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A systematic investigation of stem cell-derived neural interfaces can facilitate the discovery of the molecular mechanisms behind
cell behavior in neurological disorders and accelerate the development of stem cell-based therapies. Nevertheless, high-throughput
investigation of the cell-type-specific biophysical cues associated with stem cell-derived neural interfaces continues to be a
significant obstacle to overcome. To this end, we developed a combinatorial nanoarray-based method for high-throughput
investigation of neural interface micro-/nanostructures (physical cues comprising geometrical, topographical, and mechanical
aspects) and the effects of these complex physical cues on stem cell fate decisions. Furthermore, by applying a machine
learning (ML)-based analytical approach to a large number of stem cell-derived neural interfaces, we comprehensively mapped
stem cell adhesion, differentiation, and proliferation, which allowed for the cell-type-specific design of biomaterials for neural
interfacing, including both adult and human-induced pluripotent stem cells (hiPSCs) with varying genetic backgrounds. In
short, we successfully demonstrated how an innovative combinatorial nanoarray and ML-based platform technology can aid
with the rational design of stem cell-derived neural interfaces, potentially facilitating precision, and personalized tissue

engineering applications.

1. Introduction

Precise control of stem cell fates, such as adhesion, prolif-
eration, differentiation, and apoptosis, is essential for
diverse clinical applications such as stem cell therapy, dis-
ease modeling, and drug screening [1-4] . In humans,
neural stem cells (NSCs) can be derived from various
sources with distinct genetic backgrounds. These include
NSCs that occur naturally in the hippocampus, and NSCs
derived from pluripotent stem cells (e.g., human-induced
pluripotent stem cell-derived NSCs (hiPSC-NSCs)) with
or without mutations in functional genes [5, 6]. On the
other hand, it has been known that different types of
NSCs make their fate decisions in response to both soluble
and insoluble biophysical cues that are mediated through
the extracellular matrix (ECM) [7, 8]. Biophysical cues,
such as geometrical, topographical, compositional, and
mechanical properties of the ECM, have been increasingly

regarded as crucial factors when designing stem cell-
derived neural interfaces, such as nanofiber matrix-based
NSC grafts, hydrogel-based spinal cord stimulation
devices, as well as nanobiosensor-based neural probes
[9-14]. Nevertheless, it is still unclear how the diverse
neural behaviors of NSCs of different origins and genetic
backgrounds could be dedicatedly regulated by varying
ECM-mediated biophysical cues [15]. Specifically, micro-/
nanotopographies of ECM, such as those present in pro-
tein fiber networks (ie., collagen I/IV, fibronectin, and
laminin), are abundant in many tissue types and known
to profoundly affect adult neurogenesis through NSC cyto-
skeletal remodeling and modulation of biophysical signal-
ing [16-20]. Researchers have thus made great efforts to
understand the multifunctional roles of nanotopography on
NSC fate decisions, encompassing the vast array of biophys-
ical cues seen in natural ECM [21-27]. Yet, investigating the
systematic relationship between the intricate mirco-/
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nanostructures of the ECM and the dynamic processes of fate
determinations for the many types of NSCs is still a challenge
that needs to be overcome. Addressing this critical barrier
could not only provide a more complete view of NSC-
ECM interactions but also influence the precision design
of biomaterials used in stem cell-derived neural interfaces.
Hence, there is an increasing need to develop a high-
content screening (HCS) and high-content analysis
(HCA) approach to facilitate a more comprehensive
understanding of mechanisms associated with stem cell-
derived neural interfaces.

To address the above issues, herein, we developed a cell-
type-specific combinatorial nanoarray and machine learning
(ML)-based HCS and HCA method to analyze and predict
biomaterial-regulated stem cell fate decisions [Figures 1(a)
and 1(b)]. Remarkably, we could generate large-scale combi-
natorial nanoarrays encompassing thousands of patterned
micro-/nanostructures on a single substrate with a wide size
range (from 100 nm to 20 ym) using our recently developed
dynamic laser interference lithography (DLIL) [Figure 1(c)].
Although combinatorial nanoarrays have been constructed
using conventional nanolithography techniques (e.g., elec-
tron beam lithography), they are typically on a smaller scale
with fewer distinct structures [22, 24, 28, 29]. On the con-
trary, the combinatorial nanoarrays we constructed could
serve as a diverse platform for investigating stem cell-
derived neural interfaces. The challenges in tracking, corre-
lating, and projecting many topographies with various types
of stem cell behaviors are another obstacle that impedes the
high-throughput investigation of neural interfaces [30]. To
address this challenge, we combined a ML-based HCA
method with the combinatorial nanoarray to map substrate
topography-directed neural stem cell fate decisions more
precisely, such as adhesion, proliferation, differentiation,
axonal growth, and axonal alignment, across a wide range
of topographies [Figure 1(d)]. Furthermore, while individual
arrays with distinct nanotopographies have been used to
evaluate neural differentiation, there are still significant
challenges in realizing the predictive design of optimal bio-
material structures in a cell-type-specific = manner
[Figure 1(e)]. As such, we further evaluated our combinato-
rial nanoarray-based platform in the cell-type-specific neu-
ral interface design that could be useful for precision
tissue engineering. Specifically, by screening optimal nanofi-
ber structures to promote axonal alignment [Figure 1(f)],
we identified stark differences among NSCs derived from
the human hippocampus (adult NSCs), hiPSC-NSCs, and
autism patient- (with MeCP2 mutation) derived hiPSC-
NSCs, in terms of their responses to micro-/nanotopogra-
phies. Results from these comprehensive screening studies
were further validated using conventional nanofiber-based
stem cell differentiation assays and supported by genetic
studies on the different neural stem cell types. In this man-
ner, we could establish our combinatorial nanoarray as a
flexible platform for investigating stem cell-derived neural
interfaces and providing guidance for the cell-type-specific
design of biomaterials for various personalized neural tissue
engineering applications.
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2. Results

