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Cachexia affects about 80% of gastrointestinal cancer patients. This multifactorial 
syndrome resulting in involuntary and continuous weight loss is accompanied by sys-
temic inflammation and immune cell infiltration in various tissues. Understanding the 
interactions among tumor, immune cells, and peripheral tissues could help attenuating 
systemic inflammation. Therefore, we investigated inflammation in the subcutaneous 
adipose tissue and in the tumor, in weight stable and cachectic cancer patients with 
same diagnosis, in order to establish correlations between tumor microenvironment and 
secretory pattern with adipose tissue and systemic inflammation. Infiltrating monocyte 
phenotypes of subcutaneous and tumor vascular-stromal fraction were identified by flow 
cytometry. Gene and protein expression of inflammatory and chemotactic factors was 
measured with qRT-PCR and Multiplex Magpix® system, respectively. Subcutaneous 
vascular-stromal fraction exhibited no differences in regard to macrophage subtypes, 
while in the tumor, the percentage of M2 macrophages was decreased in the cachec-
tic patients, in comparison to weight-stable counterparts. CCL3, CCL4, and IL-1β 
expression was higher in the adipose tissue and tumor tissue in the cachectic group. 
In both tissues, chemotactic factors were positively correlated with IL-1β. Furthermore, 
positive correlations were found for the content of chemoattractants and cytokines in 
the tumor and adipose tissue. The results strongly suggest that the crosstalk between 
the tumor and peripheral tissues is more pronounced in cachectic patients, compared 
to weight-stable patients with the same tumor diagnosis.
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inTrODUcTiOn

Cachexia is a multifactorial and multi-organ syndrome char-
acterized by continuous and involuntary weight loss and by 
systemic inflammation (1, 2). This syndrome was described about 
2000 years ago by Hippocrates and is a common feature of several 
diseases, such as chronic obstructive pulmonary disease, chronic 
heart failure, chronic infection, and cancer (3).

In cancer, cachexia is present in approximately 50% of all 
patients and in up to 80% of patients with advanced disease, 
reducing tolerance to treatment, therapeutic response, and qual-
ity of life and survival (4). Among 22–40% of all cancer deaths are 
directly caused by cachexia (5), and its incidence varies among 
the different types of cancer, being of around 80% in pancreas 
and gastrointestinal cancer patients, and of 60% in lung cancer 
patients (6).

An important feature of cachexia is chronic systemic inflam-
mation and, paradoxically, immunosuppression (7). Mediators 
produced by both the tumor and the host induce intracellular 
changes directly associated with persistent inflammation (8). 
The sources of the inflammatory factors in cachexia are plenty, 
including tumor cells, tumor infiltrating cells along with periph-
eral tissue parenchymal cells and associated infiltrating cells 
(9). Thus, an intricate tumor–host interaction is established, 
promoting an imbalance that favors the pro-inflammatory over 
the anti-inflammatory status (10, 11).

Solid tumors often present infiltrating immune cells and release 
cytokines into surrounding tissues and into the bloodstream (12). 
The immune cells within tumor microenvironment consist of 
various phenotypes, among which myeloid-derived suppressor 
cells, dendritic cells, natural killers, T cells, and macrophages 
(13). The infiltrate contributes to tumor growth and also to micro-
environment remodeling; while the release of cytokines into the 
bloodstream promotes tissue and organ functional impairment as 
a result of systemic inflammation (12). Studies with models have 
shown that the host’s tissues play a key role in sustaining systemic 
inflammation and inducting cachexia (14–17).

However, as far as we know, there are no reports in the 
literature comparing the cytokine secretory profile of tumors of 
cachectic and non-cachectic cancer patients matched for tumor 
type and stage. It is very possible that inflammatory factors 
secreted by the tumor are the culprit, eliciting secondary tissue 
inflammation, will as a consequence, fuel systemic inflamma-
tion. Argilés et  al. review the large number of cytokines that 
might be responsible for the metabolic changes associated with 
cancer wasting (18). We have consistently found that WAT 
(white adipose tissue) is a contributor to systemic inflam-
mation, as both adipocytes and infiltrating immune cells are 
capable of releasing cytokines in animal models of cachexia. 
Nevertheless, the mechanisms that trigger adipose inflamma-
tion in cancer cachexia are not fully elucidated. We hypothesize 
that differences in tumor microenvironment and secretion pat-
tern in patients with the same diagnosis and tumor stage could 
be associated with the presence or absence of cachexia-related 
peripheral tissue inflammation.

