells at
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the terminal states (Figure 3A–D). The states sampled using
step size = 0.25 and step size = 0.5, respectively, are shown
in Figure 3A. In order to show the effect of these two param-
eters, we take all the cells at the leaves of the cell lineage tree,
and classify them by the depth of their corresponding states
in the cell state tree. In Figure 3B, we show the frequency of
cells belonging to states at different depths in the cell state
tree. With larger pa and step size, most cells’ states are the
terminal states with the largest depth (bottom right plot of
Figure 3B). In Figure 3C and D, we show the UMAP visu-
alization of the present-day cells using two combinations of
pa and step size values, where one leads to continuous pop-
ulations and the other leads to discrete populations. TedSim
is able to naturally simulate continuous or discrete popula-
tion of cells or a mixture of the two using the same model
with different parameters.

TedSim is able to generate scRNA-seq data with multi-
ple cell types that mimic real datasets in multiple aspects.
Existing simulators compare various statistical properties
of simulated and real data, including the distribution of
mean expression and the percentage of zeros in each cell
(20,22,25). However, these publications use only statistical
properties within one cell type or averaged over all cell types
of real datasets to perform the comparison. We show that
data simulated by TedSim can preserve the statistical prop-
erties of every cell type individually. Moreover, TedSim sim-
ulated data also maintains the cross-cell-type relationships
as in the real data.

To demonstrate this, we use TedSim to generate an
scRNA-seq dataset close to the gene expression data of 10
selected cell types of zebrafish larvae at 5 dpf from (24)
(Figure 3E) (Supplementary Section S5.1). First, we learn
a cell state tree from the real data, in order to preserve
the cross-cell-type relationship. We calculate the pairwise
Euclidean distances between the mean expressions of the
cell types, and then run hierarchical clustering to get the
cell state tree (Figure 3F) (see the ‘Materials and Meth-
ods’ section). Second, in order to maintain the relative num-
bers of cells in each cell type, we assign probabilities for
the choice of each branch at each branching point in the
cell state tree. With the state tree and branch probabili-
ties, TedSim is able to generate data that have similar cell
type composition and relative locations of clusters (Figure
3G–I). Figure 3J shows that the proportion of cells in each
cell type matches between real and simulated data. We can
match the statistical properties of the simulated data to a
given dataset with selected simulation parameters (see the
‘Materials and Methods’ section). Figure 3J–L shows, re-
spectively, the comparison between simulated and real data
in terms of mean gene expression and percentage of zeros
per cell in each cell grouped by cell type, and the gene-
wise comparison results are provided in Supplementary
Figure S2.

TedSim generates realistic lineage barcode data. The
CRISPR/Cas9-induced lineage barcodes contain various
mutations that occurred during cell divisions. These mu-
tations, however, tend to be not evenly distributed, and
some mutations would appear more frequently than other
mutations. During the simulation of cell divisions in Ted-
Sim, we sample the mutations from a fitted distribution of

a real dataset (14) (see the ‘Materials and Methods’ sec-
tion). Therefore, we are able to generate simulated lineage
barcodes that have a similar pattern of mutation distribu-
tion as the real dataset (Figures 2H and 7A). In compari-
son to (23), which simulates lineage barcode data, TedSim
has the following new features: (i) TedSim simulates lineage
barcodes simultaneously with gene expression data (CIVs)
while traversing the cell lineage tree; and (ii) the simulated
lineage barcodes can be connected to a gene and the capture
dropout can happen based on the observed gene expression
of the gene.