2.1. Generation of Combinatorial Nanoarrays Using
Dynamic Laser Interference Lithography. We first generated
combinatorial nanoarrays encompassing diverse micro-/nano-
structures using DLIL [Figure 2]. Micro/nanolithography tech-
niques, including  e-beam  lithography,  dip-pen
nanolithography, mask-based photolithography, and 3D print-
ing techniques, have been applied for fabricating micro/nano-
structures in screening ECM-mediated biophysical cues [22,
28, 31, 32]. However, these approaches have been challenging
to generate multi-scale and diverse structures (both micron-
sized and nano-sized) in cost- and time-effective manners
[Figure S1]. Previously we could generate large-scale
homogenous arrays of nanostructures using an established
laser interference lithography (LIL) technique [31], which
further inspired us to develop DLIL by transforming the static
interference field in a typical LIL setup into a vast array of
non-periodic interference events with continuously changing
interference angles. The process is high-throughput, with
thousands of different structures formed within minutes,
requiring no additional steps. [Figure 2(a)] [33]. After two-
beam laser exposure on a photoresist-coated substrate, optical,
electron, and atomic force microscopies indicated the
successful formation of large-scale (1 cm by 1cm) nonperiodic
gradient arrays at high precision [Figure 2(b), S2, Table S1].
More specifically, this array contains a large combination of
line patterns on a single substrate with precisely defined
height, width, duty cycle, and periodicity. In addition, these
patterns span a wide variety of structures with sizes from
20pm down to 100nm that are highly relevant to both
natural and synthetic ECMs and varying neural interfaces [17,
34]. Moreover, the range of micro-/nanostructures can be
facilely tuned through modulation of the curvature of the
interferometer [Figures 2(c)-2(e)]. Increasing the angle (/)
between the static laser beam and the substrate from 62°, 67°,
to 72° resulted in a narrower variety of micro-/nanostructure
dimensions, whereas increasing the focal length (f, or
curvature) of the convex interferometer resulted in a wide
range of sizes [Figure S3]. In contrast, using Lloyd’s mirror as
the interferometer resulted in periodic arrays with singular
nanostructures, which is consistent with previous literature
[Figure S4]. For the rest of the study, we used f=67"and f =
10mm for the screening studies, as it not only provides a
wide range of micro-/nanostructures, of which condition does
not induce migration of NSCs across different structures.

2.2. High-Content Screening of NSC-Derived Neural
Interfaces Using Combinatorial Nanoarray. We next utilized
the combinatorial nanoarray for the HCS and HCA of NSCs.
Although the diverse (thousands of) micro-/nanostructures
in the combinatorial nanoarrays could enable the systematic
investigation and optimization of surface topographies of stem
cell-derived neural interfaces, it becomes a challenge to track
and analyze neural cell behaviors in response to the broad
range of biophysical cues. This is further complicated by het-
erogeneous cellular responses, even when interfacing with
the same set of biophysical cues [35]. For example, various
neural cell behaviors, including adhesion, proliferation,
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Ficure 1: High-content screening of stem cell-derived neural interfaces using combinatorial nanoarray. (a) Schematic diagram (image on
the left) and scanning electron microscopy (SEM of decellularized spinal cord) images showing the complexity and diversity of
nanotopographies as biophysical cues for controlling cell behaviors. (b) Schematic diagram showing the HCS/HCA approaches to
modulate the high complex biophysical cues and control stem cell fate. The approach would require: (1) high-content screening (HCS)
and high-content analysis (HCA) of cells; (2) big data analytical approach for processing data generated from HCS and HCA
approaches; (3) using the analyzed results to further predict the optimal biophysical cues and reoptimize the HCS and HCA method. (c)
Generation of combinatorial nanoarrays with diverse micro-/nanostructures using dynamic laser interference lithography (DLIL), which
could be used to screen biophysical cues by cell mapping (inset images are AFM images showing different sizes of micro-/nanoline
structures). (d) Systematic biophysical cue mapping combined with machine learning-based big data analysis for the generation of
predictive maps of nanotopography regulated stem cell fates. (e and f) Combinatorial nanoarray-based cell screening generate cell fate
radar charts (e) for the assessment of biophysical cues for regulating neural stem cell behaviors and for predicting optimal nanofiber
biomaterial structures (SEM image on the left is showing an optimal nanofiber structure predicted for axonal alignment) for guiding
axonal alignment and other types of cell behaviors (immunostaining image on the right is showing the neuronal staining of neurons
differentiated from adult stem cells) (f).

differentiation of NSCs, as well as axonal alignment and
growth of the differentiated neurons that are critical for many
neurological studies, may favor different micro-/nanostruc-
tures, leading to difficulties for the rational design of stem
cell-derived neural interfaces [Figure S5] [36-40]. For this
purpose, we applied our combinatorial nanoarray and
developed the analytical approaches for high-content
screening (HCS) and mapping different neural cell behaviors
[Figure 3(a)]. Specifically, as a proof-of-concept, adult NSCs
were seeded on combinatorial nanoarrays at low densities,
cultured in growth or differentiation media (see METHODS
for details), then stained with biomarkers to investigate
adhesion (actin staining via phalloidin), axonal alignment,
growth, and differentiation (neuronal marker Tujl).
Combinatorial nanoarrays were all coated with laminin to
promote their adhesion to the corresponding micro/
nanotopographies and initiate the transmission of
biophysical signaling of stem cells. Next, to establish
quantitative relationships between neural cell behaviors and

