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Objective: Left ventricular hypertrophy (LVH) is a common complication of hypertension

and microRNAs (miRNAs) are considered to play an important role in cardiac hypertrophy

development. This study evaluated the relationship between circulating miRNAs and LVH

in hypertensive patients.

Methods: Two cohorts [exploratory (n = 42) and validation (n = 297)] of hypertensive

patients were evaluated by clinical, laboratory and echocardiography analysis. The serum

expression of 754 miRNAs in the exploratory cohort and 6 miRNAs in the validation

cohort was evaluated by the TaqMan OpenArray® system and quantitative polymerase

chain reaction, respectively.

Results: Among the 754 analyzed miRNAs, ten miRNAs (miR-30a-5p, miR-let7c,

miR-92a, miR-451, miR-145-5p, miR-185, miR-338, miR-296, miR-375, and miR-10)

had differential expression between individuals with and without LVH in the exploratory

cohort. Results of multivariable regression analysis adjusted for confounding variables

showed that three miRNAs (miR-145-5p, miR-451, and miR-let7c) were independently

associated with LVH and left ventricular mass index in the validation cohort. Functional

enrichment analysis demonstrated that these three miRNAs can regulate various genes

and pathways related to cardiac remodeling. Furthermore, in vitro experiments using

cardiac myocytes demonstrated that miR-145-5p mimic transfection up-regulated the

expression of brain and atrial natriuretic peptide genes, which are markers of cardiac

hypertrophy, while anti-miR-145-5p transfection abrogated the expression of these

genes in response to norepinephrine stimulus.

Conclusions: Our data demonstrated that circulating levels of several miRNAs, in

particular miR-145-5p, miR-451, and let7c, were associated with LVH in hypertensive

patients, indicating that these miRNAS may be potential circulating biomarkers or

involved in hypertension-induced LV remodeling.
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INTRODUCTION

Hypertension is characterized by high blood pressure (BP) levels
and is associated with target-organs damage and increased risk
of cardiovascular events (1–3). Sustained BP elevation increases
left ventricular (LV) wall tension, and may commonly lead to
a compensatory increase in LV mass (LVM), known as left
ventricular hypertrophy (LVH). Importantly, LVH is associated
with an increased risk of cardiovascular morbidity and mortality
(4, 5).

Alternative factors, including genetic (6), epigenetic (7) and
environmental (8) factors, can contribute to LVH. MicroRNAs
(miRNAs) are a class of small non-coding RNAs that modulate
gene expression at the post-transcriptional level. They are
believed to comprise about 1% to 5% of the human genome,
and currently at least 2,654 mature miRNA sequences have
been described (9). Several studies in humans and experimental
models have suggested an important role of miRNAs in cardiac
hypertrophy (10), but little is known regarding the impact
of miRNAs on hypertension-induced LV remodeling. In this
regard, an association between selected circulating miRNAs
and LVM has been reported in hypertensive individuals (11–
15).

This study aimed at identifying circulating miRNAs related to
LVH in hypertensive individuals and evaluating the functional
role of selected miRNAs on markers of cardiac myocyte
hypertrophy in vitro.

MATERIALS AND METHODS

Additional detailed methods are included in the
Supplementary Data.

The authors declare that all supporting data are available
within the article (and in the Data Supplement).

Study Populations
The present study included two cohorts of consecutive
hypertensive patients followed at the Hypertension Outpatient
Clinic of the Clinics Hospital of the University of Campinas
who were enrolled from 2018 to 2019. The exploratory cohort
included 42 patients (26 with LVH and 16 without LVH)
and the validation cohort comprised 297 patients (162 with
LVH and 135 without LVH). Exclusion criteria were age
under 18 years, identifiable causes of secondary hypertension,
evidence of significant cardiac valve disease and hypertrophic
cardiomyopathy. The research was carried out in accordance
with the Declaration of Helsinki. This study was approved
by the Human Research Ethics Committee of the University
of Campinas, and all patients gave written informed consent
to participate.

Abbreviations: BP, blood pressure; LV, left ventricular; LVM, left ventricular mass;

LVMI, left ventricular mass index; LVH, left ventricular hypertrophy; miRNA,

microRNA; Nppb, brain natriuretic peptide gene; Nppa, atrial natriuretic peptide

gene; RT-qPCR, real-time quantitative polymerase chain reaction.