TedSim generates the inconsistency between transcriptome
similarity and barcode similarity observed in real data. One
important question in developmental biology is how cell
types are related to cell lineages. With the development
of CRISPR/Cas9 lineage barcoding alongside scRNA-seq
technologies, researchers aim to uncover the mechanisms of
how single totipotent cells give rise to complex multicellular
organisms. For example, we can examine the cell type com-
position within subtrees at different levels of the cell lineage.
Data from recent papers that jointly profile lineage barcodes
and gene expression data show that while some subtrees in
the cell lineage tree have dominating cell types, there are a
considerable number of cells of the same type located in dif-
ferent subtrees, and in the same subtree there can be mul-
tiple cell types (13,14,24,39). We call this the inconsistency
between transcriptome similarity and lineage barcode sim-
ilarity. Various scenarios that cause this inconsistency are
discussed in (10).

The model we use in TedSim combining an underlying
cell state tree with asymmetric cell divisions can generate
such inconsistency between transcriptome similarity and
barcode similarity of cells. The given cell state tree and the
asymmetric cell division events modelled in TedSim allow
both the scenario of the same clone to be dominated by
one cell type and the scenario where different clones gen-
erate the same cell types. Therefore, TedSim can generate
realistic cell type composition within subtrees of the lin-
eage tree (Figure 7B and C). Chan et al. presented the cell
type composition under various progenitors (Figure 6a in
their paper) (14) in a similar form to Figure 7C, from which
we see that the simulated dataset shows similar heterogene-
ity in cell types in each subtree/progenitor, including a mix
of multiple cell types as well as biases towards some cell
types.

The connections between lineage and transcriptomic data
can also be dynamic and transient (29). By default in Ted-
Sim, we assume that the state of the cell has a bigger impact
on the gene expression than the lineage of the cell, but we
can also increase the impact of cell lineage information by
tuning the weight of the SIVs in the CIVs (see the ‘Materials
and Methods’ section and Supplementary Section S3). With
future research uncovering how the correlation between cell
lineage and cell state changes over time, we can easily gen-
eralize the current model to dynamically adjust the balance
between the impact of parent state and the assigned state
by the cell state tree on a daughter cell based on the current
developmental stages.
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Figure 7. Simulation of lineage barcodes and inconsistency between cell lineage and cell state. (A) Mutated state distribution (top 15 frequent mutations
are shown) in simulated lineage barcodes by TedSim. Mutation rate μ = 0.1. No dropouts are introduced. One can observe that this distribution is similar
to the one shown in Figure 2H. (B) Cell type visualization in the true lineage tree shows inconsistency between states and lineage barcodes. Different
colours represent different cell types. (C) Cell type composition in subtrees with roots at the same depth (the fifth generation from the root) in panel (B).
Sixteen subtrees are shown. Each colour represents a cell type and the height of each colour bar represents the percentage of cells in that cell type in the
corresponding subtree.

Evaluating TI methods

ScRNA-seq data provide transcriptome information of ev-
ery single cell, but as a cell can be sequenced only once and
in most of the experiments all cells are sequenced at the
same time, scRNA-seq data do not provide data of the cells
in the past for researchers to study developmental processes.
TI methods were developed to infer the cell trajectories us-
ing only data from present-day cells, assuming that there are
cells in the dataset that represent cell states at various stages
of the developmental process.

Various TI methods have been tested in multiple publi-
cations using simulated data (1,22), but the data simula-
tion procedures used in these publications align with the as-
sumption that the data cover the entirety of the continuous
manifolds that the transcriptomic data live in. However, in
practice, some experiments may capture only the terminal
cell states, or part of the intermediate states. These scenarios
can be generated by TedSim. Therefore, the TedSim simu-
lated data can reflect the realistic challenges for the TI meth-
ods. In particular, in previous sections we showed that the
cell type composition in the present-day cells can be differ-
ent depending on various factors (Figure 2A–C), and how
balanced the cell state composition is in the data can be
important for the performance of TI methods. Therefore,
instead of comparing different TI methods, we will focus
on investigating the performances of the top TI algorithms
on datasets with different compositions of cell states, con-
trolled by TedSim parameters.