the underlying biophysical cues, post staining images were
discretized into individual components to perform
fluorescent intensity and cellular shape analysis (e.g., using
Image J), and then correlated to the (x, y) positions of each
discretized components [Figures 3(b) and 3(c), S6-S10,
Table S2]. The distances x and y are defined as the
horizontal distance from the initial point of exposure and
the vertical distance from the bottom of the arrays,
respectively, to the point of interest. We hypothesized that,
by first correlating quantifiable neural cell behaviors to the
position (x, y), followed by a correlation of these
coordinates to the quantifiable biophysical cues as
topographical features, we could establish the functional
correlation between neural cell behaviors and biophysical
cues on the stem cell-derived neural interfaces [Figures 3(d)
and 3(e)]. However, an initial trial resulted in an entirely
stochastic map between neural cell behaviors (e.g,
adhesion area) and position (x, y) or nanotopography
[Figure S11].



4 Research

Modulate nanostructure range
by altering curvature of mirror

Dynamic interference lithography (DIL) A= L¥cos(20+p)/2cosd

He-Cd laser

Beam splitter resist

100000 -

10000

Size (nm)

1000 ~

100 T T T
0 400 800

Position (ym)

—a— f=10mm; f=62° —A— f=10mm;[=72°

—o— f=10mm; B=67° —¥— f=15mm;f=67°

(d)

100000 ~

10000 -

(c)

Size (nm)

1000

100 T T T
0 400 800

Position (ym)

-—-— f=10mm; $=62° -—-— f=10mm;f=72°
== f=10mm; f=67° -—-— f=15mm;f=67°

(e)

F1GURE 2: Tunable combinatorial nanoarrays with diverse micro-/nanostructures generated by dynamic interference lithography (DLIL). (a)
A 325nm helium-cadmium (He-Cd) laser generates two series of light beams (beam (1) directly derived from the original laser; beam (2):
after reflection from the concave mirror that has spatially transformed beam angles) focused on a concave (Al)-coated mirror that produces
many simultaneous interference patterns replicated on a photoresist-coated substrate to generate a gradient of micro-/nanoline patterns.
Detailed optical simulation that derives the equation shown in the middle panel can be found in the supplementary information. (b)
Optical microscopy, scanning electron microscopy (SEM), and helium-ion microscopy (HIM) all demonstrate a precisely fabricated
gradient of topographical structures with strong hologram characteristic of nanotopographical features. (c and d) Atomic force
microscopy (AFM) images (c) and quantifications of the micro-/nanostructures (d) characterizing the tunable combinatorial nanoarrays
with different ranges of topographies. (e) Simulated curve of graph shown in d, where the log of the dimension of line patterns (y-axis)
is nearly linear to position (x-axis) that allows reliable tracking of micro-/nanostructures in DLIL.
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FIGURE 3: Systematic mapping of biophysical cues from stem cell-derived neural interfaces. (a) Schematic diagram showing the advantages
of the CBC array-based high-throughput cell screening method for investigating biophysical cues. (b and ¢) Individual cell isolation- (b) and
mesh-based (c) discretization methods for the analysis of immunostaining results (red: TuJ1 signal from neurons differentiated from adult
NSCs) on the large-scale (around 1 cm in length) CBC array containing diverse micro-/nanostructures, which facilitates the generation of

cell behavior maps through correlation between fluorescent signals
discretization of the immunostaining images and correlating the

with sizes of underneath micro-/nanostructures. (d and e) After
cell behaviors (quantified by fluorescent signals) with micro/

nanotopographies, cell behavioral maps, including adhesion (d, map on the left) and axon alignment (e, map on the right) could be
generated. (f) By arbitrarily assigning five different levels for the scoring of each stem cell behavior, specific topographies for the five

different cell behaviors could be evaluated based on analysis on cell

maps. Immunostaining images and analytical approaches for each

cell behavior of adult stem cells are detailed in supplementary information.



A plausible explanation for this observation is that the
NSC-seeded combinatorial nanoarray contains cell-free
regions that exhibit low behavioral values (e.g., no adhesion
or neuronal differentiation) in response to corresponding
biophysical stimuli, even though these cell-ECM interactions
are absent. Although raising cell density to full confluence
could partially address this difficulty, the complexities of
cell-cell contacts will increase, and examination of neuronal
morphological markers (e.g., axonal growth and alignment)
will be more challenging. To address these challenges, we
isolated discretized cell clusters using automatic cell recogni-
tion functions previously established (in CellProfiler and
Image J, see METHODS section) to generate scattered maps
of neural cell behaviors, followed by predictions of values
between every two dots/units based on a Gaussian process
regression (GPR) machine learning (ML) module in
MATLAB [41-45]. To facilitate the data visualization, values
on each neural cell behavior map were further arbitrarily
assigned to 5 levels [Figure 3(f), S7-S10]. Briefly, NSC adhe-
sion heavily favored the largest line pattern at 20 ym, while
line patterns from 200nm to 10 um were comparable. NSC
axonal growth peaked at 5 um line patterns and tapered off
with both increasing and decreasing line widths. NSC axonal
alignment favored nanometer-scale line patterns with sub-
optimal alignment in micron-sized line patterns. These
mapping results represent some of the most comprehensive
screenings of biophysical cues for regulating stem cell behav-
iors to the best of our knowledge. By integrating high-
content analysis (HCA) and ML approaches into the combi-
natorial nanoarray, we could establish a new method for
trackable, quantitative, and predictive biophysical cue map-
ping that is critically important for various stem cell-
derived neural interfaces. As a result, our method dramati-
cally reduces the amount of time and resources required to
screen cellular behavior in response to specific biophysical
inputs. Furthermore, it has the potential to be applied to
any adherent cell type that is sensitive to the alteration of
ECM topographies.