Clinical, Laboratory, and
Echocardiography Data
Clinical data were gathered from each participant and included
information on: age, sex, smoking, hypertension, diabetes
mellitus, use of antihypertensive medications, body mass index
(BMI), BP, heart rate. BP and heart rate were measured
in the sitting position using a validated digital oscillometric
device (HEM-705CP; Omron Healthcare, Kyoto, Japan) with
appropriate cuff sizes. BMI was calculated as body weight divided
by height squared (kg/m2). Fasting low density lipoprotein
(LDL)-cholesterol, high-density lipoprotein (HDL)-cholesterol,
triglycerides, creatinine, and glucose levels were measured using
standard laboratory techniques. Hypertension was defined as
systolic BP ≥140 mmHg or diastolic ≥90 mmHg or use of
antihypertensive medications. Diabetes mellitus was diagnosed if
fasting blood glucose was ≥126 mg/dl or when participants were
taking hypoglycemic medications.

Echocardiography was performed by a single physician using
a Vivid q device (General Electric, Milwaukee, Wisconsin, USA)
equipped with a 3S-RS transducer, as previously described
(16–18). LVMI was calculated as LV mass/body surface area.
Relative wall thickness (RWT) was measured as 2∗posterior wall
thickness/LV diastolic diameter. LVH was defined as LVMI ≥95
g/m2 and ≥ 115 g/m2 in women and men, respectively. LV
geometric patterns were defined as follows: normal geometry
(No LVH and RWT ≤0.42), concentric remodeling (No LVH
and RWT >0.42), eccentric hypertrophy (LVH and RWT≤0.42)
and concentric hypertrophy (LVH and RWT >0.42). LV ejection
fraction was estimated by the Simpson’s method.

Extraction and Analysis of Serum miRNA
Expression
Samples from both cohorts were extracted using the miRNeasy
Serum/Plasma Kit (Qiagen). The quality of miRNA was assessed
by measuring the percentage of miRNAs in the amount of
small RNA using a Bioanalyzer 2,100 (Agilent, Santa Clara,
CA), as previously reported (19). In the exploratory cohort,
the miRNA profile was analyzed by the TaqMan OpenArray
Human MicroRNA system, a quantitative polymerase chain
reaction (qPCR)-based miRNA array platform that contains 754
microRNAs on a microfluidic platform across two sets of primer
pools, panel A and B (LifeTechnologies). Data were normalized
using the global normalization method as suggested by the
manufacturer and previous reports (20). Six circulating miRNAs
with the highest fold change in the exploratory study were chosen
for the validation in the validation cohort by qRT-PCR using
a customized plate (LifeTechnologies). Reverse transcription
was performed using the SuperScript R©III First Strand Synthesis
Kit. Specific miRNA PCR primers were synthesized by Life
Technologies. Real-time PCR assays were performed with the
TaqMan Master Mix (Life Technologies) on a 7900HT FAST
Real- Time PCR System (Life Technologies). The comparative Ct
(11Ct) method to quantify relative gene expression was used,
and fold change (FC) was calculated as FC = 2- 11Ct, where Ct
is defined as the PCR cycle number at which the fluorescence
meets the threshold in the amplification plot (21). Data were
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normalized using a geometric mean of U6 snRNA (non-coding
small nuclear RNA) and miR-16 as the housekeeping genes.

Gene Set Enrichment Analysis
To understand the biological relevance of differentially expressed
miRNAs, we performed functional enrichment analysis. The
miRNAs differentially expressed between patients with and
without LVH that significantly correlated with LVMI were
uploaded into miRWalk (version 2) (22). To strengthen the data,
only mRNAs predicted in at least four of five tools (miRanda,
miRDB, miRWalk, RNA22, and TargetScan) were considered as
possible miRNA targets. We used the Database for Annotation,
Visualization, and Integrated Discovery (DAVID) to determine
the enriched pathways. Only pathways with more than 10 genes,
fold enrichment >1.5, and Fisher’s exact test p-value < 0.05 were
considered (23).