The aim of the present study was therefore, to examine the 
secretory profile of tumors of cachectic and non-cachectic 

patients with matched tumor diagnosis and relate to the results 
with local white adipose tissue and systemic inflammation.

MaTerials anD MeThODs

subjects
Twenty-three cancer patients (60.53  ±  13.08  years old) par-
ticipated in the study. The study was approved by the University 
of São Paulo Biomedical Sciences Institute Ethics Committee 
(1004/CEP) and by the University Hospital Ethics Committee 
(CEP-HU/USP: 752/07) in accordance to the Declaration of 
Helsinki (2013). All participants signed an informed consent prior 
to engaging in the study. The inclusion criteria were: not having 
received anticancer or continuous anti-inflammatory treatment 
and willingness to participate. The exclusion criteria were: liver 
failure, renal failure, AIDS, inflammatory diseases of the bowel, 
and autoimmune disorders. Patient group division was based on 
the criteria proposed by Evans et al. (19). Characteristics of the 
subjects are summarized in Table 4.

realtime Pcr
Total RNA was isolated from samples, with Trizol® reagent 
(Invitrogen, Carlsbad, CA, USA) following the manufacturer’s 
recommendations, and then homogenized. RNA concentrations 
were determined by measuring the absorbance in 260/280  nm 
in Synergy H1 Multi-Mode Reader (Thermo Fisher Scientific 
Inc., Waltham, MA, USA). Complementary DNA synthesis was 
carried out using the high capacity cDNA reverse transcription 
kit (Life Technologies, Grand Island, NY, USA), which consisted 
of an assay mix containing 1 μg total RNA, 2 μL 10× RT Buffer, 
0.8 μL 25× dNTP mix (100 mM), 2 μL 10× Random primers, 1 μL 
MultiScribe™ Reverse Transcriptase, and 4.2 μL of nuclease-free 
water in a final volume of 20 μL. The thermal cycler conditions 
were: 25°C for 10 min, then 37°C for 120 min followed by 85°C 
for 5 min. Then, 20 ng of cDNA was mixed with 2× SYBR Green 
fast PCR master mix – and primers (Table 1) (Life Technologies, 
Grand Island, NY, USA) – in a final volume of 10 μL for qPCR, 
performed in the Quantstudio 12K Real Time Systems (Life 
Technologies, Grand Island, NY, USA). The mRNA levels were 
determined by the comparative Ct method. For each sample, a 
ΔCt value was obtained by subtracting RPL-27 or HPRT1 gene 
values from those of the gene of interest. The average ΔCt value of 
the control group was then subtracted from the sample to derive 
a −ΔΔCt value. The expression of each gene was evaluated by 
2−ΔΔCt, according to Livak and Schmittgen (20).

Multiplex analysis of sample Protein 
content
Samples of the tumor and subcutaneous adipose tissue from the 
experimental groups were incubated with the mixture of Magplex 
microspheres and covered with the specific antibodies for 2  h. 
The detection of target antigens bound to the microspheres was 
performed with a mixture of biotinylated capture antibodies 
after incubation for 1 h followed by incubation with streptavidin 
labeled with phycoerithrin for 30  min. The microspheres were 
then analyzed with the phycoerithrin Magpix® instrument (Life 
Technologies, Grand Island, NY, USA). Each cytokine value 
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TaBle 2 | cytokine analysis.

cytokine abbreviation

Tumor necrosis factor alpha TNF-α
Tumor necrosis factor beta TNF-β
Interleukin 6 IL-6

Interleukin 7 IL-7

Interleukin 10 IL-10

Interleukin 13 IL-13

Interferon alpha IFN-α
Interferon gamma IFN-γ
Interferon gamma-induced protein 10 IP-10