2.3. Cell-Type-Specific Evaluation of Neural Interfaces Using
Combinatorial Nanoarrays. Considering the urgent need
for the rational design of stem cell-derived neural interfaces
in personalized tissue engineering, we first showcased our
combinatorial nanoarray’s ability to aid in the quantitative
design of human patient-specific nanofibrous substrates
[17, 18, 46-50]. For this purpose, three representative neural
stem cell (NSC) types [human-induced pluripotent stem
cell-derived neural stem cells (normal and healthy hiPSC-
NSCs), autism patient-derived hiPSC-NSCs (patient-
hiPSC-NSCs), and adult human NSCs (adult hNSCs) har-
vested from the human hippocampus region] were gener-
ated and utilized to investigate how diverse patient cells
differentially respond to biophysical cues and regulate NSC
fates and neuronal behaviors [Figure 4(a)] [51]. Human-
induced pluripotent stem cells (hiPSCs) can be generated
from patients having neurological disorders (e.g., autism
and Parkinson’s disease), thus maintaining the genotypic
and phenotypic changes associated with these diseases [6,
52, 53]. Hence, hiPSC-NSCs could provide an excellent plat-
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form that closely mimics the human brain and central ner-
vous system (CNS) for disease modeling and drug
screening. Investigating the biophysical cues that control
the differentiation of human-induced pluripotent stem cells
(hiPSCs) into specific neural cell lineages and mature neural
networks may also shed light on developmental biology and
the step-by-step progression of neurodegenerative diseases
[54, 55].

We first investigated the cell-type-specific modulation of
hiPSC-NSC behaviors using our combinatorial nanoarray.
Specifically, we mapped five key cell behaviors (adhesion, pro-
liferation, differentiation of NSCs, axonal growth, and axonal
alignment of differentiated neurons) of hiPSCs, patient-
hiPSC-NSCs, and adult NSCs [Figures 4(b)-4(e), S7-S10,
Table S3]. Strong evidence suggests that the lost cognitive
functions in human patients with neurological disorders
(e.g., autism) are associated with reduced sensitivity of
neural cells toward their biophysical environment in the
brain [56-59]. As such, we hypothesized that patient-hiPSC-
NSCs would show impaired mechanosensitivity and reduced
behavioral changes when exposed to the biophysical cues on
the combinatorial nanoarray, as compared to hiPSC-NSCs
and adult NSCs. Indeed, distinctively different patterns were
observed in radar charts derived from the behavioral maps
of the three NSC types. For example, patient-hiPSC-NSCs
only showed slight differences in response to alterations of
biophysical cues for almost all the crucial neural cell
behaviors, including adhesion, proliferation, and
differentiation [Figures 4(f)-4(h)]. On the other hand, the
adhesion and proliferation scores shown on the radar charts
of hiPSCs and adult NSCs exhibited significant differences in
various biophysical signals. Additionally, our hypothesis on
reduced mechanosensitivity in patient-derived hiPSC-NSCs
was  also  supported by  gene  analysis  of
mechanotransduction-associated genes such as MeCP2,
Grb2, Cdc42, Gap43, 11k, Racl, Src, Vcl, Ctnnbl, and RhoA
as compared to the other two healthy NSC types
[Figure S12, Table S3-S4]. In this way, the combinatorial
nanoarray-based mapping method was applied to predict
cell-type-specific modulation of cell behaviors and gene
expression under various types of topographies in neural
interfaces, thereby enabling the cell-type-specific design of
neural interfaces for personalized tissue engineering
applications.

2.4. Rational Design of Biomaterials through Combinatorial
Nanoarray-Based HCS. We next validated our design of
topographies in neural interfaces using the conventional
nanofiber biomaterial-based stem cell assays [Figure 5(a)].
Different cell lines express mechanotransduction genes at
various levels and have different capacities to sense topo-
graphical cues [Figure S12]. As a result, topographical
features of neural interfaces tailored to a specific cell could
potentially enhance the viability of cell transplantation,
cellular differentiation, and/or the overall therapeutic effect
[18, 60]. To this end, we proved the rational design and
engineering of neural interfaces in a cell-type-specific
manner using the information generated from the
combinatorial nanoarray-based cell mapping. As a proof-
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detailed in supplementary information. (f-h) Radar charts generated from combinatorial nanoarray analysis comparing adult-NSCs (f),
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mutated patient-hiPSC-NSCs.
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of-concept, we predicted and validated the optimal
topographies for nanofiber biomaterial-mediated axonal
alignment in a cell-type-specific manner. Specifically, based
on our established radar charts of hiPSC-NSCs and adult
NSCs, we identified the optimal biophysical cues (e.g.,
diameters of aligned 1D ECM nanostructures) that led to
the most significant axonal alignment for adult-NSC as a
proof-of-concept validation [Figure 4(e)].