HL-1 Cells Culture and miRNA Transfection
We used the adult mouse atrial muscle cell line HL-1, which
has been extensively used to assess mechanisms related to
cardiac myocyte hypertrophy (24, 25), to evaluate the functional
impact of selected miRNAs. HL-1 cells were cultured at
37◦C and 5% CO2 atmosphere in Claycomb medium (Sigma,
51800C) supplemented with 2mM L-Glutamine (Sigma, G7513),
penicillin-streptomycin (Sigma, P4333) and 10 %(v/v) FCS
(Sigma; F2442) in the absence or presence of 100µM of
norepinephrine (Sigma, A0937) as a hypertrophic stimulus (26,
27) for 2 weeks (28) on gelatin-fibronectin [0.02 % (w/v)
gelatin; 5 mg/ml fibronectin] (Sigma, F1141) pre-coated plates
(29). Then, HL-1 cells were transiently transfected with miR-
145-5p mimetic, anti-miR-145-5p or negative control miRNA
(Applied Biosystems, ThermoFisher Scientific, Grand Island,
NY) at final concentrations of 30 nM. This assay was carried
out using the Lipofectamine 2000 Reagent (Invitrogen, Carlsbad,
CA) following the manufacturer’s instructions. Cells were
harvested for subsequent analyses 48 h after the transfection. All
transfection experiments were carried out in triplicate.

Real-Time Quantitative PCR Analysis From
Cells Culture
For detecting the in vitro expression of miRNAs and markers of
cardiac myocyte hypertrophy, total RNA from cardiac myocytes
was isolated using Mirvana Paris Kit (Applied Biosystems,
CA). We evaluated the expression of brain natriuretic peptide
(Nppb) and atrial natriuretic peptide (Nppa) genes, which
are markers of cardiac myocyte hypertrophy, and miR-145-
5p using the TaqMan Gene Expression Assays Kit (Applied
Biosystems, CA). The polymerase chain reaction was performed
in a StepOnePlus TM System (ThermoFisher) real-time PCR
system. Gapdh (Mm99999915_g1) was used as endogenous
control for Nppb and Nppa expression, while U6 snRNA was
used to normalize miR-145-5p expression.

Statistical Analysis
Continuous variables with normal or non-normal distribution
are presented as mean ± standard deviation (SD) or median
[25th, 75th percentiles]. Differences in continuous variables

with normal or non-normal distribution between the studied
groups (with and without LVH) were evaluated by unpaired
student’s t-test and Mann-Whitney U-test, respectively. Chi-
square test was used to compare categorical variables. Differences
in continuous variables derived from cell assays were evaluated
by one-way analysis of variance (ANOVA) followed by the
Tukey test. The correlation between echocardiographic variables
and log-transformed expression of miRNAs was assessed by
the Person’s Method. Multivariable linear regression analysis
evaluated the association of log-transformed expression of
circulating miRNAs with LVH, LVMI, and LV geometric
patterns in the validation cohort, adjusting for variables that
have been reported to influence LV remodeling: age, sex,
diabetes, body mass index, systolic blood pressure, creatinine,
smoking, and antihypertensive classes (5). p-value < 0.05 was
considered statistically significant. SPSS 15.0 software was used
for statistical analyses.

RESULTS

Clinical Characteristics of Participants
The characteristics of the exploratory cohort (n = 42; 57.7 ± 8.5
years, 52%males) and the validation cohort (n= 297; 61.3± 12.1
years, 43%males) are shown in the Supplementary Table S1. The
cohorts had similar characteristics except for higher BP and rates
of diabetes and use of diuretics, greater LV wall thickness and
relative wall thickness values, and lower LDL-cholesterol levels
in the validation cohort.

Clinical, laboratory, and echocardiographic features of the
exploratory and validation cohorts according to the presence or
not of LVH are presented in Table 1. There were no differences
in clinical and laboratory characteristics between participants
according to LVH status, except for greater systolic BP and
creatinine levels in LVH patients of the validation cohort
compared with those without LVH. In addition, patients with
LVH had greater LV dimensions, LV mass and RWT than those
without LVH in both cohorts.