When applying a TI method to data generated by Ted-
Sim, the input to the TI method is the scRNA-seq data
from TedSim, and the cell state tree used in TedSim serves
as ground truth to evaluate the TI method (Figure 4A). We
apply two state-of-the-art TI methods, Slingshot (2) and
PAGA-Tree (3), as benchmarked by (1). For both TI meth-
ods, we provide the ground truth root cell in the trajectory.
Figure 4B shows the inferred trajectory by Slingshot on one
of our simulated datasets generated by TedSim that covers
most of the cell states in the data, and the TI methods are
able to infer the correct state tree shown in Figure 4A. We
then focus on testing TI methods under various composi-
tions of cell types in the present-day cells, which can be con-
trolled by parameters pa and step size. We vary parameters
pa and step size when generating and applying PAGA-Tree
on the resulting simulated scRNA-seq datasets. Figure 4C
shows the UMAP visualization of the simulated data and
inferred trajectories. In Figure 5B and C, the black coloured
network is the ‘milestone network’, which is a common tra-
jectory model used in dynwrap to align the outputs of dif-
ferent methods and make them comparable (1). Each black
dot is a ‘milestone’. A milestone may or may not corre-
spond to a cell type. Consistent with Figure 3C and D,
high pa and step size result in more discrete populations of
cells, mainly belonging to the terminal states in the cell state
tree. Lower pa and step size values, on the other hand, lead
to more cells at non-terminal cell states. TI methods work
better when the present-day cells cover as many cell states
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(both terminal and non-terminal) as possible. For example,
PAGA-Tree infers the correct trajectory when pa = 0.6 and
step size = 0.25, while when pa = 1 and step size = 1, it is
very difficult for the TI method to find the correct trajectory.
The results of Slingshot on the same datasets are shown in
Supplementary Figure S3.

We propose a measure relative entropy (see the ‘Materi-
als and Methods’ section and Supplementary Section S7)
to quantify whether a dataset has a balanced composition
of all cell types. Higher relative entropy corresponds to
more balanced populations. We also quantitatively evalu-
ate the performance of the TI methods under different pa
and step size values. We calculated the HIM score (40) for
the difference between the topology of inferred and true
trajectories as used in (1). The HIM score was calculated
between the milestone networks of inferred and true tra-
jectories, and a higher score means better results. To mea-
sure whether cells are correctly ordered on the topology, we
calculated Kendall’s τ (41) correlation between the inferred
pseudotime and true pseudotime of cells. Figure 5A shows
that when step size is relatively small (step size = 0.25 or
step size = 0.5), both the HIM score and Kendall’s τ first
increase and then decrease. These scores are relatively low
with small pa because small pa and step size together lead
to a small number of cells in states towards the terminal
states. This is also reflected in the relative entropy levels
shown in Figure 5B (e.g. the relative entropy is low when
step size≤ 0.5 and pa = 0.2 or pa = 0.4). In Figure 5A, we
also observe that both HIM score and Kendall’s τ decrease
when pa = 1. This is because in this case the numbers of cells
in ancestral states are small, which also leads to lower rel-
ative entropy levels and makes it harder for TI methods to
infer the correct cell state tree.

We plot the relative entropy of the datasets along with
the Kendall’s τ and HIM score of trajectories inferred
by PAGA-Tree in Figure 5B. We observe that Kendall’s τ
changes in consistence with the trend of the relative entropy,
where for smaller pa such as pa = 0.2, the relative entropy
increases with step size since it requires larger step size in
order to capture the whole developmental trajectory; on the
contrary, when pa gets closer to 1 and cells get to the termi-
nal states fast, the relative entropy declines with step size.
In Figure 5B, while the HIM score also follows the trend
of relative entropy when fixing pa and changing step size,
the HIM score changes within a small range and remains at
a relatively high level (>0.5 most of the time), which indi-
cates that with a given root cell of the trajectory, PAGA-Tree
can infer the topology of the ground truth state tree rea-
sonably well when the relative entropy fluctuates. Slingshot,
on the other hand, overall has lower HIM scores, although
Kendall’s τ values of the two methods are comparable (Sup-
plementary Figure S4).