We could then tailor nanofibers for various cell types
based on the appropriate diameters we discovered through
our mapping process. Using this design as a guide, we syn-
thesized aligned nanofibers using a standard rotating drum
electrospinning method, producing nanofibers with four dis-
tinct diameters (including the diameters that were projected
to be ideal by our radar charts) [Figure 5(b), Table S5]. Next,
stem cell differentiation assays using 3 different types of
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NSCs were performed on laminin-coated nanofibers for 7
days through growth factor withdrawal on these nanofiber
matrices with varying topographies [Figures 5(c)-5(e),
Table S4]. Immunostaining on a mature neuronal marker
(MAP2) of differentiated NSCs allowed us to quantify the
axonal alignment level of the differentiated neurons using
Image ] [Figures 5(f)-5(h)]. Image J's directionality
module was utilized for the purpose of performing
automatic quantification of axon alignment. Please note
that, although neurons differentiated from the patient-
derived hiPSC-NSCs also show a distinctive alignment
peak, the alignment is overrepresented, as the directionality
module did not recognize the dead/circular cell bodies well,
which is commonly found in immunostaining images in
[Figures 5(e)-5(1)]. Consistent with our results in the
radar chart, in Figure 5 we show that axonal alignment in
neurons differentiated from different cell types would favor
different optimal nanofiber topographies. Based on
Figures 5(c)-5(h), we found that neither all the nanofiber
conditions nor all three cell types would always lead to
nicely aligned axons. In general, adult NSCs, after
differentiating into neurons, showed the most significant
alignment. However, neurons differentiated from hiPSC-
NSC (wild-type) also showed reasonably nicely aligned
axons at the condition of nanofiber with a diameter
around 200 nm [Figure 5(c)-5(e)], respectively, which fits
the estimation in the radar charts shown in Figures 4(f)-
4(h). As such, we successfully validated our high-
throughput cell screening and biophysical cue mapping
approach for engineering the topographies of neural stem
cell-derived neural interfaces in human patient cell-type-
specific manners.

3. Discussion

Because biophysical signaling is so vital in the construction
of stem cell-derived neural interfaces, as well as the regula-
tion and development of these interfaces, it would be so crit-
ical to develop a high-content screening and analysis of the
biophysical functions on the neural interface, which can fur-
ther affect the studying neurodegenerative diseases, disor-
ders, and potential treatments. Although a few methods
have been tried to screen cellular responses to biophysical
cues in order to gain a better understanding of the cellular
effect of nanoscale and microscale ECM topography, the
majority of these studies have concentrated on either mech-
anistic pathways (such as the Hippo pathway) or the search
for a biophysical cue that can regulate a specific cellular
behavior (e.g., differentiation and axonal growth). Therefore,
reliable nanoengineering methods to design a platform capa-
ble of large-scale biophysical cue screening in both high-
content screening (HCS) and high-content analysis (HCA)
manner are currently limited, delaying future discoveries
on biophysical cues needed for regulating cellular behaviors.
In order to overcome these obstacles, we successfully devel-
oped multiscale combinatorial biophysical cue (CBC)
nanoarrays that encompassed a wide range of micro-/nano-
structures using dynamic laser interference lithography
(DLIL). These CBC nanoarrays were then combined with

machine learning-based analysis in order to screen stem
cell-derived neural interfaces in a comprehensive manner.
Based on the HCS/HCA results, we could validate how the
systematic optimization of neural interfaces can be incorpo-
rated with material topographical features specific to hiPSC-
derived NSCs, and patient-derived iPSC-NSCs with
mechanotransduction deficits, and hippocampus-derived
adult NSCs, all of which could be used for personalized
regenerative medicine. In summary, our combinatorial
nanoarray-based screening platform holds excellent poten-
tial in a wide range of biomedical applications from disease
modeling to stem cell therapies and may thus enhance the
treatment of various types of neurological disorders. In the
future, it remains a critical task to check if the combinatorial
nanoarray could be applied as an implantable device and
prosthesis for helping neural regeneration. It is also vital to
investigate combining various pattern forms into the screen-
ing, such as dots and pillars, because there is no one topog-
raphy that would result in optimum regulation of all cell
behaviors. This will rapidly expand the applications of our
cell screening platform, while requiring further advancement
of a machine learning algorithm. In addition, the effects of
height on the size-dependent cell behavior maps remain to
be investigated, despite being a challenging task for the cur-
rent CBC array-based platform. Also, despite its great prom-
ise, it remains elusive for the current combinatorial
nanoarray platform to analyze 3-D neuron-topography
interactions. Therefore, it would be essential to explore novel
nanofabrication approaches for generating in vivo-like 3-D
topography interfaces for stem cell transplantation and other
screening applications.

4. Materials and Methods

4.1. Experimental Design. The goal of the current study is
three-fold. The first goal is to identify suitable combinatorial
nanoarrays. In order to accomplish this objective, we modi-
fied the optical paths in the DLIL that we had constructed to
generate a variety of combinatorial nanoarrays. We select
the most optimum nanoarray based on the wide range of
micro-/nanostructures while minimizing unspecific cell
migration to prevent the migration effect on the cell screen-
ing result. The second goal is to establish analytical methods
for evaluating stem cell fate control by a vast array of nano-
topographies on the combinatorial nanoarray. The difficul-
ties associated with error readings on positions where stem
cells were not present, which leads to the false null output
of stem cell behaviors, present a significant obstacle in ana-
lyzing a large number of cell-nanotopography interactions.
This is a significant barrier that must be overcome. This is
why we incorporate the GPR machine learning method. To
validate our strategy, we compared the cell mapping results
with and without machine learning. The third goal is to pro-
vide a cell-type-specific design of biomaterials using combi-
natorial nanoarray-based stem cell screening methods. We
chose a well-established adult neural stem cell line and two
iPSC cell lines (wild-type and patient-derived), as they are
highly relevant in neural stem cell therapies, and they are
all human origin and cannot be studied in animal models.
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The limitation of the study is that when evaluating stem cell
fate control by different micro-/nanostructures, the assign-
ment of different levels of stem cell behavior scores is arbi-
trary, as there has been no previous analytical approach
similar to the current one. The comparison is still valid even
though it was conducted using the same standards for all dif-
ferent types of stem cells.