MicroRNA Expression Levels and LV
Remodeling in Exploratory and Validation
Cohorts
The analysis of serum expression of 754 miRNAs using the
OpenArray MicroRNA System in the exploratory cohort showed
that 357 miRNAs were expressed in at least one of the two groups
(with and without LVH). For the differential analysis, only 122
miRNAS that were expressed in at least 50% of the participants
within each group were considered (Supplementary Table S2).
Of these, 10 miRNAs (miR-30a-5p, miR-let7c, miR-92a, miR-451,
miR-145-5p, miR-185, miR-338, miR-296, miR-375 and miR-10)
were significantly upregulated in patients with LVH compared
with those without LVH (Figure 1A, Supplementary Table S3

and Figure S1). Of these 10 miRNAs, six miRNAs with
the highest fold change in the exploratory study (miR-30a-
5p, miR-let7c, miR-92a, miR-451, miR-145-5p, miR-185) were
chosen to have their serum expression measured by qRT-PCR
in the validation cohort. All except one miRNA (miR-185)
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TABLE 1 | Clinical, laboratory and echocardiographic characteristics of the cohorts.

Characteristics Exploratory cohort Validation cohort

No LVH (n = 16) LVH (n = 26) p No LVH (n = 135) LVH (n = 162) p

Age, years 56.5 ± 8.2 58.4 ± 8.8 0.49 59.9 ± 12.9 62.4 ± 11.3 0.09

Sex (Male/Female) 7/9 15/11 0.38 62/73 66/96 0.37

Smokers, (%) 2 (12) 6 (23) 0.66 16 (12) 17 (11) 0.85

Diabetics, (%) 4 (25) 13 (50) 0.21 76 (56) 98 (60) 0.54

Body mass index, kg/m2 28.9 ± 4.6 29.8 ± 4.6 0.53 30.0 ± 6.0 30.4 ± 5.4 0.54

LDL-cholesterol, mg/dL 105 ± 40 117 ± 29 0.30 91 ± 33 94 ± 33 0.40

HDL-cholesterol, mg/dL 48 ± 14 48 ± 11 0.93 46 ± 12 46 ± 13 0.95

Triglycerides, mg/dL 110 [78, 181] 139 [94, 212] 0.21 123 [86, 180] 124 [90, 175] 0.94

Glucose, mg/dL 99 [86, 114] 100 [92, 137] 0.40 101 [91, 117] 102 [90, 130] 0.73

Creatinine, mg/dL 0.90 [0.76, 0.94] 0.89 [0.74, 1.07] 0.86 0.88 [0.73, 1.07] 0.99 [0.76, 1.20] 0.030

Systolic blood pressure, mm Hg 137.1 ± 21.1 142.3 ± 19.5 0.42 144.8 ± 23.9 152.3 ± 25.4 0.010

Diastolic blood pressure, mm Hg 73.5 ± 11.1 78.4 ± 14.3 0.25 82.2 ± 15.1 84.4 ± 15.3 0.23

Diuretics, n (%) 12 (75) 20 (77) 0.88 66 (49) 90 (55) 0.30

CCB, n (%) 9 (56) 13 (50) 0.94 54 (40) 78 (48) 0.20

β-Blockers, n (%) 8 (50) 13 (50) 0.99 59 (44) 70 (43) 0.93

ACEI or ARB, n (%) 12 (75) 21 (81) 0.95 118 (87) 143 (88) 0.96

Interventricular septum thickness, mm 8.9 ± 0.6 10.7 ± 1.3 <0.001 9.4 ± 1.2 11.4 ± 1.6 <0.001

Posterior wall thickness, mm 8.9 ± 0.6 10.6 ± 1.1 <0.001 9.5 ± 1.2 11.3 ± 1.3 <0.001

LV end-diastolic diameter, mm 47.6 ± 2.5 51.0 ± 5.3 0.026 47.0 ± 4.4 51.9 ± 6.4 <0.001

LV ejection fraction, % 68.9 ± 5.8 65.1 ± 4.4 0.043 67.5 ± 6.8 63.2 ± 10.9 <0.001

Relative wall thickness, mm 0.37 ± 0.03 0.42 ± 0.01 0.004 0.41 ± 0.06 0.44 ± 0.07 <0.001

LV mass index, g/m2 89.6 ± 6.3 138.8 ± 4.7 <0.001 85.7 ± 13.7 133.1 ± 28.7 <0.001

Continuous data with normal and non-normal distribution are presented as mean± standard deviation and median [25th, 75th percentiles]. ACEI or ARB, angiotensin-converting enzyme

inhibitors or angiotensin receptor blockers; CCB, calcium channel blockers; HDL, high density lipoprotein; LDL, low density lipoprotein; LV, left ventricular; LVH, left ventricular hypertrophy.