These results suggest that top TI methods are likely to
find the correct or near-correct underlying trajectory that
represents cell state transition if the dataset covers most
states on the state tree and forms continuous populations
(Figure 4A–C). Therefore, when applying TI methods, it is
important to be aware that the composition of cell types in
the dataset is a key factor to determine the reliability of the
results.

TedSim has the potential to suggest the time to harvest
cells for the most comprehensive cell type compositions. For
example, given a hypothesized asymmetric cell division rate
and cell state tree, running TedSim allows for the estima-
tion of the number of divisions needed to obtain cells with
comprehensive cell type compositions.

Evaluating lineage reconstruction algorithms

Given the lineage barcodes of present-day cells, reconstruct-
ing the lineage tree is an NP-hard problem (42,43). A few
computational methods have been developed to reconstruct
the cell lineage tree from the lineage barcodes of the present-
day cells (16,23). However, it is very challenging to obtain
a cell lineage tree with high accuracy due to various rea-
sons, including the large number of cells, the limitation of
target sites and missing data in the barcodes (23). To im-
prove the accuracy of reconstructed trees, hybrid methods
that use both the scRNA-seq and lineage barcode data are
emerging, with LinTIMaT (17) as a representative. Since
TedSim generates both scRNA-seq and the lineage barcode
data simultaneously, it can be used to benchmark not only
tree reconstruction methods that use only lineage barcode
data, but also those that use both gene expression and bar-
code data. In particular, we would like to find out whether
the performances of lineage reconstruction are improved
by integrating gene expressions with the lineage barcodes.
We compare the performance of LinTIMaT (17) against
DCLEAR (44) and Cassiopeia (16), which are the best-
performing algorithms in the recent Allen Institute Cell
Lineage Reconstruction DREAM Challenge (44) that use
only the CRISPR/Cas9-induced lineage barcodes.

We set up the simulation of TedSim as follows: for each
cell, the lineage barcode contains 32 target sites, and each
target site, if mutated, can be sampled from 100 possible
mutated states. Simulations are run with varying mutation
rate μ, dropout setting (on/off) and mutation state distri-
butions (equal chance or biased). The parameters for sim-
ulating gene expression values are included in Supplemen-
tary Section S5.3. We used medium-sized datasets (with 512
cells) to test all methods and used large datasets (with 8192
cells) to run a subset of methods that can scale. The RF dis-
tance and triplet scores are used to evaluate performances
of the methods.

From the results with 512 cells (Figure 6A and B), we ob-
serve that the RF distance metric for all methods shows con-
sistent dependence on the mutation rate μ, and the trend
is consistent with that is shown in (23) although Salvador-
Martinez et al. used different lineage tree reconstruction
methods. The triplet score results are much less affected by
μ (Supplementary Figure S6A and B). Cassiopeia-hybrid
has the best triplet score overall, outperforming all other
methods by a large margin under the condition of high mu-
tation rate without dropout, possibly due to the advantage
of using an ILP formulation. With dropout, Cassiopeia-
greedy outperforms Cassiopeia-hybrid slightly, but both are
still better than the two DCLEAR modes and LinTIMaT.
The results of the RF distance show similar trends for all
selected methods, and we find that the best mutation rate
is around 0.1–0.15 for both conditions: with and without
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dropouts, and excessively high mutation rate does not result
in higher tree reconstruction accuracy as people may intu-
itively think so. In Figure 6B, we show the same comparison
of tree reconstruction methods using simulated data where
the mutations occur uniformly on the barcode (the ‘equal
chance’ mode). Comparing Figure 6A and B, we see that the
tree reconstruction methods generally perform better with
the data where mutation states are selected with equal prob-
abilities, suggesting that the bias in mutation distribution
on the barcode should be modelled when developing tree
reconstruction methods in the future.