4.2. Dynamic Laser Interference Lithography (DLIL). Glass
slides (Fischer Scientific) were cut into individual pieces with
areas of 1 x 1 cm? and cleaned by sonication in Triton X-100
(1wt%) aqueous solution, 190 proof ethanol, and ultrapure
water. The cleaned glass slides were then dried and further
cleaned by flowing nitrogen gas. To make the glass hydro-
phobic with better adhesion to photoresist, hexamethyldisi-
lazane (HMDS) was deposited into the glass through vapor
deposition for 12 hours in a vacuum oven. Glasses were then
spin-coated with negative (AZ2020, Microchemicals, Ger-
many, 1:0.8 dilution using AZ®EBR solvent) or positive
Photoresist (AZ1505, Microchemicals, Germany, 1:1 dilu-
tion) using a spin-coater (Laurell Technologies, USA). For
the negative photoresist, the glass substrates were preheated
at 120°C for 1 minute, then placed to sample holder proxi-
mal to the curved (in the case of DLIL) or noncurved (in
the case of regular LIL) interferometry, followed by exposure
to ultraviolet (UV) laser (wavelength: 325 nm; He-Cd laser
from KIMMON KOHA Laser Systems, Japan). The glass
substrates were directly exposed to UV laser after spin-
coating in terms of positive PR. After UV exposure, glass
substrates were heated at 120°C for 1 minute, followed by
incubation to develop a solution for 5-15 seconds. A holo-
gram should appear after the developing step.

4.3. Nanoarray Characterization. Phase images of nanoar-
rays on glass substrates were collected from a Nikon
microscope (T2500 series). Complex nanostructures of
nanoarrays were carefully characterized by Atomic Force
Microscope (AFM, Park Systems, NX10 series, tapping
mode), Helium-ion Microscopy (HIM, Carl Zeiss, Orion
Plus), and Zeiss Field-Emission Scanning Electron Micro-
scope (FESEM, 20kV).

4.4. Cell Culture (Table S1). Human neural stem cell line
[RenCell, or Adult-NSCs from Millipore (SCC008)] was cul-
tured based on the manufacturer’s protocol with slight mod-
ifications. Specifically, 25cm” tissue culture plates were
coated with Matrigel (Corning) for two hours at 37°C, then
one million RenCell was seeded and cultured in a humidified
incubator with 5% CO2. We performed experiments on cells
with passage numbers between seven and ten. Growth media
for RenCell contains 0.5% N2, 0.5% B27, 20 ng/mL basic
fibroblast growth factor (bFGF) and 20ng/mL epidermal
growth factor (EGF) which are dissolved in DMEM:F12
basal media. hiPSC-NSC-WT, and hiPSC-NSC-Q83 were
derived from WT fibroblast and RTT fibroblast (WT126
clone 8; and WT33 clone 1), respectively, based on previous
protocols. hiPSC-NSCs were expanded in a proliferation
media containing DMEM/F12 with Glutamax (Invitrogen),
B27-supplement (Invitrogen), N2 (Stem Cells), and 20 ng/
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mL FGF2 (Invitrogen). The differentiation of hiPSC-NSC-
WT and hiPSC-NSC-Q83 was initiated by the withdrawal
of FGF2 in the growth media. Tissue culture vessels were
treated with Matrigel (Corning) 1:200 dilution with DMEM
(Invitrogen) at 37°C for one hour. Media was changed on a
bi-daily basis during growth and differentiation.

4.5. Cell Screening on Combinatorial Nanoarrays. To per-
form stem cell differentiation screening, we placed glass
slides with combinatorial nanoarrays (1D line combinatorial
nanoarray) into 24-well plates and then seeded stem cells
into individual wells at a cell density of 40,000 cells per
cm®. Combinatorial nanoarrays were coated with Matrigel
for two hours before the cell seeding. Stem cells are seeded
in growth media for four hours to stabilize and adhere to
the substrate, and then the differentiation was initiated by
FGF2 withdrawal into the growth media. After 7 days, cells
on combinatorial nanoarrays were fixed, and immunostain-
ing staining on neuronal markers (TuJl and MAP2) was
performed to acquire the neuronal differentiation and axo-
nal alignment maps. For the adhesion, proliferation, and
axonal growth screening, lower cell densities at 10,000 cells
per cm” were seeded on combinatorial nanoarrays to mini-
mize complicated effects from cell-cell interactions. Cells
were fixed 12-hour and 7-day after seeding for the adhesion
screening and axonal growth screening, respectively. After-
ward, immunostaining on cytoskeletal markers (Actin) and
neuronal markers (TuJ1) are conducted to attain the adhe-
sion and axonal growth maps. In the stem cell proliferation
screening, the stem cells were first labeled with CFSE dye
(dilution 1:1000, Thermo Fisher Scientific) in accordance
with the protocols provided by the vendor. After that, the
stem cells were seeded onto the combinatorial nanoarrays,
and then they were continuously cultured in growth media
for five days. We then fixed and stained the cells with
nuclear marker DAPI (Thermo Fisher Scientific). Based on
the ratio of the fluorescent intensities between CFSE and
DAPI, we can then quantify the relative proliferation rate
for the stem cells.

4.6. Gene Expression Analysis by QRT-PCR (Table S2). Cells
on the substrate were detached and extracted with RNAs
using Trizol® followed by PCR and SYBR green-based anal-
ysis followed vendor protocols (Applied Biosystems).