showed higher expression in LVH patients when compared
with those without LVH in the validation cohort (Figure 1B
and Supplementary Table S3). Bivariate correlation analysis was
then performed to evaluate the relationship of circulating
miRNAs with LVMI in the validation cohort. Of the six tested
miRNAs, miR-145-5p (r= 0.153; p= 0.011), miR-451 (r= 0.162;
p = 0.016) and miR-let7c (r = 0.242; p < 0.001) significantly
correlated with LVMI, while miR-92a (r = 0.098; p = 0.10),
miR30a-5p (r = 0.093; p = 0.12) and miR-185 (r = −0.155; p
= 0.07) did not. Systolic BP was positively correlated with miR-
30a-5p (r = 0.146; p = 0.015) and miR-451 (r = 0.213; p =

0.002), while no correlation between the studied miRNAs and the
presence of diabetes was observed (Supplemental Table S4).

Results of multivariable linear regression analyses adjusted
for potentially relevant confounders (age, sex, body mass index,
systolic blood pressure, diabetes mellitus, creatinine, smoking,
and antihypertensive medications) showed that miR-30a-5p,
miR-let7c, miR-92a, miR-451, miR-145-5p remained associated
with LVH, while only miR-145-5p, miR-let7c, and miR-451
showed an independent association with LVMI in the validation
cohort (Supplementary Table S5). As a secondary analysis, we
evaluated the relationship between LV geometric patterns and
selected miRNAs (miR-30a-5p, miR-let7c, miR-92a, miR-451,
miR-145-5p, miR-185) adjusted for potential confounders in the
validation cohort. Compared with the normal geometric pattern,
patients with concentric hypertrophy had greater expression

of miR-let7c, miR-92a, miR-145-5p, miR-30a-5p, and miR-451,
while patients with eccentric hypertrophy had greater expression
of miR-let7c and miR-145-5p (Supplementary Table S6).

Gene Set Enrichment Analysis
Using the miRWALK2.0 software, 1030 predicted genes were
identified to be targeted by the threemiRNAs that were associated
with both LVH and LVMI (miR-145-5p, miR-let7c and miR-
451). The number of genes targeted by each of the miRNAs is
shown in the Venn diagram presented in Figure 2A. Figure 2B
shows the predicted pathways of the aforementioned miRNAs.
Pathways related to cardiac remodeling and vascular diseases,
and metabolic and inflammatory pathways were predicted,
including calcium and adrenergic signaling pathways, focal
adhesion and hypertrophic cardiomyopathy.

Overexpression of miR-145-5p Increases
Hypertrophic Genes
Due to controversial results in the literature (30–32), we decided
to assess whether miR-145 is involved in the regulation of cardiac
myocyte hypertrophy in vitro. We first evaluated the expression
of this miRNA in HL-1-cells. We found that miR-145-5p was
constitutively expressed in these cells and that its expression
increased by≈ 3-fold after norepinephrine stimulus and by≈10-
fold after transfection with miR-145-5p mimic (Figure 3A). The
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FIGURE 1 | Differential expression analysis of miRNAs obtained in serum of hypertensive patients. (A) Differentially expressed serum miRNAs (fold change) in patients

with left ventricular hypertrophy (LVH) compared with patients without LVH in the exploratory cohort. (B) Differentially expressed serum miRNAs (fold change) in

patients with LVH compared with patients without LVH in the validation cohort. Box and whisker plots are represented for each miRNA and indicate the fold change in

expression of LVH patients compared with patients without LVH. p-values from independent Mann-Whitney test are presented.
†
p < 0.001; *p < 0.05.

expression of Nppa and Nppb significantly increased in HL-1-
cells transfected with miR-145-5p mimic (30nM) and in response
to norepinephrine (Figures 3B,C). By contrast, transfection of
anti-miR-145-5p (30nM) markedly decreased norepinephrine-
induced expression of Nppa and Nppb when compared with cells
transfected with negative control (Figures 3B,C).