Monocyte chemotactic protein1 MCP1/CCL2

Macrophage inflammatory protein-1α MIP-1α/CCL3

Macrophage inflammatory protein-1β MIP-1β/CCL4

Chemokine(C–C motif) ligand 5 RANTES/CCL5

TaBle 1 | list of primers.

gene (species) sequence 5′→3′

CCL-2 (Homo sapiens) (NM 
002982.3)

Fw: TCA GCC AGA TGC AAT CAA TG
Rev: ACA CTT GCT GCT GGT GAT TCT

IL-1β (Homo sapiens) (NM 
000576.2)

Fw: AGC CAA TCT TCA TTG CTC AAG T
Rev: AGT CAT CCT CAT TGC CAC TGT

IL-6 (Homo sapiens) (NM 
000600.3)

Fw: CAG CCC TGA GAA AGG AGA CAT
Rev: AGC CAT CTT TGG AAG GTT CA

IFN-γ (Homo sapiens) (NM 
000619.2)

Fw: TGG AAA GAG GAG AGT GAC AGA A
Rev: TTG GAT GCT CTG GTC ATC TTT A

TNF-α (Homo sapiens) (NM 
000594.3)

Fw: CTC TCT CCC CTG GAA AGG AC
Rev: ATC ACT CCA AAG TGC AGC AG

IL- 10 (Homo sapiens) (NM 
000572.2)

Fw: TGTCATCGATTTCTTCCCTGT
Rev: TGC CTT TCT CTT GGA GCT TAT T

RPL-27(Homo sapiens) (NM 
000988.3)

Fw: CCG AAA TGG GCA AGT TCA T
Rev: CCA TCA TCA ATG TTC TTC ACG A

IL-8 (Homo sapiens) (NM 
000584.3)

Fw: AGC TCT GTG TGA AGG TGA T
Rev: TTT GGG GTG GAA AGG TTT G

ZAG (Homo sapiens) (NM 
001185.3)

Fw: CCA GGA GAA CCA AGA TGG TC
Rev: CTG CTT CCA ATC CTC CAT TC

PIF (Homo sapiens) (NM 
005268627.1)

Fw: AGG AAG CAG AGA TCC AGC CT
Rev: GGC TCC TTT ACC CAC GCT TT

HPRT1(Homo sapiens) (NM 
000194.2)

Fw: TGG CGT CGT GAT TAG TGA TG
Rev: CTT GAG CAC ACA GAG GGC TA

TaBle 3 | Panels of fluorochrome-conjugated antibodies for flow 
cytometry.

Panel antibody Fluorochrome catalog no.

Macrophages (M1 and M2) CD45 FITC 555482
CD206 PE 555954
CD14 PERCP-Cy5.5 562692
CXCR4 PE-Cy7 560669
CD86 APC 555660
CD11b APC-Cy7 557657
CCR7 BV421  562555
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was corrected to total protein concentration. The table below 
describes all analyzed cytokines (Table 2).

immunophenotyping by Flow cytometry
Preparation of Adipose Tissue and Tumor Cells for 
Flow Cytometry
Fractions of subcutaneous adipose tissue and tumor were 
obtained, any lymph nodes were carefully removed, and the tis-
sues were placed in either DMEM (Dulbecco’s Modified Eagle 
Medium) or HBSS (Hank’s Balanced Salt Solution). The tissue 
fragments were then digested for 40 min at 37°C in these culture 
media containing collagenase type I (280 U/ml) (Sigma Aldrich) 
under agitation. The samples were filtered through fine plastic 
mesh and washed with respective media.