4.7. Antibodies and Immunostaining (Table S3). We con-
ducted immunocytochemistry to study topography-
regulated cell behaviors after fixation on the combinatorial
nanoarrays. All fluorescence images were acquired using a
Nikon T2500 inverted fluorescence microscope. The nucleus
was stained with DAPI (1:500 dilution, Life Technologies)
for 30 minutes and then washed with PBS three times. Cells
were permeabilized with 0.1% Triton X-100 in PBS for 10
minutes, and non-specific binding was blocked with 5% nor-
mal goat serum (NGS, Life Technologies) in DPBS for 1hr.
at room temperature. In the differentiation and axonal
development experiment, cells were stained with neuronal
markers TuJ1 and MAP2 using a mouse monoclonal anti-
body against TuJ1 (1:200 dilution, BioLegend) and MAP2
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(1:200 dilution, BioLegend) (1 :300 dilution, Cell Signaling).
After incubating overnight at 4°C in a solution of these anti-
bodies in PBS containing 10% NGS and washing three times
with PBS, the samples were incubated for 1 hour at room
temperature in a solution of anti-mouse secondary antibody
labeled with Alexa Flour 568 (1:100, Life Technologies) in
PBS containing 10% NGS, and washed with DPBS three
times after that. In the adhesion assay, cells were stained
with TRITC-labeled Phalloidin (1:100 dilution, Thermo
Fisher Scientific) and DAPI (1:500 dilution, Life Technolo-
gies) for one hour, followed by DPBS washing. In the cell
survival screening, live-dead kits (Thermo Fisher Scientific,
13224) were used following the protocol from the vendor.
Briefly, we incubated cells with 1um calcein (green color
indicates live cell) and ethidium homodimer-1 (red color
indicates dead cell) in the growth media for ten minutes
and then imaged the large-scale substrates immediately.

4.8. Stem Cell Differentiation Assay on Aligned Nanofibers
(Table $4). To validate the high-throughput cell screening
results, aligned polycaprolactone (PCL) nanofibers are syn-
thesized by electrospinning technique. Varying diameters
can be generated by controlling the parameters, including
the concentration of PCL solution, speed of the rotating
drum, and the distance between syringe and collector during
electrospinning. Detailed parameters for synthesizing
200nm (NF-200), 500nm (NF-500), 1 yum (NF-1000), and
5um (NF-5000) sized aligned nanofibers can be found in
Table S3. The nanofibers are transferred to a glass
substrate using silicon glue. Afterward, the nanofibers were
treated by oxygen plasma (Femto Science, Cute series) at
1.5%10 " torr for 60 seconds, sterilized by a UV lamp for
one hour, and then coated with Matrigel for two hours.
Stem cells were seeded to the nanofibers at a density of
40,000 cells per cm” using identical procedures described
in the LCT library-based stem cell screening. Four hours
after seeding, FGF2 in the media was removed, and stem
cells underwent neuronal differentiation for 7 days before
being fixed and immunostained with neuronal markers
(TuJ1 and MAP2).

4.9. Mapping Cell-Matrix Interactions Based on Cell
Screening Results. For the stem cell adhesion screening assay,
cytoskeletal structures of cells were stained with TRITC-
labeled phalloidin across the large-scale substrate. Then the
substrates were imaged by a Nikon T2500 inverted fluores-
cence microscope or ZEISS LSM 800 confocal microscope
using automatic acquisition and stitching functions. Based
on the stitched images, we built up cellprofiler pipelines that
automatically identify fluorescent objects within the size
ranges between 8 and 80 pixels (0.65um per pixel). We
found over 10,000 objects (cells) that were encoded with
quantitative values of position, cell area, cell circularity,
long-axis length, and short-axis length by utilizing this auto-
matic method. Cell spreading is evaluated by the parameter
of the cell area. By creating a function between cell spreading
(Z) and position (X, Y) for each specific object using Origi-
nLab or MATLAB, the quantitative 3D contour map visual-
izing the cell spreading and adhesion was generated.

11

Similarly, based on the reverse of cell circularity, we created
a 3D contour map visualizing the cell polarization as well.
On these maps, by correlating the cell behaviors of individ-
ual cells to the topographies at each specific position using
the functions in Figure S2, we could establish a functional
relationship between cell behaviors and 3D material
structures.

Cells differentiated for 7 days were stained with mature
neuronal marker MAP2 and imaged using the fluorescent
microscope in the stem cell differentiation screening assay.
We first confirmed the homogenous cell densities based on
the nuclear staining (DAPI), then the large-scale stitched
images were removed with a fluorescent illumination back-
ground and pixelized into 48 to 576 arrays of smaller image
files using the Nikon NIS Element software package. Auto-
matic batch analysis on the fluorescent intensities of these
pixelized images was performed in the batch process func-
tions in Image] (https://imagej.net/Batch_Processing). By
establishing the function between the fluorescent intensities
(Z) and the position (X, Y) of each pixelized array, contour
maps visualizing neuronal differentiation were generated.

To create an axonal growth map from the stem cell dif-
ferentiation screening, we used the Neuron] plugin in the
Image] software package. In the large-scale stitched neuronal
differentiation image, axons were stained by the red color
from the immunostaining on the TuJl neuronal marker.
We used the Neuron] plugin to trace individual axons and
then calculated each neuron’s length based on the immuno-
staining image. Position (X, Y) of the starting point at each
axonal tracing was recorded to correlate with substrate
topographies. Axons that entangled each other or covered
different ranges of topographies were not included in the
analysis. By creating a function between axonal length (Z)
and position (X, Y), we then built 3D contour maps visual-
izing topography-directed axonal growth.

For the cell proliferation map, cells were stained with
the kit following the protocols from the ThermoFisher
before their seeding onto the combinatorial nanoarray.
After three days’ proliferation in growth media (with
bFGF for hiPSC-derived cell culture and bFGF/EGF for
RenCell culture), cells were fixed and stained with DAPI.
CEFSE kit has been known to track the proliferation of cells
based on their fluorescent intensities. Therefore, we used
the Nikon NIS Ti Series microscope to image the substrate
using a Stitch function followed by illumination back-
ground removal. After that, the CellProfiler pipeline that
had been used to identify the cell morphologies described
earlier was utilized to identify cells and automatically
quantify the cell number and fluorescence intensity result-
ing from CFSE. By generating a function between the fluo-
rescent intensities (Z) and position (X, Y) of each object
(cell) identified by CellProfiler, contour maps visualizing
the proliferation were then generated.