DISCUSSION

In the present study, three main results were reported. First, we
found a differential expression of 10 miRNAs from 754 studied
miRNAs between hypertensive patients with and without LVH
in an exploratory cohort. Second, we confirmed a differential
expression of 5 miRNAs (miR-30a-5p, miR-let7c, miR-92a, miR-
451, and miR-145-5p) in an extended sample of hypertensive
patients (validation cohort). Of thesemiRNAs, miR-145-5p, miR-
451, and let7-c expression levels were significantly associated
with both LVH and LVMI even after adjusting for relevant
confounders. Third, results of cell culture assays demonstrated
a role of miR-145-5p in the development of cardiac myocyte
hypertrophy. These findings provide novel evidence regarding
the potential value of previously undisclosed miRNAs as
circulating biomarkers or potential mediators of hypertension-
induced LV remodeling.

Several studies have suggested that miRNAs play an important
role in the LV remodeling and may also serve as circulating
biomarkers of LVH (11, 33, 34). However, the knowledge
regarding the relationship between circulating miRNAs and LVH
in hypertensive individuals is scarce and has been restricted to
the evaluation of a small number of pre-selected miRNAs in

small samples of patients. In this regard, relationships between
LVMI and circulating levels of miR-1, miR-133a, miR-26b, miR-
208b, miR-499, and miR-21, miR-9 (12), miR-30e (13), miR-27b
(14), miR-29 (15), miR-7, and miR-26 (34) have been reported.
Notably, none of these miRNAs showed an association with LVH
in our study. These divergences could be explained by differences
in sample size, and in ethnic and clinical characteristics among
the studied samples, and reinforce the need of confirmatory
studies in alternative populations. It is also worth mentioning
that the miRNAs which were associated with LVH in our
validation cohort were derived from the evaluation of 754
miRNAs in an exploratory sample of 42 hypertensive individuals,
thus strengthening the validity of our findings.

In our analysis, there was a significant association of
circulating miR-145-5p levels with LVMI and LVH. We then
evaluated the impact of this miRNA on cardiac myocyte
hypertrophy in vitro. The results of cell assays showed

that treatment with norepinephrine, a hypertrophic stimulus,

increased the expression of miR-145-5p, while overexpression
of miR-145-5p also upregulated the expression of markers

of cardiac myocyte hypertrophy. In addition, transfection of
anti-miR-145-5p markedly decreased norepinephrine-induced
expression of cardiac myocyte hypertrophy markers. These data
support the notion that miR-145-5p may play a role in the
pathophysiology of cardiac myocyte hypertrophy. Conversely,
our findings are in contrast with previous in vitro studies which
showed that miR-145 transfection attenuated isoproterenol-
and angiotensin II-induced cardiac myocyte hypertrophy (30,
31) but in agreement with the results of Xu et al. (32)
who showed that miR-145 expression increases in induced
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FIGURE 2 | Pathway enrichment analysis of predicted target genes. (A) Gene ontology analysis for the three miRNAs (miR-145-5p, miR-451 and miR-let7c) that

correlated with both LVH and LVMI in the validation cohort. Venn’s diagram of genes targeted by each of the three miRNAs with p < 0.05. (B)- Gene set enrichment

analyses of pathways targeted by miR-145-5p, miR-451 and miR-let7c.

hypertrophic cardiomyocytes by angiotensin II. The reasons for
these discrepancies are not clear, but it is possible that differences
in the experimental protocol among the studies might have
played a role in this regard. In our protocol, HL-1 cells were
treated or not with norepinephrine for 2 weeks, transfected
with miR-145-5p or miR-145-5p antagonist, and then analyzed
48 h after. In the study by Lin et al. (30) H9C2 cells were
overexpressed with miR-145-5p for 6 h, and then treated with
Angiotensin-II for 24 h before analyses, while in the study by
Li et al., neonatal rat cardiac myocytes from 1-day-old Sprague–
Dawley rats were transfected with miR-145 adenovirus for 48 h,
and then stimulated with isoproterenol for 24 h before analyses
(31). Regardless of the divergences in the results of in vitro
studies, our findings provide novel evidence that miR-145-
5p may be a circulating marker of LV hypertrophy among
hypertensive individuals.