Finally, cells of vascular-stromal fraction were separated by 
centrifugation at 500 g for 5 min. The cells of the stromal-vascular 
fraction of adipose tissue were resuspended and washed twice 
with culture medium and centrifuged again at 500 g, for 5 min. 
The cells were resuspended in 500 μL of FBS and dimethyl sul-
foxide (DMSO) and stored in liquid nitrogen until processing for 
flow cytometry.

cell surface antigens for Flow cytometry
The samples were rapidly thawed in a water bath at 37°C, washed 
with culture medium, and pelleted at 600 g for 10 min at 4°C. 
Compensation of the flow cytometer (FACSCanto II  –  BD 
Biosciences) was performed with compensating beads and then 
the gates were determined for the analysis of cell populations of 
interest (Figure S1 in Supplementary Material).

The fluorochrome conjugated antibodies (listed in Table 3) of 
the macrophage panels were added to the samples, and these were 
incubated for 30 min at 4°C, in the dark. The labeled cells were 
washed, centrifuged 400 g for 5 min, resuspended in 500 μL of 
DMEM, and detected by BD FACSCantoTM II cytometer.

statistical Methods
Data are expressed as mean ± SE or median [first quartile; third 
quartile]. First, a Gaussian distributions test was employed for all 
samples (D’Agostino-pearson omnibus test, Shapiro–Wilk test, 
Kolmogorov–Smirnov Test). Student’s t-test or Mann–Whitney 
test with multiple comparisons was employed for parametric and 
non-parametric data, respectively. The significance level was set 
at p < 0.05. Graphpad Prism 5.0 was adopted for the analysis. All 
statistical procedures were performed with the assistance of the 
Institute of Biomedical Sciences/University of Sao Paulo, under 
the supervision of Ms. Rosana Duarte Prisco.

resUlTs

general characteristics of Patients
The general characteristics of patients are illustrated in Table 4. 
No statistical differences were found in regard to age and height 
between the groups. Body mass in the 12 months before engage-
ment in the study, as informed by the patients at moment of 
the recruitment interview, showed no statistical differences 
between groups, while baseline body mass of the cachectic can-
cer group was lower (in average 11%), when compared with the 
weight-stable cancer group, although not statistically significant 
(p = 0.07). When comparing the difference between previously 
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FigUre 1 | gene expression in tumor tissue. Data expressed as mean ± SE or as median [first quartile; third quartile]. *Significant difference between WSC vs. 
CC. Expression of target genes was normalized to the reference HPRT1. TNF-α, tumor necrosis factor α (a); CCL2, chemokine (C–C motif) ligand 2 (B); Arbitrary 
units, AU. WSC (n = 10) and CC (n = 14).

TaBle 4 | general characteristic of patients.

Wsc (weight-stable 
cancer)

cc (cachectic 
cancer)

p

N 17 19

Male/female (n) 10/7 12/7

Age (years) 59.2 ± 3.69 61.7 ± 2.55 0.582

Height (m) 1.65 ± 0.024 1.65 ± 0.018 0.936

Previous body mass 
as informed (kg)

74.1 ± 3.13 72.3 ± 3.21 0.695

Current body  
mass (kg)

70.5 ± 3.17 62.5 ± 2.86 0.07

Weight loss (kg) 0.00 [0.00; 6.50] 10.00 [5.00; 13.00]a 0.0009

Weight loss (%) 0.00 [0.00; 9.00] 12.0 [8.00; 16.0]a 0.0006

BMI (kg/m2) 25.9 ± 1.04 22.8 ± 0.76a 0.0195

Tumor stage (n)