Interestingly, we see that LinTIMaT does not perform
well for lower mutation rates but its performances decline
much slower with the increase of mutation rate. The reasons
that LinTIMaT does not overperform other methods, as we
interpret, are 2-fold: (i) the initial tree obtained by LinTI-
MaT before it is refined using gene expression data is of low
quality, which can be due to bad initialization, and this af-
fects the accuracy of the final output tree; and (ii) LinTI-
MaT relies on the assumption that cells with similar gene ex-
pression profiles should be located closely in the cell lineage
tree, which is not always true. On the other hand, LinTI-
MaT’s performance does not deteriorate as much as other
methods when the mutation rate increases because the in-
corporation of gene expressions helps to maintain relatively
good results when the barcodes are not very informative.

On the datasets with 8192 cells, we tested Cassiopeia-
greedy, DCLEAR-NJ and DCLEAR-FM as Cassiopeia-
hybrid and LinTIMaT do not scale to this size of datasets
(Supplementary Figure S7). We can see that the two
DCLEAR methods have similar performances (and the two
curves largely overlap) and outperform other methods in
the majority of cases, which is consistent with the results on
datasets with 512 cells. When there are dropouts, DCLEAR
methods do not outperform Cassiopeia-greedy.

We also tested lineage reconstruction methods on the real
barcode data of the zebrafish dataset from (24). As there
does not exist a ground truth cell division tree for these cells,
we compared the trees inferred from various methods with
each other (using the RF distance) and presented character-
istics of the trees: maximum depth and number of internal
nodes (Supplementary Figure S8). From the pairwise RF
distance between the reconstructed trees, we can see that
the DCLEAR tree is significantly less similar to the other
two trees. This can be caused by the design of the neigh-
bour joining algorithm to randomly merge nodes that have
the same barcodes to enforce binary structure, whereas the
other two methods assign all nodes with the same barcode
under the same subtree. That is also why the DCLEAR
tree has more internal nodes and higher maximum depth
in comparison to the other two.

Evaluating hybrid methods of various inference tasks

With the development of technologies that jointly profile
lineage barcodes and scRNA-seq data, hybrid computa-
tional methods are emerging to integrate these data for
various purposes. Three hybrid methods, LineageOT (18),
TreeVAE (19) and LinTIMaT (17), are tested in this paper,
where the first two are evaluated in this section.

Given time-course scRNA-seq data, researchers try to in-
fer the relationships (the ancestor–descendent correspon-
dence) between cells at different timestamps (8). Forrow and
Schiebinger proposed LineageOT (18), which aims to incor-
porate the cell lineage tree reconstructed from the lineage
barcodes to improve the accuracy of ancestor–descendant
inference when the lineage barcode data are available. Here,
we use the data simulated by TedSim to evaluate this
method (see the ‘Materials and Methods’ section). As per-
formed in (18), we compare their proposed method Lin-
eageOT with EntropicOT (8), which uses only gene expres-
sion data. From the results, we can see that by using good
lineage information (LineageOT, true tree), the normalized
ancestor error can be largely improved (Figure 6D). By
varying the parameters that affect the continuity of popu-
lations and cell type compositions pa and step size, we can
see all methods perform worse when pa and step size are in-
creased, considering the fact that larger parameters result in
more discrete populations (Figure 6D). In this case, the cells
of two different generations are more likely to have the same
cell state, making it harder to infer the ancestor–descendant
relationships. While LineageOT with true lineage tree is still
able to maintain decent ancestor error, LineageOT with fit-
ted tree falls behind even compared with EntropicOT. How
to better reconstruct the lineage tree from the barcodes will
be the key to infer the developmental trajectory more accu-
rately.