Our data showed that not only miR-145-5p, but also miR-
30a-5p, miR-let7c, miR-92a, miR-451 had an independent
relationship with LVH in both validation and exploratory
cohorts. Notably, these latter 4 miRNAs (miR-30a-5p, miR-
let7c, miR-92a, miR-451) have been previously reported to
be involved in adverse cardiac remodeling in experimental
models (35–38). In addition, we found that only miR-145-
5p, miR-let7c, and miR-451 were related to both LVH and

LVMI, and therefore could be more specifically involved in
the development of hypertension-induced LV hypertrophy.
To better understand the biological relevance of these three
miRNAs, functional enrichment analysis was performed aiming
at identifying their targeted genes and pathways. We found
that these miRNAs regulate genes and pathways related to
cardiac remodeling and vascular diseases, including metabolic,
inflammatory, focal adhesion, calcium and adrenergic signaling
pathways. Overall, the current findings suggest that miR-145-5p,
miR-let7c, and miR-451 comprise an attractive group of miRNAs
that might play a role in hypertension-induced LV remodeling
and could emerge as potential biomarkers or therapeutic targets
in this regard.

Hypertension is classically assumed to induce LV concentric
hypertrophy due to increases in LV wall stress (5). However,
several other factors, including hemodynamic variables, as well
as acquired and genetic factors may modulate LV geometry in
hypertensive individuals, resulting in alternative LV geometric
patterns, such as eccentric hypertrophy (5, 39). Available
evidence obtained in experimental and clinical settings has also
suggested that miRNAs may play a role in the development of
LV geometric patterns (11, 40, 41). In our study, we found that
patients with eccentric hypertrophy had increased expression
of miR-miR-let7c, and miR-145-5p, while those with concentric
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FIGURE 3 | Effects of miR-145-5p on cardiac myocyte hypertrophy. (A) The

mRNA levels of miR-145-5p were increased in HL-1 cells treated with

(Continued)

FIGURE 3 | norepinephrine or transfected with miR-145-5p mimic (30 nM).

Relative miR-145-5p expression corresponded to average expressions (fold

change) normalized to U6. (B,C) HL-1 cells transfected with miR-145-5p

mimic (30 nM) increased the mRNA level of Nppa (atrial natriuretic peptide

gene) and Nppb (brain natriuretic peptide gene), while transfection with

miR-145-5p inhibitor (30 nM) abrogated norepinephrine-induced increases in

Nppa and Nppb. Relative expressions of hypertrophy markers were expressed

as the average expressions (fold change) normalized to

Glyceraldehyde-3-posphate dehydrogenase (GAPDH), by RT-PCR analysis.

Data are presented as mean ± SEM (n = 3). Differences in the expression of

Nppa, Nppb and miR-145 were assessed by one-way ANOVA and Tukey post

hoc test. *p < 0.05; **p < 0.001.

hypertrophy had higher expression of miR-let7c, miR-92a, miR-
145-5p, miR-30a-5p, and miR-451. As far as we know, this is the
first study to describe the expression of these aforementioned
miRNAs as a function of LV geometric patterns in hypertensive
patients and further indicate that the assessment of LV geometry
can also be a target in studies focusing on the role of miRNAs in
hypertension-induced LV remodeling.

We acknowledge that our study has some limitations. First,
we only selected six miRNAs for validation among the miRNAs
that were differentially expressed between hypertensive patients
with and without LVH in the exploratory cohort. Therefore,
further studies should be performed to validate the remaining
miRNAs whose expression was different between the two groups.
Second, as any cross-sectional study, the influence of residual
confounding cannot be excluded and the association between
miRNAs and LV structural parameters cannot be assumed to
be causal. Third, it is possible that the use of antihypertensive
medications and clinical characteristics might have influenced
our findings. In order to overcome this limitation, we included
each antihypertensive class and potential relevant clinical
confounders as independent variables in multivariable analyses
regarding the validation cohort. Conversely, because the major
aim of the exploratory cohort was to performmiRNAmining and
due to its smaller number of enrolled patients, we opted to only
perform unadjusted analyses for the relationship of miRNAs with
LVH in this cohort.

In conclusion, starting from an analysis of 754 miRNAs,
we found that the circulating levels of three miRNAs (miR-
145-5p, miR-451, and let7-c) were associated with LVH
and left ventricular mass index in hypertensive individuals.
Furthermore, in vitro studies showed that miR-145-5p may have
a pro-hypertrophic effect on cardiac myocytes. These findings
suggest that miR-451 and let7c, and especially miR-145-5p,
may be potential circulating biomarkers or may be involved
hypertension-induced LV remodeling.
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