I-II 4 7

III-IV 13 12

CRP (mg/L) 3.95 [0.90; 8.03] 11.7 [7.15; 13.5]a 0.0026

Albumin (g/dL) 4.32 ± 0.18 4.04 ± 0.21 0.316

Hemoglobin (g/dL) 13.4 ± 0.50 11.2 ± 0.57a 0.0064

IL-6 (pg/mL) 2.67 ± 0.65 9.84 ± 2.02a 0.0119

Data expressed as mean ± SE or as median [first quartile; third quartile]. 
aSignificant difference CC vs. WSC group. 
BMI, body mass index; CRP, C-reactive protein; IL-6, interleukin 6.
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informed body mass and current body mass, marked weight 
loss (both in terms of absolute and relative weight) was found 
for CC, in relation to the weight-stable cancer (WSC) group, in 
accordance with the proposed by Evans et al. (19) (weight loss 
>5% over past 6 months – in absence of simple starvation). The 
body mass index (kg/m2) of CC, although greater than 20 kg/m2 
(considered the cutoff point for cachexia), was significantly lower 
than that of WSC. C-reactive protein, albumin, hemoglobin, and 
IL-6, biochemical markers of cachexia, were also evaluated. CRP 
plasma content  –  the most widely accepted index of systemic 
inflammation  –  was higher in CC than in WSC (p  =  0.0026). 
Similarly, plasma IL-6 levels were significantly higher in cachectic 
cancer patients (CC) (p  =  0.0119). Additionally, serum hemo-
globin levels of CC were consistently lower when compared with 
WSC (p = 0.0064). Serum albumin levels were not significantly 
different between groups (p = 0.316).

Tumor gene expression analysis
Gene expression of the pro-inflammatory cytokines TNF-α 
and CCL2 in the tumor were increased in CC compared to 
WSC, p = 0.020 and p = 0.0354, respectively (Figures 1A–B). 
No statistically significant difference in mRNA concentration 
of VEGF (angiogenesis factor), IL-6, IL-1β, IFN-γ, PIF, ZAG, 
IL-10, between WSC and CC could be detected, as shown in 
Table 5.

subcutaneous adipose Tissue gene 
expression analysis
As previously described, we found that gene expression of 
TNF-α, IL-1β, and MCP-1/CCL2 were significantly higher 
in cachectic cancer patients when compared with WSC. IL-6 
and IFN-γ gene expression showed no differences among the 
groups.

Tumor Protein expression analysis
Protein expression of chemoattractant factors in tumor tissue 
CCL [(chemokine (C–C motif) ligand)]-2, CCL4, CCL5 was not 
significantly different between the groups as shown in Table 6. 
However, CCL3, also known as macrophage inflammatory pro-
tein 1 alpha, was higher in CC in relation to WSC (p = 0.043) 
(Figure 2A).

The protein concentrations of different pro- and anti-inflam-
matory cytokines and cachexia-related factors in cachectic and 
non-cachectic cancer are shown in Table  6. Among the pro-
inflammatory cytokines, IL-1β was increased in CC compared 
to WSC (p = 0.041) (Figure 2B). Protein concentration of IP-10, 
a chemokine secreted by interferon stimulated cells was not 
significantly different but showed a tendency to be significantly 
higher in CC (p = 0.092). Other inflammatory cytokines such 
as IFN-γ and IL-6 were not significantly different between the 
groups. Members of the tumor necrosis factor family TNF-α 
and TNF-β were also not statistically different in CC compared 
to WSC. The protein concentration of anti-inflammatory inter-
leukins IL-10 was not different (p  =  0.9652) between groups, 
yet that IL-13 (p = 0.007) was lower in CC in compared WSC 
(Figure 2C).
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FigUre 2 | ccl3, il-1β, and il-13 protein expression in tumor samples. Data expressed as median [first quartile; third quartile]. *Significant difference 
between WSC vs. CC. CCL3, chemokine (C–C motif) ligand 3 (a); IL-1β, interleukin 1β (B); IL-13, interleukin 13 (c). WSC (n = 11) and CC (n = 12).

TaBle 5 | Tumor gene expression of cytokines and cachexia-related 
factors (aU).

qrT-Pcr 
(a.U)

Wsc (weight-stable 
cancer)

cc (cachectic cancer) p

VEGF 1.275 [0.446; 8.270] 0.557 [0.069; 3.28] 0.410

IL-6 1.395 [0.368; 2.509] 1.163 [0.537; 8.330] 0.683

IL1-β 2.545 [0.430; 16.07] 0.791 [0.185; 7.893] 0.524

IFN-γ 1.317 [0.313; 5.095] 27.65 [0.420; 80.16] 0.151

PIF 0.711 [0.154; 9.012] 9.706 [0.023; 101.1] 0.571

ZAG 2.029 [0.374; 3.501] 0.716 [0.369; 2.766] 0.497

IL-10 0.728 [0.152; 10.93] 34.12 [0.141; 54.02] 0.398

Data expressed as median [first quartile; third quartile]. Target gene expression was 
normalized to the housekeeping gene hypoxanthine-guanine phosphoribosyltransferase 
(HPRT-1). 
Arbitrary units (AU). WSC (n = 10); CC (n = 14).