The Orientation J plugin in the Image ] software package
was used to analyze the stem cell differentiation results on
the aligned nanofibers. In the study on neuronal differentia-
tion from individual substrates, cells were stained with neu-
ronal markers such as TuJl, MAP2, NeuN, and nuclear
marker (DAPI), followed by automatic detection of neuronal
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morphology using Image] or Nikon Ti Element software.
The percentage of neurons, intensity of neuronal marker
expression, or the axonal lengths were quantified. These
studies on individual substrates include the neuronal differ-
entiation from RenCell and hiPSC-derived NSCs on the line
structures generated by LIL and the neuronal reprogram-
ming from BJ fibroblast on the hierarchical structures syn-
thesized by combined LIL and photo-mask lithography.

After obtaining the data points of position (X, Y) and the
values for cellular behaviors (Z), a Gaussian process regression
(GPR) machine learning module (https://www.mathworks
.com/help/stats/gaussian-process-regression-models.html) in
MATLAB® was used to connect the mapped data points and
convert them into a heat map by plotting the results in Origi-
nLab®. Specifically, the output graph will be presented as iso-
lated points without machine learning, and the biophysical
cue patterns without cell-seeded will be false-presented with
a value zero (no signal from cells). Through the machine
learning module in MATLAB®, this error could be corrected
by learning from the trend of existent isolated data points
and predicting the values of cell behaviors on biophysical cue
patterns where the cell does not exist. The sizes of line-
shaped nanotopographies were correlated to cellular behaviors
by position parameter X, as shown by the function in
Figure S4 and directly labeled on the graphs in Figures 3 and
4, and Figure S8-S11.

4.10. Selection of Gpr for Analysis of Cell Maps. “Gaussian
Process Regression machine learning models are supervised
by definition in that they are regression models; specifically,
we are trying to understand relationships between dependent
and independent variables. In this investigation, the labels cor-
respond to coordinates on the X-Y plane (the independent
variables) that are connected to locations on the substrate,
and the result on the Z-axis (the dependent variable) repre-
sents the value that is being interpolated. In this way, we can
label the coordinates on the X-Y plane and provide the biolog-
ical outcome on the Z-axis so the model can properly make
predictions and interpolate how cells would respond given
new coordinates. Unsupervised models would consist of clus-
tering, in which group unlabeled data with respect to their
similarities and differences, and association, typically utilized
by recommendation services, were not employed in generating
this model. When selecting a ML model, one has to take into
account the advantages and disadvantages an algorithm pro-
vides and, four our application, a GPR model was the most
reasonable. GPR models are most efficient in low dimensional
space, meaning our two key features would not overburden
the algorithm. Moreover, GPR can perform probabilistic
regression to measure the predictive uncertainty but does so
at the price of poor scalability in the data. Because our data
sizes were limited and we did not have thousands of inputs;
GPR is one of the few models that can generate decent predic-
tions on our scale. In addition to optimally functioning on
smaller data sets with low dimensionality, GPR models are
also highly versatile as various kernel functions can be applied
to capture the features present in the data and improved the
model’s ability to interpolate predictions during the regression
process. We did not try other types of machine learning
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methods as GPR was ideal for our low dimensional data sets
with fewer entries while many other algorithms require larger
data sets than was available.”

4.11. Machine Learning on the Mapped Results. A supervised
GPR machine learning (GPR-ML) model, generated in
MATLAB R2019b, was adopted to our system to continuously
predict the spatial arrangement of cells when subjected to vari-
ous regimes of our substrates. The dataset was preprocessed by
combining the X and Y spatial coordinates into an observation
matrix while placing the corresponding Z-coordinate into a
label vector where the indices of the observation matrix and
the label vector were consistent with one another. After separat-
ing the observations from the labels, the hyper-parameters were
optimized using a Bayesian optimizer to ensure the learning
process was updated and modified at each new evaluation of
the model. It has been reported that Bayesian optimizers are
proficient at finding a global optimum for an objective function
in a minimal number of evaluations when tuning hyper-
parameters by maximizing an acquisition function that will
determine the next value where the model should be evaluated.
In our model, we used an expected improvement (EI) criterion
for the acquisition function to evaluate regions where the model
believed the objection function was low and regions where the
uncertainty was high. This was accomplished to address the
exploitation versus exploration tradeoff many scientists
encounter when selecting an optimizer. Hence, it was possible
to search local areas within the bounds of the optimizer without
overexploiting one area and being trapped at a local minimum.
After establishing the optimizer, the observation data was split
into 90% training and 10% testing data to allow for hold-out
cross-validation to determine the model’s predictive accuracy.
After generating the GPR-ML model, the maximum and mini-
mum values of the X and Y coordinates were identified and
placed into a 2D grid composed of 250,000 values that spanned
the area bounded by the maxima and minima to serve as inputs.
Finally, this matrix was given to the GPR-ML model to predict
the corresponding Z-coordinate.

4.12. Statistical Analysis. Bars in the graphs are mean +
standard deviation. The one-way analysis of variance
(ANOVA) with Tukey posthoc analysis was used for multi-
group analysis. The sample number was labeled in the figure
caption of each figure. When the sample number is over 10,
individual data points were plotted in the bar graphs. Graphs
plotting and statistical analysis were performed using Origi-
nLab® or Excel.
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