Another computational problem using both the scRNA-
seq and the lineage tracing barcode data is to reconstruct
the gene expression profiles of ancestral cells on the cell divi-
sion tree. Ouardini et al. developed TreeVAE, which utilizes
paired single-cell lineage tracing and transcriptomic data
(19). Here, we test the accuracy of the reconstructed gene ex-
pressions of ancestor cells using the known ancestral data in
TedSim. The method is compared with a VAE (variational
auto-encoder)-based baseline method, which first runs on
leaf nodes and then calculates the gene expressions of an
internal node by averaging the latent space for leaves below
the node and decodes them using the trained decoder (19).
With the ground truth of the ancestor cells’ gene expression,
we evaluate the inferred expression of all ancestor cells by
calculating the Pearson’s correlation, Spearman’s correla-
tion and MSE scores (Figure 6C). From the results, we can
see that TreeVAE outperforms the baseline method in all
three metrics. Besides, we also compare the inferred expres-
sions for individual genes using either the true lineage or
reconstructed lineage from the simulated lineage barcodes.
From the results, we can see that the correlation scores of
TreeVAE still consistently outperform the baseline method
no matter which tree is used (Supplementary Figure S6C
and D).

DISCUSSION

We presented TedSim, a simulator that generates both
scRNA-seq data and lineage barcodes simultaneously
through simulating the cell division events. Compared
to existing simulators of scRNA-seq or CRISPR lineage
recorders, TedSim has the following novel features: (i) Ted-
Sim models the underlying temporal dynamics of the devel-
opment of cells by simulating the processes of cell division
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and differentiation to get both gene expressions and lineage
barcode data simultaneously. (ii) TedSim is able to simu-
late both discrete and continuous gene expressions of single
cells under the same framework by adjusting the cell differ-
entiation speed and the continuity of cell states. (iii) Given
simultaneously simulated gene expression and lineage bar-
code data, TedSim can evaluate hybrid methods that use
both types of data. (iv) The simulated data show realistic
inconsistency between transcriptome similarity and lineage
barcode similarity of cells, which cause the heterogeneity of
cell types in a lineage subtree, and meanwhile the subtree
can have a dominant cell type.

By applying state-of-the-art TI methods to scRNA-seq
data simulated by TedSim, we have gained insights towards
experimental design for studying cell trajectories: it is im-
portant to maintain cells from ancestral states in the cell
state tree and the cell type composition in a dataset is cru-
cial for the TI methods to return meaningful inference. One
may consider sequencing cells at multiple time points in or-
der to capture early cell states. Overall, we found that the
TI methods, although using scRNA-seq data of present-day
cells, can recover the underlying state tree that guides the
cell division and differentiation events reasonably well, as
long as the dataset has a good coverage of both terminal
and non-terminal cell states.

As more datasets that profile both the CRISPR/Cas9-
induced scars and single-cell gene expression data become
available, hybrid algorithms that integrate both types of
data to learn cell dynamics are needed. Current hybrid
methods (e.g. LinTIMaT), as we tested with TedSim, have
not provided satisfactory results. Future methods may ben-
efit from better modelling the relationship between the two
types of data, possibly using the asymmetric cell division
model we propose in TedSim.

DATA AVAILABILITY

TedSim is available at https://github.com/Galaxeee/TedSim.
Dynverse is an open set of packages to benchmark, con-

struct and interpret single-cell trajectories available at https:
//github.com/dynverse.

Cassiopeia is an end-to-end pipeline for single-cell lin-
eage tracing experiments available at https://github.com/
YosefLab/Cassiopeia.

DCLEAR is an R package for distance-based cell lin-
eage reconstruction available at https://github.com/ikwak2/
DCLEAR.

LinTIMaT is a statistical method for reconstructing
lineages from joint CRISPR–Cas9 mutations and single-
cell transcriptomic data available at https://github.com/
jessica1338/LinTIMaT.

LineageOT is a unified framework for lineage tracing and
trajectory inference available at https://github.com/aforr/
LineageOT.

The reference dataset used in Figure 2H is available in the
Gene Expression Omnibus database under accession num-
ber GSE117542.
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