TaBle 6 | inflammatory factors in tumor samples.

Pico gram per 
milligram of 
total protein

Wsc (weight-stable 
cancer)

cc  
(cachectic cancer)

p

CCL2 230.5 [96.08; 373.1] 261.89 [124.1; 546.4] 0.431

CCL4 9.32 [3.92; 13.41] 16.62 [6.77; 55.84] 0.060

CCL5 649 ± 99.69 977.8 ± 272.2 0.306

IFN-α 20.34 [5.65; 51.66] 10.95 [7.76; 52.70] 0.791

IL-10 0.363 [0.22; 1.58] 0.441 [0.16; 2.42] 0.725

IL-6 1.034 [0.245; 1.92] 2.097 [0.724; 8.33] 0.194

IP-10 243.7 [151.0; 352.2] 1263 [179.8; 2822] 0.092

TNF-α 0.352 [0.202; 0.908] 0.724 [0.339; 1.55] 0.169

TNF-β 2.306 ± 0.567 2.435 ± 0.601 0.878

Data expressed as mean ± SE or as median [first quartile; third quartile], 
p = significance of Mann–Whitney test. Cytokine concentration was normalized to total 
protein. WSC (n = 11); CC (n = 12).
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subcutaneous adipose Tissue Protein 
expression analysis
Data of protein expression of chemoattraction factors are shown 
in Table 7. We found no statistical difference for CCL2, CCL3 
and CCL5 in subcutaneous adipose tissue (Table  7). CCL4 
protein expression was higher in CC, when compared with WSC 
(Figure 3A).

Anti- as well as pro-inflammatory cytokines (IFN-α, IL-10, 
IL-13, IL-6, IP-10, and TNF-α) did not exhibit differences between 
the two studied groups (Table 7). The pro-inflammatory IL-1β 
and TNF-β cytokines protein expression presented higher levels 
in CC in relation to WSC (Figures 3B,C, respectively).

immunophenotyping by cytometry
The characterization of the different phenotypes within the total 
population of infiltrating macrophages in the tumor microen-
vironment is shown in Figure 4. The incidence of macrophages 
with anti-inflammatory profile (M2 macrophages  –  CD11b 
CD14++ CXCR4+) was significantly lower in CC, compared 
to WSC (p  =  0.007). Macrophages with inflammatory profile 
(M1 macrophages – CD11b+ CD14++ CCR7+) were found in 
similar numbers in the tumors of both groups.

The analysis of the stromal-vascular fraction of the subcuta-
neous adipose tissue yielded no statistic difference in concern 
to M1M2 macrophage (CD11b CD14++ CCR7+ CXCR4+), M1 
macrophage (CD11b+ CD14++ CCR7+) and M2 macrophage 
(CD11b CD14++CXCR4+) population percentage (Figures 5A–C, 
respectively).

correlations analysis
Non-parametric correlation (Spearman) analysis between 
chemokine (C–C motif) ligand (CCL)-3 and CCL-4 with the 
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protein expression of the cytokine anti-inflammatory cytokine 
IL-13 in the tumor of cachectic patients was found to be signifi-
cant (p = 0.0089); while the relationship between CCL4 and IL-13 
(p = 0.147) was not (Figures 6D,H). Analysis of correlation of 
CCL3 with the protein expression of the inflammatory cytokine 
IL-1B showed positive relationship (CCL3/IL-1β) (p =  0.0059) 
(Figure 6E). Whether the CCL4/IL-1β correlation (p = 0.0897) 
(Figure 6F) nor of CCL3 with %macrophages were found to be 
significant (Figures 6A–C).

When non-parametric correlation (Spearman) analysis 
was carried out in regard to macrophages and CCL4 in the 
subcutaneous adipose tissue, no statistical correlations were 
observed for M1M2 macrophages not for M1 macrophages, or 
M2 macrophages (Figures  7A–C, respectively). Furthermore, 
non-parametric correlation for CCL4 and IL-1β was found not 

to be significant, whereas that between CCL4 and TNF-β was 
significant (Figures 7D,E, respectively).

Finally, we performed non-parametric correlation 
(Spearman) analysis for CCL4 in the subcutaneous adipose 
tissue and for CCL3 in the tumor, having found a statistically 
significant positive correlation (p = 0.0448) only for the cachec-
tic patients (Figure 8A). When the relationship of TNF-α in the 
subcutaneous adipose tissue and TNF-β in the tumor was ana-
lyzed, no statistical significance was found for CC (p = 0.0892) 
(Figure 8B). A tendency for positive correlation between IL-10 
in subcutaneous adipose tissue and in the tumor (p = 0.0978) 
(Figure 8C).

DiscUssiOn

Cancer cachexia remains a major health problem worldwide as 
prevalence of cancer is on the rise. This syndrome is frequently 
undiagnosed and rarely treated, resulting in compromising of 
treatment and shortened survival (1, 10). Weight loss is the most 
visible feature of cachexia, yet some early metabolic and inflam-
matory changes precede the establishment of the most evident 
symptoms. The cachectic patients in the study, beyond presenting 
severe weight loss in the previous 6 months, exhibited systemic 
inflammation and anemia (CRP >5.0 mg/L, IL-6 >4 pg/mL, Hb 
<12 g/dL), in accordance to that proposed by Evans et al. (19), but 
no alterations of circulating albumin levels.

Cachexia-associated inflammation is the result of many 
alterations acting in concert, among which, the secretion of 
inflammation-promoting factors by the tumor itself. This, on the 
other hand, may elicit tissue and organ local sustained inflamma-
tion, in a vicious cycle. One such mechanism has been proposed 
to exist in cancer patients (2, 21).

TaBle 7 | inflammatory factors in the subcutaneous adipose tissue.

Pico gram per 
milligram of total 
protein

Wsc (weight-stable 
cancer)

cc (cachectic 
cancer)

p

CCL2 38.0 ± 7.20 20.3 ± 5.26 0.0646

CCL3 13.0 [4.06; 59.4] 3.38 [0.010; 68.6] 0.3725

CCL5 157 ± 31.0 121 ± 30.6 0.4219

IFN-α 0.210 [0.135; 3.68] 2.12 [0.228; 4.73] 0.2883

IL-10 0.070 [0.060; 0.123] 0.100 [0.060; 0.330] 0.2275

IL-13 0.190 [0.110; 1.63] 0.500 [0.170; 0.680] 0.6480

IL-6 0.0711 ± 0.004 0.101 ± 0.024 0.2668

IP-10 9.19 ± 2.42 3.63 ± 0.919 0.0522

TNF-α 0.050 [0.040; 0.0525] 0.055 [0.030; 0.103] 0.5140

Data expressed as mean ± SE or as median [first quartile; third quartile], 
p = significance of Mann–Whitney test. Cytokine concentration was normalized to total 
protein. WSC (n = 11); CC (n = 12).

FigUre 3 | ccl4, il-1β, and TnF-β protein expression in subcutaneous adipose tissue. Data expressed as mean ± SE. *Significant difference CC vs. WSC 
group. CCL4, chemokine (C–C motif) ligand 4 (a); IL-1β, interleukin 1β (B); TNF-β, tumor necrosis factor β (c). WSC (n = 11) and CC (n = 12).
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Obesity research has provided solid evidence that the 
adipose tissue is an important player in the onset and main-
tenance of systemic inflammation (22). Indeed, the adipose 
tissue produces numerous bioactive molecules as TNF-α, 
IL-1β, IL-6, CCL2, to cite a few; all of which are able to act 
in an autocrine, paracrine, and endocrine manner, hence 

reaching the blood stream and promoting the crosstalk with 
other tissues (23).

In cancer cachexia, we have previously shown evidence that 
the white adipose tissue is a potential contributor for systemic 
inflammation, as it suffers comprehensive rearrangement and 
immune cell infiltration, in association with robustly increased 

FigUre 4 | Percentage of the phenotypes of macrophage populations in the tumor microenvironment. Data expressed as median [first quartile; third 
quartile] or median ± SE. *Significant difference between WSC and CC. Tumor samples WSC and CC (n = 5). M1M2 macrophage (a); M1 macrophage (B); 
M2 macrophage (c).

FigUre 5 | Percentage of the phenotypes of macrophage in subcutaneous adipose tissue. Data expressed as median [first quartile; third quartile]. 
Stromal-vascular fraction of subcutaneous adipose tissue: WSC (n = 4) and CC (n = 5). M1M2 macrophage (a); M1 macrophage (B); M2 macrophage (c).
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FigUre 6 | correlation of cytokine protein expression and % of infiltrating immune cells in tumor. (a) CCL3/M1 macrophage (%) p = 0.938; (B) CCL3/
M1M2 macrophage (%) p = 0.956; (c) CCL3/M2 macrophage (%) p = 0.342; (D) CCL3/IL-13 p = 0.0089; (e) CCL3/IL-1β p = 0.0059; (F) CCL4/IL-1β p = 0.089; 
(g) IP10/IL-13 p = 0.057; (h) CCL4/IL-13 p = 0.147.

secretion of inflammatory factors (15, 24–26). Furthermore, the 
white adipose tissue of Walker 256 tumor-bearing rats was found 
to be infiltrated with monocytes (24), and we recently reported 
immune infiltration in cachectic cancer patients (25).

In another recent study employing the animal model of 
cachexia, we found up-regulation of IL-1β expression and activa-
tion of NF-κB and of the inflammasome pathways in adipocytes, 
and evidence of a major contribution of the vascular-stromal frac-
tion of the retroperitoneal adipose tissue to tissue inflammation 
(26). In the current study, we have similarly found a population 

of infiltrated macrophages in the subcutaneous adipose tissue of 
cachectic patients, despite lack of statistical difference between 
the cachectic and non-cachectic groups in regard to the predomi-
nance of different macrophage phenotypes (M1M2, M1, and M2).

We also previously reported that NF-κBp65 gene expression is 
increased in the subcutaneous white adipose tissue of cachectic 
cancer patients, concomitantly to up-regulation of its inflam-
matory target genes IL-1β, TNF-α, CCL2/MCP-1, and IκB-α. 
Haugen et al. also found alterations in gene expression, including 
of TNF-α and CCL2, in the intra-abdominal adipose tissue, which 
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FigUre 7 | correlations between macrophage phenotypes and ccl4 protein, and between ccl4 and il-1β, TnF-β in subcutaneous adipose tissue. 
(a) M1M2/CCL4, p = 0.787; (B) M1/CCL4, p = 0.321; (c) M2/CCL4, p = 0.790 and correlations between CCL4 protein and IL-1β, TNF-β (D) CCL4/IL-1β, 
p = 0.955; (e) CCL4/TNF-β, p = 0.041.

FigUre 8 | correlation between protein expression of inflammatory factors in subcutaneous adipose tissue and tumor. (a) CCL4 tumor/CCL3 adipose 
tissue; (B) TNF-α adipose tissue/TNF-β tumor; (c) IL-10 adipose tissue/IL-10 tumor.

was associated with reduced fat mass in patients with pancreatic 
cancer (27, 28).

To our knowledge, we are the first to show that the subcu-
taneous adipose tissue of cachectic patients presents higher 
CCL4 protein content in relation to WSC with matched tumor 
diagnosis. Increased CCL4 gene expression was found by Wu 

et al. (29) in the adipose tissue of obese mice, with concomitant 
augment of the number infiltrating leukocytes. In the present 
study, increased IL-1β and TNF-β protein expression was also 
detected, corroborating our previous findings (27).

However, what are the stimuli inducing adipose inflamma-
tion? The group of Michael Tisdale has approached, in several 
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cOnclUsiOn
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